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DNN Executable
● What is DNN executable?

 ○ Output of deep learning compilers.
 
 ○ Performing the DNN model inference at runtime.
 
 ○ In standalone binary format.
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DNN Executable
● Why we need DNN compilation/executable?

 ○ To fully leverage low-level hardware primitives for fast model inference.

 ○ To deploy DNN models on heterogeneous hardware devices.
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DL Compiler
● Compile high-level models into binary code.

● Can optimize code utilizing domain-specific hardware features (e.g., Intel SIMD) and 
abstractions.

● Further squeeze (low-power) hardware performance potential.
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DL Compiler

● Compilation process typically involves multiple optimization cycles.

DNN compilation pipeline.
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DL Compiler
● Many resources from academia and industry have been devoted to this field.
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Real-World Applications
● Low-power processors suppliers (e.g., NXP, Qualcomm) are incorporating DL 
compilers into their applications

● Cloud service providers (e.g., Amazon and Google) include DL compilers into their 
DL services to boost performance
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https://aws.amazon.com/sagemaker/neo/
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Problem
● Currently, DL compiler community mainly focuses on performance

● Our questions:
 ○ What is the difference between DNN executables and traditional software?

 ○ How should we safely use DL compilers?
 
 ○ What are the potential security risks of using DL compilers?
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Problem
● Specifically, should we view a DNN executable as a black-box or white-box?
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Is it incomprehensible?

Or is it vulnerable?

Which assumption 
is true?



#BHUSA  @BlackHatEvents

Challenges
● The traditional software reverse engineering techniques can hardly tackle DNN 
executables.

13



#BHUSA  @BlackHatEvents

Challenges

● Complex data flow during DNN inference.
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Decompile with IDA
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Challenges

● Hardware-aware optimizations during compilation.
 ○ memory layout optimization  better memory locality & compatible with SIMD
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Related
● Attacking DNN models is not new

● Previous works mainly focus on DL frameworks (e.g., PyTorch and TensorFlow):
 ○ Cache side channel

 ○ Power side channel
 
 ○ Electromagnetic emanations (EM) side channel

 ○ Bus snooping
 ……
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Threat Model
● Physical access
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Threat Model
● Remote access
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Threat Model
● Our assumption: binary access
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Our Work

● We propose BTD (Bin-To-DNN), the first DNN executable decompiler.
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Observation
● Differences between DNN executables and general software:

 ○ Complex data flow (millions of floating-point multiplications in DNN exe)
 difficult to summarize

 ○ But only one execution path!
 no path explosion

Give us an opportunity to summarize the semantics from low-level binary code (i.e., 
floating-point arithmetic)
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Observation
● Moreover
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DL compilers generate distinct low-level code but retain 
operator high-level semantics, because DNN operators are 

generally defined in a clean and rigorous manner. 

E.g., mathematical definition of Conv:
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Idea

● Summarize the invariant operator semantics with trace-based symbolic execution
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Workflow
● BTD consists of 3 steps: operator recovery, topology recovery, dimension & 
parameter recovery.

● BTD is able to recover full model specification (including operators, topologies, 
dimensions, and parameters) from DNN executable.
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Step 1: Operator Recovery
● We train a LSTM model to map assembly functions to DNN operators.

 ○ Treat x86 opcodes as language tokens.
 ○ Segment x86 opcodes using Byte Pair Encoding (BPE).
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Step 2: Topology Recovery
● DL compilers compile DNN operators into assembly functions and pass inputs and 
outputs as memory pointers through function arguments.

● We hook every call site to record the memory address, and chain operators into 
computation graph.
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Step 3: Dimension & Parameter
● We launch trace-based symbolic execution (SE) to infer dimensions and localize 
parameters for DNN operators
● We filter trace with taint analysis to only keep parts related to operator output.
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Step 3: Dimension & Parameter

● The gap (offset) between inputs implies the dimension information.
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(0x29c4-0x29b8) / sizeof(float) = 3
each row has 3 float values.
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Step 3: Dimension & Parameter
● Symbolic constraints extracted from vastly different binaries are mostly consistent.
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Step 3: Dimension & Parameter
● We infer operator dimensions (e.g., kernel size, #input channels, #output channels, 
stride) from extracted symbolic constraints.

● Then instrument the DNN executable to dump parameters (e.g., weights, biases) 
during execution.

● With all extracted information (i.e., types, topology, dimensions, and parameters), 
we can rebuild a new model showing identical behavior with the original model.
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Implementation

● BTD is open available at: https://github.com/monkbai/DNN-decompiler

● BTD passed the artifact evaluation of USENIX Security With Available, Functional, 
Reproduced badges
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https://github.com/monkbai/DNN-decompiler
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Evaluation

● 8 version of 3 state-of-the-art, production level DL compilers
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Evaluation
● 7 models cover all operators used in the CV models from ONNX Zoo
https://github.com/onnx/models

● real-world image classification models trained on ImageNet
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https://github.com/onnx/models


#BHUSA  @BlackHatEvents

Results
● Step 1: DNN operator inference

● Errors can be eliminated by post-checking symbolic constraints, e.g.,
 ○ predicted types  Conv+ReLU
 ○ but no max operation in constraints
 ○ remove ReLU label and get the correct Conv type
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Results

● Step 3: Parameter layout/dimension inference

● BTD fails on two cases because of DL compiler optimizations 
(details in our paper)

38



#BHUSA  @BlackHatEvents

Results

● Overall, BTD is able to extract functional models in most cases.

● Thus, we can enable white-box attacks (e.g., Adversarial Example, Knowledge 
Stealing) on a black-box, obscure DNN executable!
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Example

● We can use DeepInversion (CVPR’20) to attack a ResNet18 executable decompiled 
with BTD.

● The results are the same as attacking the original model
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Thanks!
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Q&A

● BTD: https://github.com/monkbai/DNN-decompiler

https://github.com/monkbai/DNN-decompiler

