
#BHUSA @BlackHatEvents

Three New Attacks Against
JSON Web Tokens

Tom Tervoort



#BHUSA @BlackHatEvents

Speaker intro



#BHUSA @BlackHatEvents

1. Background
- Transferring identity claims
- JSON Web Tokens
- Prior attacks
- Criticisms

2. New attacks
- Sign/encrypt confusion
- Polyglot token
- Billion hash attack

3. Takeaways

Outline



#BHUSA @BlackHatEvents

Background



#BHUSA @BlackHatEvents

Transferring identity claims
Classic (stateful) approach



#BHUSA @BlackHatEvents

Transferring identity claims
Cryptographic approach



#BHUSA @BlackHatEvents

Comparison

Stateful tokens Signed/encrypted claims

Many central DB lookups needed Fast to verify and easy to scale

Mutable claims Claims fixed until expiration

Trivially revocable No revocation before expire date

Secrets are ephemeral Requires key management

Token leak: compromise 1 user Key leak: compromise all users

Easy to build, given secure RNG Involves complex cryptography

Common hybrid approach: cryptographic access token and stateful “refresh token”



#BHUSA @BlackHatEvents

Cryptography is hard

Image sources: HackTricks, SEC Consult blog



#BHUSA @BlackHatEvents

JSON Web Tokens

Image source: jwt.io

• Massive improvement 

over legacy standards

• Proper integrity protection

• Easy to read and debug

• Simple and concise claims

• > 100 implementations

• Used by OpenID Connect

• They’re everywhere



#BHUSA @BlackHatEvents

JWT (JSON Web Token): JSON-based claims format using JOSE for protection

JOSE (Javascript Object Signing and Encryption): set of open standards, including:

JWS (JSON Web Signature): JOSE standard for cryptographic authentication

JWE (JSON Web Encryption): JOSE standard for encryption

JWA (JSON Web Algorithms): cryptographic algorithms for use in JWS/JWE

JWK (JSON Web Keys): JSON-based format to represent JOSE keys

Some JSON Web Acronyms



#BHUSA @BlackHatEvents

• Bypass signature validation by providing a token signed with the “none” algorithm

• Bypass blocklist filter with “nOne”…

• Algorithm confusion: using an RSA public key as an HMAC secret key

• Key injection/self-signed JWT: putting your own key in the “jwk” header

• Classic crypto attacks against primitives: RSA padding oracle; CurveSwap

• Probably most common: simple dictionary words being used as cryptographic keys

Prior JWT attacks



#BHUSA @BlackHatEvents

Important design flaws
(personal opinion)

1. Deciding the decryption/validation algorithm based on untrusted ciphertext

2. Letting end users choose between cryptographic algorithms

3. … including one broken since 1998 (RSA PKCS#1 v1.5 encryption) and “none”

4. Some algorithms are interchangeable, some dramatically change security properties

5. Over-engineered: trying to support many (obscure) use cases at once



#BHUSA @BlackHatEvents

New attack: 
sign/encrypt confusion



#BHUSA @BlackHatEvents

JWT flavors

Symmetric JWS Asymmetric JWS Symmetric JWE Asymmetric JWE

Authenticity ✔ ✔ ✔ ❌

Confidentiality ❌ ❌ ✔ ✔

Image source: Takahiro Kawasaki



#BHUSA @BlackHatEvents

JWT flavors

Symmetric JWS Asymmetric JWS Symmetric JWE Asymmetric JWE

Authenticity ✔ ✔ ✔ ❌

Confidentiality ❌ ❌ ✔ ✔

Image source: Takahiro Kawasaki



#BHUSA @BlackHatEvents

Should we expect developers to be 

crypto experts?

Fine for JWTs

Not suitable for JWTs!

Not suitable for JWTs!



#BHUSA @BlackHatEvents

JWT signer:

What if we just avoid encrypted JWTs?

JWT validator:

Key file:



#BHUSA @BlackHatEvents

JWT signer:

What if we just avoid encrypted JWTs?

JWT validator:

Key file:

Decides algorithm based on 

JWT header. Accepts 

RSA-encrypted JWE!

RSA JWK file usable for:

- Signing

- Validation

- Encryption 

- Decryption



#BHUSA @BlackHatEvents

Preconditions:

1. Library supports asymmetric JWTs

2. App uses JWS tokens with RSA or ECDSA (RS*/PS*/ES*)

3. Private key accessible by validation function

4. No specific algorithm or JWT wrapper type is enforced

5. Attacker can determine public key. E.g. by:

- Reading it from OIDC endpoint /jwks.json

- If alg is RS*, can compute it from two tokens (https://github.com/SecuraBV/jws2pubkey)

Sign/encrypt confusion attack

https://github.com/SecuraBV/jws2pubkey


#BHUSA @BlackHatEvents

New attack: 
polyglot JWT



#BHUSA @BlackHatEvents

What if library A and library B parse JWTs differently?

A dangerous pattern



#BHUSA @BlackHatEvents

See also: https://bishopfox.com/blog/json-interoperability-vulnerabilities

Maybe exploit JSON ambiguity?

https://bishopfox.com/blog/json-interoperability-vulnerabilities


#BHUSA @BlackHatEvents

Or an alternative serialization format?

JWT spec requires compact, but some libraries pass the 
JWT to a general JWS parser that accepts either type

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiJhbGljZSIsImlhdCI6M
TUxNjIzOTAyMn0.rv61W60MY3WdNuyFrbDb31rcbBpfuYWoS4fOI6Mmjeg

{
"protected":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9",
"payload":"eyJzdWIiOiJhbGljZSIsImlhdCI6MTUxNjIzOTAyMn0",
"signature":"rv61W60MY3WdNuyFrbDb31rcbBpfuYWoS4fOI6Mmjeg"

}

JWS Compact Serialization

JWS Flattened JSON Serialization



#BHUSA @BlackHatEvents

Library mismatch
python-jwt JWT validator

(assumes compact)
jwcrypto JWS validator
(first tries JSON; then compact)



#BHUSA @BlackHatEvents

A polyglot token

{
"AAAA":".XXXX.",
"protected": "AAAA",
"payload": "BBBB",
"signature": "CCCC"

}



#BHUSA @BlackHatEvents

A polyglot token

{
"AAAA":".XXXX.",
"protected": "AAAA",
"payload": "BBBB",
"signature": "CCCC"

}

jwcrypto ignored unknown JSON fields: 



#BHUSA @BlackHatEvents

A polyglot token

{
"AAAA":".XXXX.",
"protected": "AAAA",
"payload": "BBBB",
"signature": "CCCC"

}

python-jwt split on periods, and 
ignored non-base64 characters:

header payload

Given a token with a legitimate payload, the 
attacker can replace it with any spoofed claims



#BHUSA @BlackHatEvents

New attack: 
billion hashes attack



#BHUSA @BlackHatEvents

Some interesting JWE “alg” values



#BHUSA @BlackHatEvents

• Standard designer wants versatility: includes useful PBES algorithms

• Library implementer wants feature-completeness: implements all JWE algorithms

• Library implementer wants simple and clean interface: same API for all algorithms

• User decodes token with default settings, assuming these must be secure

• Result: application will try to decrypt JWTs claiming to be encrypted with a 

password, even though that doesn’t really make sense

• But if there’s no token spoofing cross-protocol attack between PBES and other 

algorithms this should not be a problem, right?

What can go wrong?



#BHUSA @BlackHatEvents

A PBES header parameter



#BHUSA @BlackHatEvents

DoS with a token header
{

"alg": "PBES2-HS512+A256KW",
"p2s": "AAAAAAAAAAAAAAAAAAAAAA",
"p2c": 2147483647,
"enc": "A128CBC-HS256"

}

• Rest of the JWE can consist of bogus strings.
• The server needs to perform more than 4 billion SHA512 hashes to derive the 

token encryption key in before it can determine that this JWT is invalid.
• Unauthenticated: attacker does not need to know what a valid token looks like.
• It has to do this for every request with a JWT!



#BHUSA @BlackHatEvents

Takeaways



#BHUSA @BlackHatEvents

JWT library research

Library Language Affected versions Vulnerability CVE

Authlib Python < v1.1.0 Sign/encrypt confusion CVE-2022-39174

JWCrypto Python < v1.4 Sign/encrypt confusion CVE-2022-3102

JWX PHP < 0.12.0 Sign/encrypt confusion

Python-jwt Python < v3.3.4 Polyglot token CVE-2022-39227

Jose JavaScript < v1.28.1, v2.0.5, 

v3.20.3, v4.9.1 

Billion hashes CVE-2022-36083

Jose-jwt .NET < v4.1 Billion hashes

• Focus on popular open source libraries. Could not cover all 100+ JWT libraries!

• Vulnerabilities mainly found in highly featured libraries.

• Responsible disclosure very pleasant: fast and excellent response in each case

• Vulnerabilities found and mitigations implemented in the following libraries:



#BHUSA @BlackHatEvents

• Less is more: don’t implement features with rare use cases, or turn them off by default.

• Don’t use the “alg” parameter in the token to decide the algorithm. Instead force users 

to make this explicit in their code or key file.

• Don’t support JWTs using asymmetric or password-based encryption.

• Avoid validate-then-parse-again patterns.

Recommendations for JWT library 

developers



#BHUSA @BlackHatEvents

• Specify security recommendations to avoid the issues discussed here.

• Explicitly list which JWS and JWE algorithms are allowed for JWTs. Exclude the likes 

of “none”, PBES and public key encryption.

• Encourage existing methods to enforce that a key is only used with a single algorithm.

• Ideally, remove “alg” from token headers altogether.

Recommendations for the JOSE working 

group



#BHUSA @BlackHatEvents

• Reconsider if you really need encrypted claims. Boring old random tokens have 

many advantages!

• Consider JWT alternatives like PASETO, Macaroons or Biscuits.

• When using JWT, always explicitly configure the validation algorithm.

• A JWT validation library is a critical dependency. Don’t forget to patch them!

Recommendations for application 

developers using JWTs



#BHUSA @BlackHatEvents

Thank you!


