
#BHUSA   @BlackHatEvents

BTD: Unleashing the Power of 
Decompilation for x86 Deep Neural Network 

Executables
 Zhibo Liu, Yuanyuan Yuan, Xiaofei Xie, Tianxiang Li, Wenqiang Li, Shuai Wang



#BHUSA  @BlackHatEvents

• Background

• Motivation

• Related Work 

• Decompiling DNN executables

• Evaluation

Outline

2



#BHUSA  @BlackHatEvents

• Background ◁

• Motivation

• Related Work

• Decompiling DNN executables

• Evaluation

Outline

3



#BHUSA  @BlackHatEvents

DNN Executable
● What is DNN executable?

 ○ Output of deep learning compilers.
 
 ○ Performing the DNN model inference at runtime.
 
 ○ In standalone binary format.

DL Compiler DNN 
Executable

DNN 
Model

Cat!

4



#BHUSA  @BlackHatEvents

DNN Executable
● Why we need DNN compilation/executable?

 ○ To fully leverage low-level hardware primitives for fast model inference.

 ○ To deploy DNN models on heterogeneous hardware devices.

DL Compiler Accelerat
or

DNN 
Executable

DNN 
Model

5



#BHUSA  @BlackHatEvents

DL Compiler
● Compile high-level models into binary code.

● Can optimize code utilizing domain-specific hardware features (e.g., Intel SIMD) and 
abstractions.

● Further squeeze (low-power) hardware performance potential.

6



#BHUSA  @BlackHatEvents

DL Compiler

● Compilation process typically involves multiple optimization cycles.

DNN compilation pipeline.

7



#BHUSA  @BlackHatEvents

DL Compiler
● Many resources from academia and industry have been devoted to this field.

8

NNFusion

DL compilersSupport from 
industry

Academic 
output

OSDI’18

OSDI’20

arXiv



#BHUSA  @BlackHatEvents

Real-World Applications
● Low-power processors suppliers (e.g., NXP, Qualcomm) are incorporating DL 
compilers into their applications

● Cloud service providers (e.g., Amazon and Google) include DL compilers into their 
DL services to boost performance

9

https://aws.amazon.com/sagemaker/neo/

https://aws.amazon.com/sagemaker/neo/


#BHUSA  @BlackHatEvents

• Background

• Motivation ◁

• Related Work

• Decompiling DNN executables

• Evaluation

Outline

10



#BHUSA  @BlackHatEvents

Problem
● Currently, DL compiler community mainly focuses on performance

● Our questions:
 ○ What is the difference between DNN executables and traditional software?

 ○ How should we safely use DL compilers?
 
 ○ What are the potential security risks of using DL compilers?

11



#BHUSA  @BlackHatEvents

Problem
● Specifically, should we view a DNN executable as a black-box or white-box?

12

Is it incomprehensible?

Or is it vulnerable?

Which assumption 
is true?



#BHUSA  @BlackHatEvents

Challenges
● The traditional software reverse engineering techniques can hardly tackle DNN 
executables.

13



#BHUSA  @BlackHatEvents

Challenges

● Complex data flow during DNN inference.

14

Decompile with IDA



#BHUSA  @BlackHatEvents

Challenges

● Hardware-aware optimizations during compilation.
 ○ memory layout optimization  better memory locality & compatible with SIMD

15



#BHUSA  @BlackHatEvents

• Background

• Motivation 

• Related Work ◁

• Decompiling DNN executables

• Evaluation

Outline

16



#BHUSA  @BlackHatEvents

Related
● Attacking DNN models is not new

● Previous works mainly focus on DL frameworks (e.g., PyTorch and TensorFlow):
 ○ Cache side channel

 ○ Power side channel
 
 ○ Electromagnetic emanations (EM) side channel

 ○ Bus snooping
 ……

17



#BHUSA  @BlackHatEvents

Threat Model
● Physical access

18

Edge Device,
IoT Device,

…
Model User

Have 
physical 
access



#BHUSA  @BlackHatEvents

Threat Model
● Remote access

19

Model UserCloud Service 
Provider

Provide Inputs via APIs

Results of Model 
Inference

Can run processes on 
the same hardware



#BHUSA  @BlackHatEvents

Threat Model
● Our assumption: binary access

20

Model

Downstream 
Tasks

Can read the 
DNN 

executable 
image directly

Hardware 
Devices



#BHUSA  @BlackHatEvents

Our Work

● We propose BTD (Bin-To-DNN), the first DNN executable decompiler.

21

BTDx86 DNN 
Executable

DNN Model 
Specification



#BHUSA  @BlackHatEvents

• Background

• Motivation 

• Related Work

• Decompiling DNN executables ◁

• Evaluation

Outline

22



#BHUSA  @BlackHatEvents

Observation
● Differences between DNN executables and general software:

 ○ Complex data flow (millions of floating-point multiplications in DNN exe)
 difficult to summarize

 ○ But only one execution path!
 no path explosion

Give us an opportunity to summarize the semantics from low-level binary code (i.e., 
floating-point arithmetic)

23



#BHUSA  @BlackHatEvents

Observation
● Moreover

24

DL compilers generate distinct low-level code but retain 
operator high-level semantics, because DNN operators are 

generally defined in a clean and rigorous manner. 

E.g., mathematical definition of Conv:



#BHUSA  @BlackHatEvents

Idea

● Summarize the invariant operator semantics with trace-based symbolic execution

25



#BHUSA  @BlackHatEvents

Workflow
● BTD consists of 3 steps: operator recovery, topology recovery, dimension & 
parameter recovery.

● BTD is able to recover full model specification (including operators, topologies, 
dimensions, and parameters) from DNN executable.

26



#BHUSA  @BlackHatEvents

Step 1: Operator Recovery
● We train a LSTM model to map assembly functions to DNN operators.

 ○ Treat x86 opcodes as language tokens.
 ○ Segment x86 opcodes using Byte Pair Encoding (BPE).

27

x86 
assembly 
function

DNN 
operator 

type
Conv, ReLU, 
MatMul, …

LSTM

Conv Conv

ReLU Pool



#BHUSA  @BlackHatEvents

Step 2: Topology Recovery
● DL compilers compile DNN operators into assembly functions and pass inputs and 
outputs as memory pointers through function arguments.

● We hook every call site to record the memory address, and chain operators into 
computation graph.

28

Conv ConvReLU Pool

Conv ConvReLU Pool

…

…



#BHUSA  @BlackHatEvents

Step 3: Dimension & Parameter
● We launch trace-based symbolic execution (SE) to infer dimensions and localize 
parameters for DNN operators
● We filter trace with taint analysis to only keep parts related to operator output.

29

assembly 
trace

symbolic 
constraints

Human readable 
operator semantics

SE



#BHUSA  @BlackHatEvents

Step 3: Dimension & Parameter

● The gap (offset) between inputs implies the dimension information.

30

(0x29c4-0x29b8) / sizeof(float) = 3
each row has 3 float values.



#BHUSA  @BlackHatEvents

Step 3: Dimension & Parameter
● Symbolic constraints extracted from vastly different binaries are mostly consistent.

31



#BHUSA  @BlackHatEvents

Step 3: Dimension & Parameter
● We infer operator dimensions (e.g., kernel size, #input channels, #output channels, 
stride) from extracted symbolic constraints.

● Then instrument the DNN executable to dump parameters (e.g., weights, biases) 
during execution.

● With all extracted information (i.e., types, topology, dimensions, and parameters), 
we can rebuild a new model showing identical behavior with the original model.

32



#BHUSA  @BlackHatEvents

Implementation

● BTD is open available at: https://github.com/monkbai/DNN-decompiler

● BTD passed the artifact evaluation of USENIX Security With Available, Functional, 
Reproduced badges

33

https://github.com/monkbai/DNN-decompiler


#BHUSA  @BlackHatEvents

• Background

• Motivation 

• Related Work

• Decompiling DNN executables

• Evaluation ◁

Outline

34



#BHUSA  @BlackHatEvents

Evaluation

● 8 version of 3 state-of-the-art, production level DL compilers

35



#BHUSA  @BlackHatEvents

Evaluation
● 7 models cover all operators used in the CV models from ONNX Zoo
https://github.com/onnx/models

● real-world image classification models trained on ImageNet

36

https://github.com/onnx/models


#BHUSA  @BlackHatEvents

Results
● Step 1: DNN operator inference

● Errors can be eliminated by post-checking symbolic constraints, e.g.,
 ○ predicted types  Conv+ReLU
 ○ but no max operation in constraints
 ○ remove ReLU label and get the correct Conv type

37



#BHUSA  @BlackHatEvents

Results

● Step 3: Parameter layout/dimension inference

● BTD fails on two cases because of DL compiler optimizations 
(details in our paper)

38



#BHUSA  @BlackHatEvents

Results

● Overall, BTD is able to extract functional models in most cases.

● Thus, we can enable white-box attacks (e.g., Adversarial Example, Knowledge 
Stealing) on a black-box, obscure DNN executable!

39



#BHUSA  @BlackHatEvents

Example

● We can use DeepInversion (CVPR’20) to attack a ResNet18 executable decompiled 
with BTD.

● The results are the same as attacking the original model

40

Synthesized Images



#BHUSA  @BlackHatEvents

Thanks!

41

Q&A

● BTD: https://github.com/monkbai/DNN-decompiler

https://github.com/monkbai/DNN-decompiler

