
BLACK HAT BRIEFINGS

Secure Shells
in Shambles

HD MOORE | ROB KING | AUGUST 7, 2024

Agenda

2

This is a talk about the evolution of the Secure Shell (SSH)
→ An overview of the SSH ecosystem
→ What’s changed & what hasn’t
→ New & interesting attacks
→ OpenSSH fragmentation
→ Introducing SSHamble
→ Defending SSH

2024

In the beginning was SSH

3

Tatu Ylönen created SSH v1 in 1995 as freeware
→ Continued development as the proprietary SSH.com
→ Björn Grönvall forked Ylönen's free SSH v1.2.12 as OSSH
→ OpenBSD forked OSSH into OpenSSH in 1999

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

SSH

OSSH

OpenSSH

OpenSSH Portable

PKIX-SSH

Dropbear

OpenSSH 20,200,340

Dropbear sshd 5,482,314

Linksys WRT45G modified dropbear sshd 46,214

lancom sshd 43,574

SCS sshd 8,215

HP Integrated Lights-Out mpSSH 7,493

WeOnlyDo sshd 6,458

ZyXEL ZyWALL sshd 3,417

NetScreen shhd 1,854

DrayTek Vigor 2820n ADSL router sshd 1,848

CoreFTP sshd 1,700

SSH is mostly OpenSSH & Dropbear

4 https://www.shodan.io/search/facet?query=shodan.module%3A%22ssh%22&facet=product

Not-OpenSSH/Dropbear are important
Firewall, networking, & storage

→ Cisco, NetScreen, Adtran, ComWare, Lancom

OT/ICS equipment
→ Siemens, NetPower, Mocana, CradlePoint, Digi

Sensitive applications
→ MOVEIT, CrushFTP, GlobalScape,JSCAPE
→ BitVis, GoAnywhere, ConfD
→ Gerrit, Forgejo, Gitlab

Other implementations

5

Standalone product examples SSH library examples

→ PKIX-SSH — popular in networking
equipment, forked from OpenSSH

→ WolfSSH — small implementation popular
in embedded systems

→ lsh — an old implementation that
predates OpenSSH Portable

→ libssh — open source, bindings for
lots of languages

→ Go x/crypto/ssh — a pure Go
implementation

→ Apache MINA — a Java implementation
→ Paramiko — SSH in Python

SSH is everywhere

6

→ Second-most common
remote admin service
behind HTTP

→ Enabled by default
in clouds

→ Part of every major OS
→ Embedded & servers
→ Even mobile!

https://exposure.shodan.io/#/US

Mostly SSH

Encrypted
Transport

Clear
Text

7

Authentication

Channels

SSH provides transport & authentication

8

Version exchange &
kex init in the clear

Key exchange to negotiate
secure transport

→ Version: SSH-2.0
OpenSSH-9.8p1
deb13u3

→ Ciphers, MACs,
Compressions,
Languages, etc

→ Diffie-Hellman & friends
pinned with server host
key(s)

→ Algorithm picked by kex
init agreement

Authentication using
one or more methods

→ Passwords, public keys,
kerberos, & more

→ PK uses the session ID
for proof signing

Similar to TLS

SSH multiplexes multiple channels (concurrently)

Channels, subsystems, & shells, oh my!

9

$ ls -l

puts “hello!”

localhost: 4242

⏲

bash

vim foo.rb

localhost: 4242

xclock

SSH connections

Channels

→ Interactive shells
→ Command execution
→ File transfer (SCP, SFTP)
→ TCP forwarding
→ Unix socket forwarding
→ X11 display forwarding
→ Agent forwarding

SSH is the other secure transport

10

An alternative to TLS,
but not exactly the same

→ Server key management can be, but
usually isn’t CA-based

→ Authentication is a core stage of
the protocol

→ Multiplexer & session commands
are unique

→ SSH uses the first algorithm sent
by the client & supported by
the server

Compliance schemes
gloss over SSH

→ Vendors point to strong cipher/mac +
authentication similar to TLS

→ SSH specifics are often missing, assume
best practices

→ Key management is the biggest gap

11

What’s New?

More protocol extensions

12

ping Ping & pong

server-sig-algs Support for more algorithms

publickey-hostbound-v00 Host-bound public keys

tun Layer 2 & 3 tunneling

hostkeys/hostkeys-prove Host key rotation

aes128−gcm,hmac-sha1−etm, … New cipher, kex, & MACs

SSHFP: Verify server host keys via DNS

13

DNS record format defined in RFC 4255

→ Key Algorithm + Hash Type + Fingerprint
● 4 [ED25519] / 2 [SHA256] / 0A2B3C [SHA256 hash]

→ Enforce client-side with -o VerifyHostKeyDNS=yes

→ Enumerate via dig or ssh-keyscan
● dig -t SSH example.com

● ssh-keyscan -D example.com

Low adoption as of late 2021*

→ Enabled for 1 in every
10,000 domains tested

→ Only 50% use DNSSEC

* See “Neef, S., Wisiol, N. (2022). Oh SSH-it,
What’s My Fingerprint? A Large-Scale Analysis
of SSH Host Key Fingerprint Verification
Records in the DNS”

MFA for SSH: Interactive OTP

14

Traditional SSH MFA is via PAM plugins

After Password

$ ssh dev@192.168.67.2
(dev@192.168.67.2) Password:
(dev@192.168.67.2) Verification code:

Before Password

$ ssh dev@192.168.67.3
 https://api-abc1234.duosecurity.com
 /frame/portal/v4/enroll?code=012… * keyboard-interactive usually just means password,

 but it is also used for interactive OTP.

→ Uses challenge-response or
keyboard-interactive* mode

→ Google Auth, Duo Security,
QQ.com, Qomolo, & more

MFA for SSH: FIDO2 resident keys

15

Use the new “sk” key types

→ ssh-keygen -t ed25519-sk -O resident -O verify-required

→ ssh-keygen -K

SSH Server (optional)

→ PubkeyAuthOptions verify-required

Use a token-aware SSH agent

→ https://github.com/FiloSottile/yubikey-agent
→ https://github.com/maxgoedjen/secretive

Centralized SSH authentication

16

Certificates with
short-expiration signed SSH keys Projects & products

→ Authenticate to an IDP, get a signed
SSH key

→ Use the signed key like a normal
private key

→ The gold standard for managed SSH

→ Opera SSH Key Authority (SKA)
→ HashiCorp Vault SSH Certificate

Secret Engine
→ Tectia UKM, Teleport, UserFi, SpanKey,

Delinea, & more!

Useful pre-authentication banners

17

SSH key types, exchanges, extensions

18

OpenSSH’s new PerSourcePenalties

19

PerSourcePenalties

Controls penalties for various conditions that may represent attacks on sshd(8). If a penalty is
enforced against a client then its source address and any others in the same network, as
defined by PerSourceNetBlockSize, will be refused connection for a period.

A penalty doesn't affect concurrent connections in progress, but multiple penalties from the
same source from concurrent connections will accumulate up to a maximum. Conversely,
penalties are not applied until a minimum threshold time has been accumulated.

Penalties are enabled by default with the default settings listed below but may disabled using
the no keyword. The defaults may be overridden by specifying one or more of the keywords
below, separated by whitespace. All keywords accept arguments, e.g. "crash:2m".

“

”

SSH keys as public identities

20

→ Public keys used to being mostly private

→ GitHub & Launchpad changed that

21

SFTP as a de facto standard for MFT

22

Commercial MFT products support SCP/SFTP
→ Many are based on existing third-party SSH libraries
→ Axway, GlobalScape, CuteFTP, Cerberus, Bitvise
→ SolarWinds, JSCAPE, FileZilla, Kiteworks, WS_FTP

Return of the terminal

23

Libraries for Go & Rust have
created a TUI renaissance
→ Pretty interfaces delivered

right to your screen via SSH
→ Treat SSH almost like TLS

with optional authentication

SSH libraries are used to
power source code forges
→ Go-based GOGS, Gitea,

Forgejo, & soft-serve
→ Apache Mina supports

Gerrit
→ Azure DevOps Server

 (VS TFS)

$ ssh starwarstel.net

24

$ ssh user@synchronet

25 https://www.synchro.net/sbbslist.html

$ ssh terminal.shop

26

27

Recent Exposures

Terrapin Attack

28

Breaking SSH Channel Integrity by
Sequence Number Manipulation

Fabian Bäumer
Research Assistant, Ruhr University Bochum

Thursday, August 8 @
11:20am-12:00pm
Islander FG, Level 0

CVE-2023−48795

XZ Utils backdoor

29

A multi-year campaign started in 2021
and triggered in 2024
→ “Jia Tan” persona was likely the product of a state actor
→ Nearly-perfect Nobody-But-Us backdoor in SSH
→ Backdoor targeted SSH via systemd patches
→ Limited to Debian/RHEL-based distros

Caught at the last possible moment
by Andres Freund
→ Noticed that sshd was using more CPU than it should
→ Backdoor made it into rolling releases only

CVE-2024−3094

RegreSSHion

30

Incredible work by the Qualys Threat Research Unit
→ Regression of a signal re-entrance vulnerability
→ Unauthenticated remote root code execution
→ Tough to exploit due to ASLR & timing

Related issue discovered by Solar Designer
→ Specific to Red Hat builds of OpenSSH
→ Limited to the non-root privsep user

CVE-2024−6387

CVE-2024−6409

The patch was hidden in the PerSourcePenalties feature, released a month prior to the disclosure.

MOVEit & IPWorks SSH

31

Another MOVEit vulnerability, but this
time in SSH
→ watchTowr Labs reversed the MOVEit patch for

CVE-2024−3094
→ The attacker’s unauthenticated public key blob is

opened as a file
→ File path supports UNC and was used for

authentication
→ Root cause was the third-party IPWorks library
→ Threaded a dozen needles to bypass auth

CVE-2024−5806

32

What’s the Same?

Unauthenticated information exposure

33

TCP window size &
scaling factors can
determine the OS
& kernel versions.

Protocol version,
implementation, &
package version.

Ciphers, MACs,
key exchange
protocols,
compression
methods, &
server-side
extensions.

Pre-authentication
“banner” can
be extensive,
especially with
network equipment.

Authentication method
list, public key testing,
failed auth limits, &
interactive questions
& prompts.

TCP/IP Server
Version

Kex Init
Extensions

Server
Banner Authentication

A large post-auth attack surface

34

Restricted shell environments are difficult to secure

→ Multiplexed channels
→ Connection forwarding
→ Environment manipulation
→ Subsystems (SFTP, etc)
→ X11 forwarding

→ PTY requests
→ Client-sent signals
→ Window size changes
→ Break commands
→ Agent auth requests

Default exposure to brute force attacks

35

Admins are generally left
to figure it out on their own

Horrific amount of wasted
CPU due to constant attacks

→ Fail2Ban & PAM lockouts can help,
but incomplete

→ PerSourcePenalties will help,
but not yet widely deployed

→ A real impact on embedded
device performance

→ Still not as terrible as blockchains
or AI

Public key authentication is still weird

36

Attacker can verify public
keys without the private key

Public key auth is flexible,
but is easy to get wrong

→ Servers reply with PK_OK for valid
public keys

→ Clients then send the public
key + signature

→ Leads to information leaks

→ Dynamic PK authentication via
AuthorizedKeysCommand

→ CA user key management & revocations
are finicky

Host key management is error prone

37

Host key duplication
is incredibly common

Host keys are rarely
changed due to challenges

→ Vendors accidentally hard-code
firmware & VMs

→ Cloud providers still get this wrong
with images

→ VMware hosts often set host key in
gold image

→ GitHub exposed their main RSA key
in 2023

→ Rotation broke automation & upset users
→ Compare to modern TLS rotations
→ CAs can help, but tricky at scale

SSH is still (used as) a transport layer

38

SSH as a generic secure
transport layer

SFTP & SCP are a
popular way to move files

→ git, rsync, systemctl,
docker, duplicati,
ssh-fs

→ sftp-only shells, tons
of commercial tools

Port forwarding &
traffic tunneling

→ vendor-appliances
& light VPNs

39

New Meets Old
(Public Key Authentication)

Public key authentication is two-stage

40

An SSH client can confirm if a public key is valid for a given user
→ Metasploit support since 2012, but still not widely known
→ The security impact is minimal?

/* XXX fake reply & always send PK_OK ? */
/*
* XXX this allows testing whether a user is allowed
* to login: if you happen to have a valid pubkey this
* message is sent. the message is NEVER sent at all
* if a user is not allowed to login. is this an
* issue? -markus
*/

OpenSSH Source (9.8p1)

Link a user & key to a specific server

41

Servers Public Keys

Scanners
→ nmap
→ zmap
→ masscan

Databases
→ Shodan
→ Censys
→ Fofa.info

Usernames

Defaults
→ root
→ ec2−user
→ ubuntu

Specific
→ Public key

“comments”
→ Common handles
→ Email prefixes

A list of IP addresses or
hostnames running SSH.

A list of public keys possibly
linked to the target.

A list of usernames likely used
by the target.

BadKeys

$ curl https://github.com/JiaT75.keys

ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQDHVp3Bvg/ALC61dsGehbvoqic49D4SfoiiPURSEec3/phZdAfR1hD6QSNTHLY3QDT
b0994ZwOFi05YpUM6/qwBUAbroS64/Mp55qDBlark5v83LcTq7a29VUH3Xvu7sAgdYda16a2KnmU5lhETvBfxuS+tpGin9r
aSp+B+z0PIpr9EmEeQgKtgKRQBiMWMtw7jBxm5INk54SmePNDva3f4ml08/Z4JM76dJ7DBQGrLUqZGsRFOZclMb3YOE7DjP
GQQ37TzGvKwLaGvRuocA8oW5zp07+uQldP2LIbt0V99eyXrgD7WLc/sdzWeefoNltcgcV/KEg9ivD02qWFDBzAKMcJuLMhq
xXIo64KZuVjWRrflgKCk5wZt0XPZ30MFqbBvjhn8zG7bIQJORmn/j6QSyHewu4Rre7uGxAuzee2PPSaSQ51dKgbdn3B3Uuw
N8KeIO54W1VYWip+GlG2tXHZAdJOgPPaM72OAqFQBta2MzcHi3/m2HgUNBttYhSUtaeX8myfiRcnC7APhZMOuU9rrHdti2K
D6IVArtBiorZbs8iFlzUPmdYVdeFP7EtW6EWgZSLV7rN2r2+CNVJeTrX9zA+mnRjhjq4ffgRUoQikY876kY+1YiEERm7LRB
MkKIzM4ZsBk7VQwImSGReyfwEht9tedU5mf5pkrbL8VSMrqQQ==

ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIFiXcmAAjTBp5kM2AUTJdAEB7DHyYuY8am8FIMROD3FG
42

HELLO MY NAME IS

Jia Tan
I <3 Open Source!

Hunting for Jia Tan across the internet

43

After the XZ backdoor was exposed, we went hunting
→ Copied Jia Tan’s SSH public keys from GitHub
→ Scanned all of IPv4 for SSH with zmap
→ Created SSHamble to half-auth scan
→ Ran SSHamble on all SSH hits

We got results!

44

The friends shells we found along the way

45

And every single result was
a false positive for Jia Tan

We found thousands of
unauthenticated shells instead

→ Tons of honeypots & misbehaved servers
→ Reworked the tools & tried again
→ Still no Jia Tan :(

→ Some honeypots, but mostly real bugs
→ This work led to this talk!

46

Dear Law Enforcement,

→ Our scans resulted in Jia’s
public key hash & our IP is in
everyone’s logs

→ Please don’t arrest us!

HELLO MY NAME IS NOT

Jia Tan
I swear! We only scan things!

Speeding up public key testing

47

SSH servers implement MaxAuthTries

→ OpenSSH
defaults to 5 &
counts
pubkey tests

→ Not all servers
count pubkey
tests as
failed…

→ This is why
having >4
keys in your
agent breaks

Rapid testing with a single connection

48

10% of all public SSH servers do not rate limit key testing
→ Dropbear is the most common, but many others

GlobalScape EFT Maverick SSHD LANCOM Adtran

BitVise WinSSHD GoAnywhere Arris Crestron

CrushFTPd mod_sftpd Medallia + Many More!

% sshamble scan --checks pubkey-hunt \

--pubkey-hunt-conn-limit 1000000 --pubkey-hunt-file github-2018.keys \

-u root 192.168.68.2

192.168.68.2:22 pubkey-hunt is running with 4673197 test keys

192.168.68.2:22 pubkey-hunt completed 4673190/4673197 keys in 7m37s (10544/s)

192.168.68.2:22 pubkey-hunt accepted hunted half-auth for root with key ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQDipNPRHvHknF6WLl7oEPoxxH7k13iKA/14yiWwOwHAUFg+1tl….

dropbear[2921]: Exit before auth from <192.168.68.1:50311>: Exited normally

Testing millions of public keys fast

49

% wc -l github-2018.keys

 4,673,197 data/github.keys

% nc 192.168.68.2 22

SSH-2.0-dropbear_2022.83

single connection

% sshamble scan --checks pubkey-hunt \

--pubkey-hunt-conn-limit 1000000 --pubkey-hunt-file github-2018.keys \

-u root 192.168.68.2 -p 2222

192.168.68.2:2222 pubkey-hunt is running with 4673197 test keys

192.168.68.2:2222 pubkey-hunt completed 4673190/4673197 keys in 9h50m4s (132/s)

192.168.68.2:2222 pubkey-hunt accepted hunted half-auth for root with key ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQDipNPRHvHknF6WLl7oEPoxxH7k13iKA/14yiWwOwHAUFg+1tl….

sshd[6530]: Connection closed by authenticating user root 192.168.68.1 [preauth]

Compare vs OpenSSH MaxAuthLimit=5

50

% wc -l github-2018.keys

 4,673,197 data/github.keys

% nc 192.168.68.2 2222

SSH-2.0-OpenSSH_9.2p1 Debian-2+deb12u3

single connection

51

New Meets Old
(Authentication Bypass)

Secure shell uses a strict state engine

52

→ Accepted client message types change as
the connection moves through each state

→ OpenSSH & Dropbear remap the table of
command handlers on each state change

→ Message IDs are clamped to specific
allowed ranges by session state

SSH2_MSG_TRANSPORT_MIN 1
SSH2_MSG_TRANSPORT_MAX 49
SSH2_MSG_USERAUTH_MIN 0
SSH2_MSG_USERAUTH_MAX 79
SSH2_MSG_USERAUTH_PER_METHOD_MIN 60
SSH2_MSG_USERAUTH_PER_METHOD_MAX 79
SSH2_MSG_CONNECTION_MIN 80
SSH2_MSG_CONNECTION_MAX 127
SSH2_MSG_RESERVED_MIN 128
SSH2_MSG_RESERVED_MAX 191
SSH2_MSG_LOCAL_MIN 192
SSH2_MSG_LOCAL_MAX 255
SSH2_MSG_MIN 1
SSH2_MSG_MAX 255

State transitions gone wrong (historic)

53

CVE-2018−10933

A bug in libssh where
the server trusted
a client-sent
USERAUTH_SUCCESS
message.

Metasploit support!

State transitions gone wrong (new)

54

What happens if we ask for
a session at every possible
state transition?

Free shells!

Product Impact Details

Digi TransPort WR Gateways Remote CLI as
SUPER

Authentication bypass due to uninitialized variable. Updates
available for WR11, WR21, WR31, WR44R, WR44RR included in
version 8.6.0.4. The Digi International product security team
was great to work with (via Bugcrowd).

Realtek ADSL Routers Remote CLI
access as admin

Authentication bypass via skipping ssh-userauth.
White-labeled by Netis, Neterbit, and many other vendors.
Observed in firmware as recent as 2023.

Panasonic Ethernet Switches Remote CLI
access as admin

Authentication bypass via skipping auth “none” after the
ssh-userauth sequence. Models include PN28080K,
PN28240i, and likely others.

State transition vulnerabilities

55

Neterbit NSL-224 authentication bypass

56

Digi TransPort authentication bypass

57

Post-session authentication is a bad idea

58

Various products allow none
authentication & then
implement interactive login
in the session.

Dangerous due to the
extensive post-auth attack
surface of SSH.

Post-session capabilities

shell exec

pty-req x11−req

subsystem env

break signal

agent-auth-req window-change

Post-session authentication

59

Ruckus Wireless AP command injection

60

SSH auth none drops to an interactive login session
→ The password input is passed into a shell without escapes

echo -n "$(echo pa55w0rd 1>&2)" | sha256sum

Fixed in firmware versions v5.2.1 (stable) & 6.2.1 (tech)
→ Trivial root & still ~900 exposed on the internet
→ No CVE, no security mention in the release notes
→ Why did this bug live so long?

Ruckus Wireless AP command injection

61

Signal handling varies by service

62

→ OpenSSH restricts signals to relatively safe options
→ Dropbear allows just about anything, even SEGV
→ Signal-based attacks seem promising

Login:

sshamble> signal SEGV

Aiee, segfault! You should probably report this as a bug to the developer

63

Fun with Forwarding

“remote”“ssh server”“client”

64

SSH connection forwarding

SSH Channel Raw TCP connection

$ ssh -L
1234:remote:80 httpdsshd

Virtual Connection

65

Forwarding in restricted shells

Inadvertent forwarding
in SSH is a common issue

Post-auth login enables
unauthenticated attackers

→ Network devices, virtual machines,
& appliances

→ Can enable other attacks & bypass
restrictions

→ Exposes localhost-bound daemons

→ Not super common, but we found
some anyways

→ Requires testing a few destinations
to evade ACLs

ION Networks Service Access Point

66

67

Checkout Git

68

Git-based code forges support SSH

→ Services like GitHub, Gitlab, Bitbucket
→ Projects like GOGS, Gitea, Forgejo, Gerrit
→ Libraries like charmbracelet/ssh & Mina

69

Gitlab, Gitea, & Forgejo

→ Environment control limited to GIT_PROTOCOL
→ Git only parses the version parameter
→ Usually safe, but bugs still exist

● Go < 1.19.3 via CVE-2022−41716

GIT_PROTOCOL=version=2:\x00PATH=C:\Users\gitlab\repositories\rob

https://nvd.nist.gov/vuln/detail/CVE-2022-41716

70

GOGS “env” command injection

GOGS was the first Go-based git forge
→ Supports SSH “env”, but gets it terribly wrong

ExecCmd("env", fmt.Sprintf("%s=%s", env.Name, env.Value))

This does nothing, "env" doesn't set the parent env
→ GOGS supports self-registration & env often supports -S
→ Exploit with env
→ No patch available, consider alternatives

* Independently discovered by Sonar Source (reported 2 days before us): CVE-2024−39930

-SA=B touch /tmp/fun

Apache Mina is a Java package for SSH clients & servers

71

SSH libraries & env: Apache Mina

→ Passes "env" variables to
caller with no restrictions

→ Callers (like Gerrit) do limit
the environment

→ JGit & friends don’t spawn
subprocesses

Soft Serve is a feature-full Git forge that provides a beautiful CLI
→ Uses charmbracelet/ssh (a gliderlabs/ssh fork)
→ Accepts all environment variables
→ Soft Serve passes these to Git
→ Combination is a remote shell

72

SSH libraries & env: Soft Serve

CVE-2024−41956

Remote Code Execution in Soft Serve

73

74

OpenSSH Fragmentation

OpenSSH divergence by platform

75

Name Divergence Notes

Apple macOS Light
Changes are limited to macOS compatibility, support for the
Keychain, the macOS PKCS helper, & endpoint event logging
support.

Debian/Ubuntu
Linux Moderate Systemd support & much more (36+ patches)

Red Hat Linux Moderate Systemd support & much more (~60 patches)

PKI-X SSH Major
Forked in 2002 for X509 support, commonly found in
networking gear and FIPS-compliant network appliances.
Generally follows OpenSSH changes, but not exactly.

Microsoft
Windows Extreme

Over 350 files changed. Replaces fork with subprocesses,
removes chroot support & log sanitization. Logs to Windows
 Events. Sends telemetry containing SSH-encrypted values.
Password authentication uses Lsa* functions. Still hasn't
fixed Terrapin. Not affected by regreSSHion.

OpenSSH for Windows

76

OpenSSH for Windows Telemetry

77

→ OpenSSH for Windows sends detailed usage data to Microsoft
→ Client & server versions, kex init parameters, auth methods

void send_ssh_version_telemetry (const char* ssh_version,

 const char* peer_version, const char* remote_protocol_error)

{

 TraceLoggingRegister (g_hProvider1);

 TraceLoggingWrite (

 g_hProvider1,

 "Startup",

 TelemetryPrivacyDataTag (PDT_ProductAndServiceUsage),

 TraceLoggingKeyword (MICROSOFT_KEYWORD_MEASURES),

 TraceLoggingString (ssh_version, "ourVersion"),

 TraceLoggingString (remote_protocol_error , "remoteProtocolError"),

 TraceLoggingString (peer_version, "peerVersion")

);

 TraceLoggingUnregister (g_hProvider1);

}

int timingsafe_bcmp(const void *b1, const void *b2, size_t n) {
 const unsigned char *p1 = b1, *p2 = b2;
 int ret = 0;
 for (; n > 0; n--) {
 ret |= *p1++ ^ *p2++;
 }
 return (ret != 0);
}

compat/timingsafe_bcmp.c

78

A solid bit of code from DJM
→ Timing-safe
→ Efficient
→ Secure

int timingsafe_bcmp(const void *b1, const void *b2, size_t n) {
 const unsigned char *p1 = b1, *p2 = b2;
 int ret = 0;
 for (; n > 0; n--) {
#ifdef WINDOWS
 if (*p1 == '\r' && *(p1 + 1) == '\n' && *p2 == '\n')
 p1++;
#endif // WINDOWS
 ret |= *p1++ ^ *p2++;
 }
 return (ret != 0);
}

compat/timingsafe_bcmp.c for Windows

79

int timingsafe_bcmp(const void *b1, const void *b2, size_t n) {
 const unsigned char *p1 = b1, *p2 = b2;
 int ret = 0;
 for (; n > 0; n--) {
#ifdef WINDOWS
 if (*p1 == '\r' && *(p1 + 1) == '\n' && *p2 == '\n')
 p1++;
#endif // WINDOWS
 ret |= *p1++ ^ *p2++;
 }
 return (ret != 0);
}

compat/timingsafe_bcmp.c for Windows

80

Two lines, but so many bugs!
→ Not timing-safe
→ 1−byte OOB per \r
→ Unequal byte match

A critical function within OpenSSH

81

→ MAC check on every SSH packet
→ RSA signature verification
→ SSH certificate comparison
→ X11 cookie comparison
→ chachapoly_crypt() MAC

→ SSHFP DNS record checks
→ SSH agent validation
→ WebAuthn SK checks
→ SSH keygen verification
→ … & much more!

One of the most sensitive functions, but what can we do with it?
→ Attacker has limited influence on the first argument
→ Requires brute force to trigger in the MAC check
→ Not obviously exploitable :(

82

https://azure.microsoft.com/en-us/products/devops/server

Microsoft Security Response Center

83

Thank you again for submitting this issue to Microsoft. Although your
report is valid, currently, MSRC prioritizes vulnerabilities that are assessed
as “Important” or “Critical” severities for immediate servicing. After
careful investigation, this case does not meet MSRC’s current bar for
immediate servicing because currently it appears to be theoretical due to
no control over the first argument to the function & would require a brute
force style attack to obtain a single byte of data. If you can prove remote
reachability or the ability to leak information remotely, then please submit
a new report & we are happy to investigate this further!

“

”

84

Introducing SSHamble

85

→ A research tool for SSH implementations
→ Interesting attacks against authentication
→ Post-session authentication attacks
→ Pre-authentication state transitions
→ Post-session enumeration
→ Easy timing analysis

https://SSHamble.com

86

bypass
auth=none skip=auth auth=success

method=null method=empty skip=pubkey-any

publickey
pubkey-any pubkey-any-half user-key

half-auth-limit pubkey-hunt —

password
pass-any pass-empty pass-null

pass-user pass-change-empty pass-change-null

keyboard
kbd-any kbd-empty kbd-null

kbd-user — —

gss-api gss-any — —

userenum timing-none timing-pass timing-pubkey

vulns
vuln-tcp-forward vuln-generic-env vuln-softserve-env

vuln-gogs-env vuln-ruckus-password-escape —

Built-in checks

Start a network scan
$ sshamble scan -o results.json 192.168.0.0/24

Analyze the results
$ sshamble analyze -o output results.json

Specify ports, usernames, passwords, public keys, private keys, and more
$ sshamble scan -o results.json 192.168.0.0/24 \

--users root,admin,4DGift,jenkins \
–-password-file copilot.txt \
-p 22,2222 \
--pubkey-hunt-file admin-keys.pub \

Open an interactive shell for sessions
$ sshamble scan -o results.json 192.168.0.0/24 \

–-interact first --interact-auto “pty,env LD_DEBUG=all,shell”

Getting started

87

Enter the sshamble shell with `^E`. Commands:

 exit - Exit the session (aliases 'quit' or '.')
 help - Show this help text (alias '?')
 env a=1 b=2 - Set the specified environment variables (-w for wait mode)
 pty - Request a pty on the remote session (-w for wait mode)
 shell - Request the default shell on the session
 exec cmd arg1 arg2 - Request non-interactive command on the session
 signal sig1 sig2 - Send one or more signals to the subprocess
 tcp host port - Make a test connection to a TCP host & port
 unix path - Make a test connection to a Unix stream socket
 break milliseconds - Send a 'break' request to the service
 req cmd arg1 arg2 - Send a custom SSH request to the service
 sub subsystem - Request a specific subsystem
 send string - Send string to the session
 sendb string - Send string to the session one byte at a time

sshamble>

88

The interactive shell

89

Happy scanning!

90

Defending SSH

Client recommendations

91

Use public key authentication exclusively

→ Separate GitHub/Launchpad keys from server administration keys
→ Store your private key on a hardware token
→ Switch to Ed25519 if you haven’t already

If you use ssh agent forwarding, restrict destinations

→ https://www.openssh.com/agent-restrict.html

Adjust configuration for LTS distro SSH clients

→ Update ssh_config for OpenSSH 9.8+ Ciphers/MACs/KeyAlgs

Server recommendations (general)

Limit resource usage by attackers

→ Enable PerSourcePenalties & set PerSourceNetBlockSize
→ Consider lowering MaxStartups & MaxAuthTries
→ Disable forwarding (TCP, Unix, Agent, X11) unless required

Centralize SSH hostkey management

→ Collect server hostkeys & provide clients pre-approved known_hosts

Use public key authentication exclusively

→ Limit public key types to Ed25519 & RSA >= 2048

Adjust configuration for LTS distro SSH servers

→ Update sshd_config for OpenSSH 9.8+ Ciphers/MACs/KeyAlgs

Server recommendations (CA)

93

Configure a CA for server hostkeys

→ Create a CA, sign, & distribute hostkeys to each of your servers
→ Set known_hosts for clients: @cert-authority *.domain.tld <CA.pub>
→ CA hostkeys are backwards compatible (fallback to known_hosts)

→Configure a CA for signing user keys

→ Sign user public keys with short-term expirations (using your tool of choice)
→ ssh-keygen -s userCA -I user@example.com -n username -V +1h userkey.pub

Consider mandating token-stored private keys

→ Enforce verification on servers with PubkeyAuthOptions
→ Require PIN with verify-required (vs touch-required)

Vendor recommendations

94

Build with OpenSSH wherever possible

→ Leverage OpenSSH 9.8p1+ for tons of great defensive features
→ Integrate with system authentication vs post-session

Ship clean firmware without static credentials

→ Prior to imaging, purge all host keys, known_hosts, & authorized_keys
→ Disable password authentication (or restrict to serial or console tty)

General hardening

→ Disable empty password auth & limit which users can authenticate
→ Disable all types of forwarding, set ForceCommand for shells

Conclusions

95

The secure shell
is more critical

than ever

Public key
authentication

is still leaky

OpenSSH
is still your

safest choice

Tons of
issues in the

periphery

1 2 3 4

Thank you.
HD MOORE | ROB KING | AUGUST 7, 2024

research@runZero.com SSHamble.comrunZero.com

References

97

→ https://github.com/ssh-mitm/ssh-mitm

→ https://ssh-comparison.quendi.de/comparison/hostkey.html

→ https://words.filippo.io/ssh-whoami-filippo-io/

→ https://github.com/badkeys/badkeys

→ Metasploit: ssh_identify_pubkeys (2012)

→ regreSSHion: https://www.qualys.com/2024/07/01/cve-2024−6387/regresshion.txt

→ Terrapin: https://terrapin-attack.com/

→ https://labs.watchtowr.com/auth-bypass-in-un-limited-scenarios-progress-moveit-transfer-cve-2024−5806/

→ https://boehs.org/node/everything-i-know-about-the-xz-backdoor

→ http://thetarpit.org/2018/shithub-2018−06

→ https://helda.helsinki.fi/server/api/core/bitstreams/471f0ffe-2626−4d12−8725−2147232d849f/content

→ https://github.blog/2023−03−23−we-updated-our-rsa-ssh-host-key/

→ Kannisto, J., Harju, J. (2017). The Time Will Tell on You: Exploring Information Leaks in SSH Public Key Authentication. In: Yan, Z., Molva, R., Mazurczyk, W., Kantola, R. (eds)
Network and System Security. NSS 2017. Lecture Notes in Computer Science(), vol 10394. Springer, Cham. https://doi.org/10.1007/978−3−319−64701−2_22

→ West, J.C., Moore, T. (2022). Longitudinal Study of Internet-Facing OpenSSH Update Patterns. In: Hohlfeld, O., Moura, G., Pelsser, C. (eds) Passive and Active
Measurement. PAM 2022. Lecture Notes in Computer Science, vol 13210. Springer, Cham. https://doi.org/10.1007/978−3−030−98785−5_30

→ Neef, S. (2022). Source & result datasets for "Oh SSH-it, what's my fingerprint? A Large-Scale Analysis of SSH Host Key Fingerprint Verification Records in the DNS" [Data
set]. Zenodo. https://doi.org/10.5281/zenodo.6993096

