
#BHUSA @BlackHatEvents

Shuffle Up and Deal
Auditing the Security of Automated Card Shufflers

♤ Joseph Tartaro ♡ Enrique Nissim ♧ Ethan Shackelford ♢

#BHUSA @BlackHatEvents

Introduction

Joseph Tartaro Enrique Nissim Ethan Shackelford

Embedded Security Consultants at IOActive

• Low-level code review

• Reverse engineering (Operating Systems, Drivers, Firmware)

• Specialized tooling development

#BHUSA @BlackHatEvents

What and Why?
• Hustler Live Cheating Scandal

• Suspicious play occurs with accusations of cheating

• Independent investigators hired

#BHUSA @BlackHatEvents

What and Why?

• Investigators Focus Areas

#BHUSA @BlackHatEvents

What and Why?

#BHUSA @BlackHatEvents

• ShuffleMaster Deck Mate Series

• Most popular automated shufflers

• Used across the world in casinos, card rooms

and home games

• Official shuffler of the World Series of Poker

(WSOP)

What and Why?

#BHUSA @BlackHatEvents

What and Why?
Deck Mate 1

• Single Deck Shuffler

• Detects missing / additional cards

Deck Mate 2

• Single Deck Shuffler

• Detects missing / additional cards (w/ details)

• Shuffles significantly faster than DM1

• Supports remote management via network

• Supports external display module

• Player clock feature

#BHUSA @BlackHatEvents

Demo

#BHUSA @BlackHatEvents

Attack Scenarios

#BHUSA @BlackHatEvents

Maintenance Employees

• Extremely complex

• Contains

• Rubber belts

• Sensors

• Motors

• Requires

• Regular maintenance

• Contractual service agreements

#BHUSA @BlackHatEvents

• Casino Employees / Device Operators
• Unrestricted access to shufflers
• Access to exposed external ports

• Manager/Operator
• Dealer
• Chip Runner
• Security
• ...

Gaming Operator Employees

#BHUSA @BlackHatEvents

Attacker at Poker Table (DM2)

• Shuffler cutouts in

table

• External interfaces

exposed to players

• Ethernet, USB,

Power

#BHUSA @BlackHatEvents

Attacker with Network Access (DM2)

• Various network services

• Unnecessary attack surface

#BHUSA @BlackHatEvents

• Documents identified during research
suggest the cellular modem can be
used for pay-per-shuffle rental of
shufflers

• No firewall or network or iptables
rules prevent Ethernet/USB network
services from also being exposed on
the cellular interface

Attacker with Cellular Network Access (DM2)

#BHUSA @BlackHatEvents

Casino Architecture and Standards

#BHUSA @BlackHatEvents

• The International Gaming

Standards Association (iGSA) is

the entity responsible for the

standards implemented across the

gaming industry.

• Different types of specifications

• Communication

• Regulatory

• G2S

• S2S

Modern Casino Floor

IGSA Unleash the Power of Your Floor, 3rd edition

#BHUSA @BlackHatEvents

• Standardizes communications
between gaming devices and
management systems

• Asynchronous XML based
messages

• TCP (with optional SSL) and other
IP protocols for transport

• P2P and Multicast

Gaming to System (G2S)

#BHUSA @BlackHatEvents

G2S define classes of functionality a
device can implement

These classes relate to specific functions
or features of the EGM, e.g. meters,
cabinet, jackpots, vouchers, etc.

• communication​ • optionConfig

• cabinet​ • download​

• eventHandler • handpay

• meters​ • coinAcceptor

• gamePlay • noteAcceptor

• deviceConfig • commConfig

• printer • player

• progressive • voucher

• idReader • wat

• bonus • gat

• hopper • central

• noteDispense

G2S Classes

#BHUSA @BlackHatEvents

• This class provides a set of
commands that regulators can use
retrieve errors logs and authenticate
EGMs and peripherals

• Serial GAT

• Network GAT

• Permits ensuring the software running
on devices has not been modified

• GAT does not define or require a
particular authentication algorithm

Game Authentication Terminal

Request list of components for
authentication

OS

Software

Peripheral

Request authentication for

component

SHA1-HMAC

CRC-32

Offsets

Establish communication

with device

#BHUSA @BlackHatEvents

Serial GAT and Network GAT

#BHUSA @BlackHatEvents

GAT Protocol

Command Length Message Data CRC

1 Byte 1 Byte 0 - 251 Bytes 2 Bytes

Request Description Response Description

0x01 SQ Status Query 0x81 SR Status Response

0x02 LASQ Last Authentication Status Query 0x82 LASR Last Authentication Status Response

0x03 LARQ Last Authentication Results Query 0x83 LARR Last Authentication Results Response

0x04 IACQ Initiate Authentication Calculation Query 0x84 IACR Initiate Authentication Calculation Response

Application Layer

Commands in GAT

#BHUSA @BlackHatEvents

Master EGM / Peripheral

GAT – IACQ Get File

IACR - Acknowledged – Calculation started

SR (Status Response): Calculating

SR: Calculation Finished

LARR: [Authentication Result]

#BHUSA @BlackHatEvents

GAT Requires Transaction Logs
to be G2S compliant

#BHUSA @BlackHatEvents

• The GAT authentication is inherently
flawed: relies on the response the
EGM or Peripheral hands it (which
could be compromised)

• There is no mention of Public Key
Infrastructure in the G2S and GAT
specifications

• The algorithms defined for
authentication are cryptographically
weak or not suitable for cryptographic
purposes: HMAC-SHA1, CRC16,
CRC32

• The HMAC-SHA1 algorithm provide
some randomness to the process, but
nothing more

GAT Security

#BHUSA @BlackHatEvents

Shufflers and GAT

#BHUSA @BlackHatEvents

DM1

• It does not implement any GAT

concept

• Modified firmware cannot be

easily detected

• It features "History Logs" but

these are not G2S Transaction

Logs

#BHUSA @BlackHatEvents

DM2

• It features a HMAC-SHA1

Authentication

• Serial GAT only

• No transaction records of GAT

accesses

Get Special Functions Result

Feature: Get File

 Parameter: AuthenticationResponse.xml

 Parameter: %%SHA1_HMAC%%

Feature: Component

 Parameter: DeckMate2_UI_2.0.254

 Parameter: %%SHA1_HMAC%%

Feature: Component

 Parameter: DeckMate2_CardRec_5.0.023

 Parameter: %%SHA1_HMAC%%

Feature: Component

 Parameter: DeckMate2_NXP_NXP 1.0.172

 Parameter: %%SHA1_HMAC%%

Feature: Component

 Parameter: DeckMate2_Games_1.0.095

 Parameter: %%SHA1_HMAC%%

#BHUSA @BlackHatEvents

IACQ Get File AuthenticationResponse.xml

#BHUSA @BlackHatEvents

Deck Mate 1

#BHUSA @BlackHatEvents

#BHUSA @BlackHatEvents

• Goals: understand operation, RNG
and shuffling algorithm

• The ROM code was extracted from
the M27C512 EEPROM

• The MCU is AT89S53 (Intel 8051).
Old 8-bit architecture. Fun to reverse

• Bare Metal. No symbols, no debug
information

Reverse Engineering DM1

#BHUSA @BlackHatEvents

Setup Menu

• Set Game Type
• Poker
• Blackjack single deck
• Blackjack double deck

• Set number of cards
• Set time
• Set date
• Configure delay after platform drop
• Read serial number
• Read total cycles
• Read reset cycles
• Reset history logs
• Re-Seed RNG

#BHUSA @BlackHatEvents

• Shuffler Xtal is 11.0592 MHz

• Configures 8051 Timer0 to
Mode1 (16-bit mode)

• Sets TH0|TL0 to 0xFF1E, to
interrupt every ~245us

• A TIMER_TICK variable is
incremented on each interrupt

Timer Interrupt Setup

#BHUSA @BlackHatEvents

RNG
Seed = 0x19660d * seed + 0x3c6ef35f

GenerateRandomDeck()

GetRandom(min, max)

GetNextSeed()

void reseed_rng() {

 UINT32 *seed = XRAM_014Dh;

 *seed = 0;

 for (int i = 0; i < 4; i++) {

 // Wait for green button input

 BYTE timer_count = XRAM_151_TimerTick;

 *seed = *seed | (((UINT32) timer_count) << 8 * i);

 }

}

#BHUSA @BlackHatEvents

Shuffling Algorithm
1. Cards are physically loaded into the first compartment

2. Based on the configured game settings, the algorithm expects a specific number of cards. For Poker, this

number is 52

3. A new deck configuration is randomly generated.

a. This is represented by an array of numbered positions.

b. This also indicates how many cards the set of grippers should grip at each step

4. Shuffling starts => the deck configuration is "executed". Cards are placed into the correct location one at a

time starting from the bottom of the deck

5. Upon error-free completion, the shuffled deck becomes available

#BHUSA @BlackHatEvents

Cheating with DM1

Due to the limitations in the hardware architecture of the DM1, if a bad actor has

internal access to the device, they can flash or replace the EEPROM chip and

the MCU will simply execute the code.

AT89S53 MCU do not support secure boot

DM1 does not support GAT => there is no trivial way for an auditor to detect a

modified EEPROM.

#BHUSA @BlackHatEvents

Bypassing Card Count Detection
The DM1 keeps track of the number of cards

that were fed into the shuffling compartment.

This permits the detection of missing or extra

cards.

By manipulating the firmware, an attacker can

alter the code logic to avoid

failing when too few or too many cards are

processed.

This would allow an attacker at the poker table to

keep an ace back (hidden up their sleeve) and

the dealer would shuffle a deck of only 51 cards

without being alerted

#BHUSA @BlackHatEvents

Partial Deck Order Knowledge
Following the way the shuffling algorithm works, a compromised device could

place specific cards into known locations with the help of the dealer.

This could be concealed by for example, requiring the dealer pressing the green

button N times before inserting the deck.

[0, 9, x2, x3, x4, x5, x6, x7, x8 …]

#BHUSA @BlackHatEvents

False Shuffles

The device could be configured to perform false shuffles periodically or after a

rogue dealer presses a button sequence before the shuffle.

The dealer can keep the deck in the state as after the previous hand and the

cheater will be aware of the previous flop, turn, and river cards, as well as their

hands, which would be on top of the deck.

Given this knowledge, upon the deck is cut by the dealer, those known cards

could be considered dead, giving the cheater a significant edge.

[51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32,

31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

#BHUSA @BlackHatEvents

Deck Mate 2

#BHUSA @BlackHatEvents

Reverse Engineering DM2

• Goals: understand operation, RNG and
shuffling algorithm

• Display Board firmware extracted via
dumping unencrypted NAND
• CPU is i.MX28 NXP ARM CPU
• Linux 2.6.35.3

• Control Board firmware extracted from
Display Board updater
• MCU is NXP LPC1769 cortex-m3
• QP/C Real Time Embedded Framework

• No symbols, no debug information

#BHUSA @BlackHatEvents

DM2 System Architecture

#BHUSA @BlackHatEvents

Display Board

• Reach Technology touchscreen display development module

• Embedded Linux Environment

• Responsible for connecting user interface (buttons, screen) to Control board

• Hosts various network services, used during operation and for maintenance

• Ethernet and USB RNDIS for networking

#BHUSA @BlackHatEvents

Display Board Network Services

Port Service Description

22 ssh Secure Shell, used for remote display

23 telnet Telnet, unused

80 http Configuration Web Server

139 SMB SMB server, no shares

445 SMB SMB server, no shares

6000 X11 X11 Remote display server

#BHUSA @BlackHatEvents

Display Board: Initial Foothold

• USB and Ethernet both expose network services – primary initial attack surface

• SSH and Telnet – Linux login prompt (no creds yet)

• SMB – No shares available

• Configuration web server requires creds, only one low-priv set available at outset

#BHUSA @BlackHatEvents

Display Board: Initial Foothold

• Need more information for

network attack surface, get

physical

• Reach Technology Display

module can be booted from

NAND or SD Card

• f

• Built OS image with known

creds, booted from SD

• Dump on-board NAND flash

with Shuffler Firmware

#BHUSA @BlackHatEvents

Display Board: OS Review
• No real privilege separation

• Significantly outdated Linux kernel

• Weak, hardcoded, universal system

passwords

• SSH and Telnet unrestricted beyond login

prompt, login as root permitted

• No Secure Boot, filesystem integrity

$ time john --format=md5crypt remote-root.hash

Using default input encoding: UTF-8

Loaded 1 password hash (md5crypt, crypt(3) 1 (and

variants) [MD5 128/128 AVX 4x3])

Will run 80 OpenMP threads

Proceeding with single, rules:Single

Press 'q' or Ctrl-C to abort, almost any other key

for status

Almost done: Processing the remaining buffered

candidate passwords, if any.

Proceeding with

wordlist:/usr/share/john/password.lst, rules:Wordlist

Proceeding with incremental:ASCII

<redacted> (root)

1g 0:00:08:59 DONE 3/3 (2023-08-04 10:58) 0.001851g/s

799083p/s 799083c/s 799083C/s 3KDYL..411s5

Use the "--show" option to display all of the cracked

passwords reliably

Session completed

john --format=md5crypt remote-root.hash 41246.77s

user 15.83s system 7630% cpu 9:00.76 total

root:1<redacted>:0:0:99999:7:::

daemon:*:14250:0:99999:7:::

sshd:*:0:0:99999:7:::

ftp::0:0:99999:7:::

#BHUSA @BlackHatEvents

Display Board: Software Update Security

• Weak update authentication – faulty SHA1 logic and authentication key same as encryption key

• Hardcoded, universal encryption/authentication key

• Update format (self extracting bash script) easily exploitable for code execution as root

• IOActive extracted key and logic for encryption/authentication from on-board utility

• Developed a tool for creating arbitrary cryptographically valid firmware updates

#BHUSA @BlackHatEvents

Display Board: Configuration Web Server
• Hardcoded, universal credentials for all accounts including web superuser

• Credentials embedded in plaintext in service binary

#BHUSA @BlackHatEvents

Control Board System Review

• No Secure Boot Implemented

• Code Read Protection not

enabled (ISP/JTAG possible)

#BHUSA @BlackHatEvents

Control Board Architecture – QP/C and Events
• QP/C: Real Time Embedded Framework

• "Active Object" model of Computing
• Event-based
• Open source

#BHUSA @BlackHatEvents

Identifying Active Objects

Pattern Matching
• main identified

• Calls to QActive_start_ are passed ActiveObject

references

• xrefs lead to _initial functions for each object

• _initial functions contain event subscriptions and

Root_events function pointer

• 16 Active Objects identified

#BHUSA @BlackHatEvents

Random Number Generation

Questions to Answer:
• Hardware or Software?
• How is entropy sourced?
• What seed?
• What PRNG algorithm?

#BHUSA @BlackHatEvents

Random Number Generation

Entropy
• RITimer -> Repetitive Interrupt Timer
• 32 bit counter, counts from 0 to 0xffffffff
• Configurable tick rate, division of system

clock
• By default, equals clock rate
• NXP LPC1769 clock max @ 120MHz

A single poll of the RITIMER counter value not
sufficient for entropy – timing may be constant
if SeedRNG called at fixed time after boot.

SeedRNG seed_status maintaned across
multiple calls, and timer queried twice. Delay
between calls variable, dependent on whims of
QP/C Scheduler

Delays on the order of tens of nanoseconds will
affect the final seed value

#BHUSA @BlackHatEvents

Random Number Generation
PRNG Algorithm
• Magic constants 0x19660d and 0x3c6ef35f

• Parameters found in Numerical Recipes by D. Knuth and H. W. Lewis, in

common use

• Used as multiplier and increment for Linear Congruential Generator

Linear Congruential Generator Security
• LCG output considered to be sufficiently random for non-cryptographic

applications

• Acceptably unpredictable for this specific application, without knowledge of

initial seed and iteration count

• Same PRNG as the Deck Mate 1

#BHUSA @BlackHatEvents

Shuffling Algorithm

• Constructs an array target_positions equal to size

of inserted deck

• Each index in array represents a card in the

unshuffled deck

• Populates this array with target position values

• Each card in unshuffled deck at position i is placed

at position target_positions[i] in the shuffled deck

• Similar to Deck Mate 1 randomization

#BHUSA @BlackHatEvents

Physical Shuffling Mechanism

#BHUSA @BlackHatEvents

Shuffler Mode

• Multiple modes supported
• Normal Shuffle
• Sort: multiple modes for different suit orders

• Sort mode reads card data from camera for placement
information.

• Normal Shuffle reads order information from virtual deck,
card values in physical deck irrelevant (though still read
and recorded).

#BHUSA @BlackHatEvents

Cheating with DM2

#BHUSA @BlackHatEvents

Cheating with DM2: Deck Order Manipulation

• Repurpose the DM2 Camera to identify each card and place it in a target

location

• This allows for "sort" mode, where cards are placed in a specific order

• Modifying Control Board firmware allows for cheater-specified sort order

• Dealer will usually cut deck, disrupting intended order

• Deck orders which allow for the cheater to win consistently are suspicious

• Requires cheater to be in a specific seat

#BHUSA @BlackHatEvents

Cheating with DM2: Exfiltrating the Deck

• Use the Camera to read the current card being shuffled and exfiltrate it.

• Control Board firmware can be modified so that this information is reported to the Display

board over UART

• Cheater-controlled device connected to the Display Board extracts this data

• Order of deck post-shuffle can be transmitted to the cheater

• Deck order is not modified and thus avoids suspicion

• Deck cut can be accounted for

• Does not attempt to force a win but rather increase odds for cheater, thus no specific seat or

game configuration is necessary

#BHUSA @BlackHatEvents

Cheating with DM2: Proof of Concept

Vulnerabilities Leveraged
• SSH exposed over USB/Ethernet/Cellular
• Hardcoded Display Board root credentials
• Incomplete GAT implementation
• Lack of firmware update security for Control Board
• Lack of secure boot for Control Board
• Lack of filesystem integrity protections for Display Board
• Inadequate physical security for Deck Mate 2 device and enclosure
• Inadequate physical access restrictions/monitoring in common deployment

Equipment
• Raspberry Pi Zero W
• Android Phone

Attack Scenario: Cheating player

#BHUSA @BlackHatEvents

Cheating with DM2: Exfiltrating Deck Information via Bluetooth

#BHUSA @BlackHatEvents

Cheating with DM2: Exfiltrating Deck Information via Bluetooth

#BHUSA @BlackHatEvents

Conclusions

#BHUSA @BlackHatEvents

Impact

• Automated shufflers and gaming standards sport surprisingly weak

security given the high-stakes nature of their purpose

• Research focused on Poker, but similar shufflers are used in other

table games such as Blackjack and Baccarat and incur losses to

gaming operators

• Overall, cheating scenarios like this affect players trust in the integrity

of the game, without trust there is no game

#BHUSA @BlackHatEvents

Recommendations

Gaming Operators

• Implement physical restrictions on access to exposed ports

• Leverage relationship with manufacturer to directly address concerns

Players

• Ultimately boils down to your trust in the operator/game

• asd

#BHUSA @BlackHatEvents

Recommendations

https://twitter.com/DougPolkVids/status/1529976301536280576

#BHUSA @BlackHatEvents

Questions?

A detailed whitepaper will be available in the new few weeks

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: GAT Requires Transaction Logs to be G2S compliant
	Slide 24
	Slide 25
	Slide 26: DM1
	Slide 27: DM2
	Slide 28
	Slide 29: Deck Mate 1
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Deck Mate 2
	Slide 41: Reverse Engineering DM2
	Slide 42: DM2 System Architecture
	Slide 43: Display Board
	Slide 44: Display Board Network Services
	Slide 45: Display Board: Initial Foothold
	Slide 46: Display Board: Initial Foothold
	Slide 47: Display Board: OS Review
	Slide 48: Display Board: Software Update Security
	Slide 49: Display Board: Configuration Web Server
	Slide 50: Control Board System Review
	Slide 51: Control Board Architecture – QP/C and Events
	Slide 52: Identifying Active Objects
	Slide 53: Random Number Generation
	Slide 54: Random Number Generation
	Slide 55: Random Number Generation
	Slide 56: Shuffling Algorithm
	Slide 57: Physical Shuffling Mechanism
	Slide 58: Shuffler Mode
	Slide 59: Cheating with DM2
	Slide 60: Cheating with DM2: Deck Order Manipulation
	Slide 61: Cheating with DM2: Exfiltrating the Deck
	Slide 62: Cheating with DM2: Proof of Concept
	Slide 63: Cheating with DM2: Exfiltrating Deck Information via Bluetooth
	Slide 64: Cheating with DM2: Exfiltrating Deck Information via Bluetooth
	Slide 65
	Slide 66: Impact
	Slide 67: Recommendations
	Slide 68: Recommendations
	Slide 69

