

Stop! Sandboxing Exploitable Functions and Modules Using In-Kernel Machine Learning

Presenter: Qinrun Dai

Contributors: Zicheng Wang, Tiejin Chen, Yueqi Chen, and Hua Wei

About us

Qinrun Dai

PhD Student University of Colorado, Boulder

Zicheng Wang

PhD **Nanjing University**

Tiejin Chen

Yeuqi Chen

Hua Wei

PhD Student **Assistant Professor** Arizona State University University of Colorado, Boulder Arizona State University

Assistant Professor

Agenda

- Motivation
 - Risky Time Window in Kernel Development
 - Existing Solutions and Limitations
 - Challenges of On-the-Fly Solution
- Challenges & Design Overview
- Example Workflow by CVE-2022-0995 & Video Demo
- Technical Details
- Evaluation

Tool is available at: https://github.com/a8stract-lab/o2c

Paper is available at: https://arxiv.org/abs/2401.05641

Linux Kernel Development Timeline

Vulnerability Introduction

Linux Kernel Development Timeline

How to remediate newly discovered vulnerabilities before official patches are available?

Takeaway:

A disruptive solution that requires rebooting and disrupting running service is unacceptable.

Otherwise over 3 times of rebooting is needed to have a full coverage.

Takeaway:

A disruptive solution that requires rebooting and disrupting running service is unacceptable.

Otherwise over 3 times of rebooting is needed to have a full coverage.

An On-the-Fly

solution

is desired

• PET^[1]

- PET^[1]
- Core idea:
 - Construct triggering conditions.
 - Determine if triggering condition is met at runtime.
 - Prevent triggering if yes.

- PET^[1]
- Core idea:
 - Construct triggering conditions.
 - Determine if triggering condition is met at runtime.
 - Prevent triggering if yes.
- Limitation:
 - Can be bypassed if exploits target another triggering site along a different path.

SeaK^[2]

SeaK^[2]

vuln obj vic. obj

Typical memory layout of heap out-of-bound exploitation

- SeaK^[2]
- Core idea:
 - Isolates vulnerable objects, victim objects, and spray objects in different regions.

Typical memory layout of heap out-of-bound exploitation

Memory layout after isolation

- SeaK^[2]
- Core idea:
 - Isolates vulnerable objects, victim objects, and spray objects in different regions.
- Limitation:
 - While more general than PET, SeaK^[2] can be bypassed if attackers exploit legacy objects.

Typical memory layout of heap out-of-bound exploitation

Memory layout after isolation

 Definition: objects allocated before protection is deployed (t₀) and released after t₀.

- Definition: objects allocated before protection is deployed (t₀) and released after t₀.
- Our statistics:
 - Lifetime of legacy objects is long: 10,862 objects last more than 10s.
 - Many chances to manipulate legacy objects: average 22.87 modifications during the object's lifetime.

- Definition: objects allocated before protection is deployed (t₀) and released after t₀.
- Our statistics:
 - Lifetime of legacy objects is long: 10,862 objects last more than 10s.
 - Many chances to manipulate legacy objects: average 22.87 modifications during the object's lifetime.
- What if a vulnerable / victim object is legacy?
 - Not isolated and mixed up with other objects.

vuln. obj Legacy obj vic. obj

NOT isolated

- Definition: objects allocated before protection is deployed (t₀) and released after t₀.
- Our statistics:
 - Lifetime of legacy objects is long: 10,862 objects last more than 10s.
 - Many chances to manipulate legacy objects: average 22.87 modifications during the object's lifetime.
- What if a vulnerable / victim object is legacy?
 - Not isolated and mixed up with other objects.

vuln. obj Legacy obj vic. obj

NOT isolated

Auditing legacy objects access is the focus of this briefing

Agenda

- Motivation
- Challenges & Design Overview
 - Legacy Object Auditing Challenge 1
 - Solution to Challenge 1
 - Legacy Object Auditing Challenge 2
 - Solution to Challenge 2
 - Approach overview
- Example Workflow by CVE-2022-0995 & Video Demo
- Technical Details
- Evaluation

Legacy Object Auditing - Challenge 1

Legacy Object Auditing - Challenge 1

 Fact: Legacy objects are allocated before protection is enabled.
 We cannot record KASAN-like metadata for legacy objects.

Legacy Object Auditing - Challenge 1

 Fact: Legacy objects are allocated before protection is enabled.
 We cannot record KASAN-like metadata for legacy objects.

• Consequence: When a legacy object is accessed, start address, end address, and type are untracked.

Solution to Challenge 1

Solution to Challenge 1

```
C: __set_bit(q->type, watch_filter->type_filter);
```

Asm: BTS [R15], RAX

Solution to Challenge 1

 We use Machine Learning to infer the type of an accessed object, compared with access pointer type.

```
C: __set_bit(q->type, watch_filter->type_filter);
Asm: BTS [R15], RAX
```

```
watch_filter m :g_msg

R15 (base) RAX (offset)
```


Solution to Challenge 1

 We use Machine Learning to infer the type of an accessed object, compared with access pointer type.

C: __set_bit(q->type, watch_filter->type_filter);

Asm: BTS [R15], RAX

Human: What does these unorganized data mean?

Trained AI: According to byte1, byte2, ..., byteN, the object's type is inferred as msg_msg, indicating error because expected type should be watch_filter.

0xffff88810738e5c0	41 62 73 74 72 61 63 74
0xffff88810738e5c8	A0 79 04 02 81 88 FF FF
0xffff88810738e5d0	00 AC 04 02 81 88 FF FF

0xffff88810738e5c0	41 62 73 74 72 61 63 74
	A0 79 04 02 81 88 FF FF
0xffff88810738e5d0	00 AC 04 02 81 88 FF FE

Legacy Object Auditing - Challenge 2

- Auditing integrity
- How to ensue the following integrity of auditing will not be compromised?
 - ML model integrity
 - Data-Flow integrity
 - Control-Flow integrity

Solution to Challenge 2

- Kernel Code instrumentation
 - Audit each read / write
 - Audit subject switch
- Private heap & stack
 - Vulnerable Component only use its own private data structures.

Access Auditing Policy to Challenge 2

	Trusted Kernel		Untrusted componer		onent	
	read	write	exec	read	write	exec
Kernel Code	✓		✓	✓		
Kernel Data	✓	✓		✓		
Kernel Heap	✓	✓		✓		
Kernel Stack	✓	✓		✓		
Auditing mechanism	✓	✓	✓	✓		
Component Code	✓	✓	✓	✓		✓
Component Data	✓	✓		✓	✓	
Component Heap	✓	✓		✓	✓	
Component Stack	✓	✓		✓	✓	

Access auditing policy

Collect data for ML model training: object's type and content

Train ML model inferring object's type based on its content

Identify instructions for instrumentation

Implement quarantine, examine object's type at runtime

Agenda

- Motivation
- Challenges & Design Overview
- Example Workflow by CVE-2022-0995 & Video Demo
- Technical Details
- Evaluation

A Working Example: CVE-2022-0995

A Working Example: CVE-2022-0995

A Working Example: CVE-2022-0995

Two primary msg reference this secondary msg.

Results in UAF

O2Q Workflow on CVE-2022-0995

02Q Workflow on CVE-2022-0995

• The kernel is executing vulnerable component in quarantine zone.

O2Q Workflow on CVE-2022-0995

- The kernel is executing vulnerable component in quarantine zone.
- The executing instruction should access watch_filter by Code Analyzer and Object Profiler.
- The eBPF program instrumented to the executing instructions encompasses the trained ML model.

02Q Workflow on CVE-2022-0995

- The kernel is executing vulnerable component in quarantine zone.
- The executing instruction should access watch_filter by Code Analyzer and Object Profiler.
- The eBPF program instrumented to the executing instructions encompasses the trained ML model.
- The ML model infers the accessed object is msg_msg, indicating error.

root@syzkaller:~/bpf# ./o2q_CVE-2022-0995 [test@syzkaller:~\$ uname -a

ckHatEvents

Agenda

- Motivation
- Challenges & Design Overview
- Example Workflow by CVE-2022-0995 & Video Demo
- Technical Details
 - Technical Backgrounds eBPF & ML
 - O2Q Components
- Evaluation

Technical Background - eBPF

- Sandbox virtual machine in kernel.
- No need to modify kernel code or load module.
- Can hook any instruction.
- Own verifier.
- High performance using JIT.
- eBPF maps for data exchange.
- eBPF helper functions.

Technical Background - Al Models

Object Profiler

Object Profiler

- Use Syzkaller to enrich data source.
- Collect each object's content and type for training.

Object Profiler

- Use Syzkaller to enrich data source.
- Collect each object's content and type for training.
- Collect at object's release site: object possesses the most features that best reflect its characteristics.

Uncharacterized vs. characterized

ML Model

- Feature:
 - Object's data content as feature
- Label
 - Object's type and whether belongs to quarantine zone

_		Tabular Data Processing	Interpretable	Defined Execution Time	Quantitative Accuracy	Convert to BPF Implementation
	Decision Tree	✓	✓	✓	✓	✓
	Random Forest	\	✓	✓	✓	
	Neural Network				✓	

different ML model comparison

- Identify Linux Kernel's instructions
 - Indirect jump
 - Indirect call
 - Memory write
 - Subject switch

Output entries

Identify desired instructions

Indirect jump: call *%rax

Memory write: mov \$0x0, (%rsi, %rdx, 1)

Determined address: mov off(%rip), %rax

Stack frame create: sub offset, %rsp

Stack access: mov x, off (%rsp/rbp)

Redundant check: mov \$0x0, off1(%rsi)

Redundant check: mov \$0x0, off2(%rsi)

- Identify Linux Kernel's instructions
 - Indirect jump
 - Indirect call
 - Memory write
 - Subject switch
- Efficiency Optimization:
 - Skip read
 - Skip determining address
 - Skip redundant check

Indirect jump: call *%rax

Memory write: mov \$0x0, (%rsi, %rdx, 1)

Determined address: mov off(%rip), %rax

Stack frame create: sub offset, %rsp

Stack access: mov x, off (%rsp/rbp)

Redundant check: mov \$0x0, off1(%rsi)

Redundant check: mov \$0x0, off2(%rsi)

- Identify Linux Kernel's instructions
 - Indirect jump
 - Indirect call
 - Memory write
 - Subject switch
- Efficiency Optimization:
 - Skip read
 - Skip determining address
 - Skip redundant check

Reduced 24.07% instrument entries.

Indirect jump: call *%rax

Memory write: mov \$0x0, (%rsi, %rdx, 1)

Determined address: mov off(%rip), %rax

Stack frame create: sub offset, %rsp

Stack access: mov x, off (%rsp/rbp)

Redundant check: mov \$0x0, off1(%rsi)

Redundant check: mov \$0x0, off2(%rsi)

eBPF Program

- Add extra eBPF helper functions for O2Q's functionality:
 - **bpf_set_regs()**: set register values, for switching stacks.
 - **bpf_create_slab_cache()**: creates private slab caches for the need of quarantine zone.
 - bpf_cache_alloc() / bpf_cache_free(): allocates from and frees to private caches.
- For better interaction with quarantine zone data:
 - bpf_get_slab_*() / bpf_get_vm_struct(): get the description of the slab and vmalloc directly, without traversing slab pages or vm_struct rb-trees.

02Q Workflow Summary

- 1. Object Profiler to collect object's type and content at its release site.
- 2. Train ML Model offline based on collected object's content, type, stacktrace and if belonging to quarantine.
- 3. Code Analyzer to identify code entries which need instrumentation for auditing.
- 4. eBPF programs to do quarantine and type examination with trained ML Model at runtime.

Agenda

- Motivation
- Challenges & Design Overview
- Example Workflow by CVE-2022-0995 & Video Demo
- Technical Details
- Evaluation

Overall system overhead

Performance loss of vulnerable component

	Per	Туре	Per Con	nponent				
	Accuracy	Macro F1	Accuracy	Macro F1				
	IPV6							
Decision Tree	96.88 ± 0.65	75.56 ± 1.84	99.99 ± 0.02	99.98 ± 0.03				
Random Forest	96.91 ± 0.63	78.81 ± 0.73	100 ± 0.01	99.99 ± 0.01				
Neural Network	89.63 ± 1.29	38.76 ± 2.70	99.99 ± 0.01	99.99 ± 0.01				
		Sched						
Decision Tree	80.48 ± 0.76	71.04 ± 1.77	99.93 ± 0.14	97.74 ± 4.22				
Random Forest	80.61 ± 0.69	76.28 ± 0.49	100 ± 0	99.99 ± 0.01				
Neural Network	65.98 ± 6.91	39.18 ± 1.48	99.66±0.03	89.47±1.20				
		Netfilter						
Decision Tree	89.47 ± 0.23	78.17 ± 4.88	99.92 ± 0.07	99.51 ± 0.46				
Random Forest	89.54 ± 0.15	81.87 ± 1.86	99.96 ± 0.05	99.77 ± 0.29				
Neural Network	72.9 ± 2.23	37.98 ± 2.83	97.16 ±0.17	74 ± 2.56				

	Per Type		Per Con	nponent		
L	Accuracy	Macro F1	Accuracy	Macro F1		
IPV6						
Decision Tree	96.88 ± 0.65	75.56 ± 1.84	99.99 ± 0.02	99.98 ± 0.03		
Random Forest	96.91 ± 0.63	78.81 ± 0.73	100 ± 0.01	99.99 ± 0.01		
Neural Network	89.63 ± 1.29	38.76± 2.70	99.99 ± 0.01	99.99 ±0.01		
		Sched				
Decision Tree	80.48 ± 0.76	71.04 ± 1.77	99.93 ± 0.14	97.74 ± 4.22		
Random Forest	80.61 ± 0.69	76.28 ± 0.49	100 ± 0	99.99 ± 0.01		
Neural Network	65.98 ± 6.91	39.18 ± 1.48	99.66±0.03	89.47±1.20		
		Netfilter				
Decision Tree	89.47 ± 0.23	78.17 ± 4.88	99.92 ± 0.07	99.51 ± 0.46		
Random Forest	89.54 ± 0.15	81.87 ± 1.86	99.96 ± 0.05	99.77 ± 0.29		
Neural Network	72.9 ± 2.23	37.98 ± 2.83	97.16 ±0.17	74 ± 2.56		

	Per Type		Per Com	ponent
	Accuracy	Macro F1	Accuracy	Macro F1
		IPV6		
Decision Tree	96.88 ± 0.65	75.56 ± 1.84	99.99 ± 0.02	99.98 ± 0.03
Random Forest	96.91 ± 0.63	78.81 ± 0.73	100 ± 0.01	99.99 ± 0.01
Neural Network	89.63 ± 1.29	38.76± 2.70	99.99 ± 0.01	99.99 ±0.01
		Sched		
Decision Tree	80.48 ± 0.76	71.04 ± 1.77	99.93 ± 0.14	97.74 ± 4.22
Random Forest	80.61 ± 0.69	76.28 ± 0.49	100 ± 0	99.99 ± 0.01
Neural Network	65.98 ± 6.91	39.18 ± 1.48	99.66±0.03	89.47±1.20
		Netfilter		
Decision Tree	89.47 ± 0.23	78.17 ± 4.88	99.92 ± 0.07	99.51 ± 0.46
Random Forest	89.54 ± 0.15	81.87 ± 1.86	99.96 ± 0.05	99.77 ± 0.29
Neural Network	72.9 ± 2.23	37.98 ± 2.83	97.16 ±0.17	74 ± 2.56
				1

performance of ML auditing

	Per ⁻	Туре	Per Con	nponent
	Accuracy	Macro F1	Accuracy	Macro F1
		IPV6		
Decision Tree	96.88 ± 0.65	75.56 ± 1.84	99.99 ± 0.02	99.98 ± 0.03
Random Forest	96.91 ± 0.63	78.81 ± 0.73	100 ± 0.01	99.99 ± 0.01
Neural Network	89.63 ± 1.29	38.76± 2.70	99.99 ± 0.01	99.99 ± 0.01
	7	Sched		
Decision Tree	80.48 ± 0.76	71.04 ± 1.77	99.93 ± 0.14	97.74 ± 4.22
Random Forest	80.61 ± 0.69	76.28 ± 0.49	100 ± 0	99.99 ± 0.01
Neural Network	65.98 ± 6.91	39.18 ± 1.48	99.66±0.03	89.47±1.20
		Netfilter		
Decision Tree	89.47 ± 0.23	78.17 ± 4.88	99.92 ± 0.07	99.51 ± 0.46
Random Forest	89.54 ± 0.15	81.87 ± 1.86	99.96 ± 0.05	99.77 ± 0.29
Neural Network	72.9 ± 2.23	37.98 ± 2.83	97.16 ±0.17	74 ± 2.56

performance of ML auditing

	Per Type		Per Con	nponent		
	Accuracy	Macro F1	Accuracy	Macro F1		
IPV6						
Decision Tree	96.88 ± 0.65	75.56 ± 1.84	99.99 ± 0.02	99.98 ± 0.03		
Random Forest	96.91 ± 0.63	78.81 ± 0.73	100 ± 0.01	99.99 ± 0.01		
Neural Network	89.63 ± 1.29	38.76 ± 2.70	99.99 ± 0.01	99.99 ± 0.01		
		Sched				
Decision Tree	80.48 ± 0.76	71.04 ± 1.77	99.93 ± 0.14	97.74 ± 4.22		
Random Forest	80.61 ± 0.69	76.28 ± 0.49	100 ± 0	99.99 ± 0.01		
Neural Network	65.98 ± 6.91	39.18 ± 1.48	99.66±0.03	89.47 ± 1.20		
		Netfilter				
Decision Tree	80 47 + 0 23	78 17 + 4 88	99 92 + 0 07	99.51 ± 0.46		
Random For Ne	ural Netwo	rk is not go	ood enough	99.77 ± 0.29		
Pandom Fo	ract ic too	hoovy to he	ambadda	d via ABDE		

Random Forest is too heavy to be embedded via eBPF

performance of ML auditing

	Accuracy	Macro F1	Accuracy	Macro F1			
Feature Length							
32	88.40 ± 0.42	73.97 ± 3.83	98.75 ± 0.41	91.91 ± 2.32			
64	89.15 ± 0.33	77.24 ± 4.21	99.91 ± 0.07	99.47 ± 0.45			
128	89.18 ± 0.29	77.44 ± 4.33	99.85 ± 0.1	99.46 ± 0.64			
256	89.26 ± 0.29	77.34 ± 5.06	99.92 ± 0.08	99.51 ± 0.49			
1024	89.47 ± 0.23	78.17 ± 4.88	99.92 ± 0.07	99.51 ± 0.46			
		Max Depth					
3	61.18 ± 2.45	1.72 ± 0.19	97.47 ± 0.4	79.34 ± 3.03			
7	76.59 ± 2.38	8.48 ± 0.58	99.44 ± 0.21	96.44 ± 1.32			
10	83.54 ± 2.19	21.06 ± 2.19	99.65 ± 0.14	97.78 ± 0.86			
14	89.47 ± 0.23	78.17 ± 4.88	99.92 ± 0.07	99.51 ± 0.46			

Performance of tuning decision tree feature length and depth

	Accuracy	Macro F1	Accuracy	Macro F1			
	Feature Length						
32	88.40 + 0.42	73.97 + 3.83	98.75 + 0.41	91.91 + 2.32			
64	89.15 ± 0.33	77.24 ± 4.21	99.91 ± 0.07	99.47 ± 0.45			
128	89.18 ± 0.29	//.44 ± 4.33	99.85 ± 0.1	99.46 ± 0.64			
256	89.26 ± 0.29	77.34 ± 5.06	99.92 ± 0.08	99.51 ± 0.49			
1024	89.47 ± 0.23	78.17 ± 4.88	99.92 ± 0.07	99.51 ± 0.46			
		Max Depth					
3	61.18 ± 2.45	1.72 ± 0.19	97.47 ± 0.4	79.34 ± 3.03			
7	76.59 ± 2.38	8.48 ± 0.58	99.44 ± 0.21	96.44 ± 1.32			
10	83.54 ± 2.19	21.06 ± 2.19	99.65 ± 0.14	97.78 ± 0.86			
14	89.47 ± 0.23	78.17 ± 4.88	99.92 ± 0.07	99.51 ± 0.46			

Performance of tuning decision tree feature length and depth

	Accuracy	Macro F1	Accuracy	Macro F1		
Feature Length						
32	88.40 ± 0.42	73.97 ± 3.83	98.75 ± 0.41	91.91 ± 2.32		
64	89.15 ± 0.33	77.24 ± 4.21	99.91 ± 0.07	99.47 ± 0.45		
128	89.18 ± 0.29	77.44 ± 4.33	99.85 ± 0.1	99.46 ± 0.64		
256	89.26 ± 0.29	77.34 ± 5.06	99.92 ± 0.08	99.51 ± 0.49		
1024	89.47 ± 0.23	78.17 ± 4.88	99.92 ± 0.07	99.51 ± 0.46		
		Max Depth				
3	61.18 ± 2.45	1.72 ± 0.19	97.47 ± 0.4	79.34 ± 3.03		
7	76.59 ± 2.38	8.48 ± 0.58	99.44 ± 0.21	96.44 ± 1.32		
10	83.54 ± 2.19	21.06 ± 2.19	99.65 ± 0.14	97.78 ± 0.86		
14	89.47 ± 0.23	78.17 ± 4.88	99.92 ± 0.07	99.51 ± 0.46		

Performance of tuning decision tree feature length and depth

Takeaway

- Our work revealed the legacy object problem, which is critical to protect the kernel on-the-fly before patches are available.
- We demonstrated how embedding machine learning into the kernel can effectively solve the legacy object problem.
- Limitation: ML model accuracy is not 100%, only sufficing as a temporary remediation before patches are available.
- Future work:
 - Mature the prototype implementation and solution to corner cases in ML model. Expecting collaboration.
 - Reduce overhead using PKS like hardware feature.

Qinrun Dai (@2st___)

Looking for

2025 summer internship!