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Tool is available at: https://github.com/a8stract-lab/o2c

Paper is available at: https://arxiv.org/abs/2401.05641

https://github.com/a8stract-lab/o2c
https://arxiv.org/abs/2401.05641
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Risky Time Window in Kernel Development
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Vulnerability
Discovery

Vulnerability
Introduction

Patch Deployment
in Distros

Upstream Patch
Merging

Linux Kernel Development Timeline

51 days on average

Launching attacks!

How to remediate newly discovered vulnerabilities

before official patches are available?

Developers: analyze bugs,
develop and test patches
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Disruptive Solution is Unacceptable
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# of bug reports by Syzbot per month
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Avg. over 3 bugs reported per day by Syzbot

# of bug reports by Syzbot per month
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Disruptive Solution is Unacceptable

Takeaway:

A disruptive solution that 

requires rebooting and 

disrupting running 

service is unacceptable.

Otherwise over 3 times 

of rebooting is needed to 

have a full coverage.
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Disruptive Solution is Unacceptable

Takeaway:

A disruptive solution that 

requires rebooting and 

disrupting running 

service is unacceptable.

Otherwise over 3 times 

of rebooting is needed to 

have a full coverage.
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An On-the-Fly 

solution

is desired

Avg. over 3 bugs reported per day by Syzbot

# of bug reports by Syzbot per month
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Existing Solutions and Limitations

• PET[1]

51[1] PET: Prevent Discovered Errors from Being Triggered in the Linux Kernel, USENIX Security’23

• Core idea: 

• Construct triggering conditions.

• Determine if triggering condition is met at runtime.

• Prevent triggering if yes.
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Existing Solutions and Limitations

• PET[1]

52[1] PET: Prevent Discovered Errors from Being Triggered in the Linux Kernel, USENIX Security’23

path

2

error

site

• Core idea: 

• Construct triggering conditions.

• Determine if triggering condition is met at runtime.

• Prevent triggering if yes.

• Limitation:

• Can be bypassed if exploits target another 

triggering site along a different path.
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Existing Solutions and Limitations (cont.)

• SeaK[2]
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out-of-bound exploitation 
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Existing Solutions and Limitations (cont.)

• SeaK[2]
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vuln obj vic. obj

guard vic. obj guard vic. obj

guard vuln. obj guard vuln. obj

guard sprayed vic2 sprayed vic2

Typical memory layout of heap 
out-of-bound exploitation 

Memory layout after isolation

• Core idea:

• Isolates vulnerable objects, 

victim objects, and spray 

objects in different regions. 

guard
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Existing Solutions and Limitations (cont.)

• SeaK[2]
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[2] SeaK: Rethinking the Design of a Secure Allocator for OS Kernel, USENIX Security’24

vuln obj vic. obj

guard vic. obj guard vic. obj

guard vuln. obj guard vuln. obj

guard sprayed vic2 sprayed vic2

Typical memory layout of heap 
out-of-bound exploitation 

Memory layout after isolation

• Core idea:

• Isolates vulnerable objects, 

victim objects, and spray 

objects in different regions. 

• Limitation:

• While more general than PET, 

SeaK[2] can be bypassed if 

attackers exploit legacy objects.

guard
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Legacy Objects Problem in Detail

• Definition: objects allocated before protection 

is deployed (t0) and released after t0.
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t0

Legacy Object 
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Deployment 
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Legacy Object 
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Legacy Objects Problem in Detail

• Definition: objects allocated before protection 

is deployed (t0) and released after t0.

60

t0

• Our statistics:

• Lifetime of legacy objects is long: 10,862 objects last 

more than 10s.

• Many chances to manipulate legacy objects: average 

22.87 modifications during the object’s lifetime.

Legacy Object 
allocated

Deployment 
begins

Legacy Object 
released
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Legacy objvuln. obj

t0

NOT isolated

• Our statistics:

• Lifetime of legacy objects is long: 10,862 objects last 

more than 10s.

• Many chances to manipulate legacy objects: average 

22.87 modifications during the object’s lifetime.

• What if a vulnerable / victim object is legacy?

• Not isolated and mixed up with other objects.

Legacy Object 
allocated

Deployment 
begins

Legacy Object 
released

vic. obj
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Legacy Objects Problem in Detail

• Definition: objects allocated before protection 

is deployed (t0) and released after t0.

62

Legacy objvuln. obj

t0

NOT isolated

• Our statistics:

• Lifetime of legacy objects is long: 10,862 objects last 

more than 10s.

• Many chances to manipulate legacy objects: average 

22.87 modifications during the object’s lifetime.

• What if a vulnerable / victim object is legacy?

• Not isolated and mixed up with other objects.

Auditing legacy objects access is the focus of this briefing

Legacy Object 
allocated

Deployment 
begins

Legacy Object 
released

vic. obj
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• Evaluation
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Legacy Object Auditing - Challenge 1

• Fact: Legacy objects are allocated 

before protection is enabled. 

We cannot record KASAN-like 

metadata for legacy objects.

65

? (untracked)

Access
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Legacy Object Auditing - Challenge 1

• Fact: Legacy objects are allocated 

before protection is enabled. 

We cannot record KASAN-like 

metadata for legacy objects.

66

? (untracked)

obj (tracked)

Access

• Consequence: When a legacy object 

is accessed, start address, end 

address, and type are untracked.

Access

0xffff888… 0xffff888…
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C: __set_bit(q->type, watch_filter->type_filter);

Asm: BTS [R15], RAX

R15 (base) RAX (offset)

watch_filter
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Solution to Challenge 1
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• We use Machine Learning to 

infer the type of an accessed 

object, compared with access 

pointer type.

C: __set_bit(q->type, watch_filter->type_filter);

Asm: BTS [R15], RAX

R15 (base) RAX (offset)

watch_filter msg_msg
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A0 79 04 02 81 88 FF FF

41 62 73 74 72 61 63 74

Solution to Challenge 1

70

0xffff88810738e5c0 41 62 73 74 72 61 63 74

0xffff88810738e5c8 A0 79 04 02 81 88 FF FF

00 AC 04 02 81 88 FF FF

Human: What does these unorganized 
data mean?

Trained AI: According to byte1, byte2, …, byteN, the 
object’s type is inferred as msg_msg, indicating error 
because expected type should be watch_filter.

• We use Machine Learning to 

infer the type of an accessed 

object, compared with access 

pointer type.

0xffff88810738e5d0

0xffff88810738e5c0

0xffff88810738e5c8

00 AC 04 02 81 88 FF FF0xffff88810738e5d0

C: __set_bit(q->type, watch_filter->type_filter);

Asm: BTS [R15], RAX

R15 (base) RAX (offset)

watch_filter msg_msg
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Legacy Object Auditing - Challenge 2

• Auditing integrity

• How to ensue the following 

integrity of auditing will not be 

compromised?

• ML model integrity 

• Data-Flow integrity

• Control-Flow integrity

71

Kernel

Vulnerable
Component

ML model

Write -> Bypass -> Compromise
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Solution to Challenge 2
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• Kernel Code instrumentation

• Audit each read / write

• Audit subject switch

• Private heap & stack

• Vulnerable Component only use 

its own private data structures.

Vulnerable
Component

private
heap & stackwrite data

read data

write data

read data

Kernel

ML model

subject switch
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Access Auditing Policy to Challenge 2
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Trusted Kernel Untrusted component

read write exec read write exec

Kernel Code ✓ ✓ ✓

Kernel Data ✓ ✓ ✓

Kernel Heap ✓ ✓ ✓

Kernel Stack ✓ ✓ ✓

Auditing mechanism ✓ ✓ ✓ ✓

Component Code ✓ ✓ ✓ ✓ ✓

Component Data ✓ ✓ ✓ ✓

Component Heap ✓ ✓ ✓ ✓

Component Stack ✓ ✓ ✓ ✓

Access auditing policy
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On-the-Fly Quarantine (O2Q) Overview

74



#BHUSA @BlackHatEvents

On-the-Fly Quarantine (O2Q) Overview

75



#BHUSA @BlackHatEvents

On-the-Fly Quarantine (O2Q) Overview
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Collect data for ML model training: object’s type and content
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On-the-Fly Quarantine (O2Q) Overview
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Train ML model inferring object’s type based on its content
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On-the-Fly Quarantine (O2Q) Overview
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Identify instructions for instrumentation
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On-the-Fly Quarantine (O2Q) Overview
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Implement quarantine, examine object’s type at runtime



#BHUSA @BlackHatEvents

On-the-Fly Quarantine (O2Q) Overview
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A Working Example: CVE-2022-0995
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next

next

watch_filter

next

next

next

next

next

sprayed object
primary msg

sprayed object
prima msg

vulnerable legacy object
watch_filter
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A Working Example: CVE-2022-0995
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next

next

watch_filter

next

next

next

next

next

sprayed object
primary msg

sprayed object
prima msg

vulnerable legacy object
watch_filter

Two primary msg reference
this secondary msg.

Results in UAF
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O2Q Workflow on CVE-2022-0995
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Untracked

memory

O2Q Workflow on CVE-2022-0995

86

• The kernel is executing vulnerable 

component in quarantine zone.

Access
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Untracked

memory

O2Q Workflow on CVE-2022-0995
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vulnerable object 

watch_filter

next

struct msg_msg

• The kernel is executing vulnerable 

component in quarantine zone.

• The executing instruction should 

access watch_filter by Code Analyzer 

and Object Profiler.

Access

• The eBPF program instrumented to the 

executing instructions encompasses the 

trained ML model.



#BHUSA @BlackHatEvents

Untracked

memory

O2Q Workflow on CVE-2022-0995
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vulnerable object 

watch_filter

next

struct msg_msg

• The kernel is executing vulnerable 

component in quarantine zone.

• The executing instruction should 

access watch_filter by Code Analyzer 

and Object Profiler.

• The ML model infers the accessed 

object is msg_msg, indicating error.

Access

• The eBPF program instrumented to the 

executing instructions encompasses the 

trained ML model.
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Technical Background - eBPF

• Sandbox virtual machine in 

kernel.

• No need to modify kernel 

code or load module.

• Can hook any instruction.

• Own verifier.

• High performance using JIT.

• eBPF maps for data 

exchange.

• eBPF helper functions.

92

User space Kernel

eBPF bytecode kprobes

collect data

Verifier

eBPF

eBPF maps

uprobes

tracepoints

perf_events

1. generate 2. load

3. read / async

helper funcs
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Technical Background - AI Models
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Source: https://medium.com/analytics-vidhya/machine-learning-decision-trees-and-random-forest-classifiers-81422887a544
https://www.linkedin.com/pulse/introduction-neural-networks-how-machines-process-data-lakhani

https://medium.com/analytics-vidhya/machine-learning-decision-trees-and-random-forest-classifiers-81422887a544
https://www.linkedin.com/pulse/introduction-neural-networks-how-machines-process-data-lakhani
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Object Profiler
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collect data
for training

store / query

Object Profiler

• Use Syzkaller to enrich data source.

• Collect each object’s content and 

type for training.

95

call kfree(a)

Original kernel functions

eBPF
progs

eBPF Maps

a = kmalloc()

collect 
stacktrace and 

object’s address

collect object’s 
content

Object Profiler

Syzkaller fuzzing syscalls

User

Kernel
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collect data
for training

store / query

Object Profiler

• Use Syzkaller to enrich data source.

• Collect each object’s content and 

type for training.

96

call kfree(a)

Original kernel functions

eBPF
progs

eBPF Maps

a = kmalloc()

collect 
stacktrace and 

object’s address

collect object’s 
content

00 00 00 00 00 00 00 00

00 01 00 00 00 01 00 00

00 01 00 00 00 01 00 01

41 62 73 74 72 61 63 74

A0 79 04 02 81 88 FF FF

00 AC 04 02 81 88 FF FF

Objs’ content in use
Objs before releasing

Uncharacterized vs. characterized Object Profiler

Syzkaller fuzzing syscalls

User

Kernel• Collect at object’s release site: object 

possesses the most features that 

best reflect its characteristics.
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ML Model

97

• Feature:

• Object’s data content as feature

• Label

• Object’s type and whether belongs to quarantine zone

Tabular Data 

Processing
Interpretable

Defined 

Execution Time
Quantitative Accuracy

Convert to BPF 

Implementation

Decision Tree ✓ ✓ ✓ ✓ ✓

Random Forest ✓ ✓ ✓ ✓

Neural Network ✓

different ML model comparison
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Code Analyzer
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Redundant check: mov  $0x0, off2(%rsi)

Redundant check: mov  $0x0, off1(%rsi)

Determined address: mov off(%rip), %rax

Load

Code Analyzer

• Identify Linux Kernel’s instructions 

• Indirect jump

• Indirect call

• Memory write

• Subject switch

99

Indirect jump: call *%rax

Memory write: mov $0x0, (%rsi, %rdx, 1)

Stack frame create: sub offset, %rsp

Stack access: mov x, off (%rsp/rbp)

1. Analyze Kernel Binary File
2. Load custom rules
3. Identify desired instructions
4. Output entries

vmlinux

Ghidra
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Redundant check: mov  $0x0, off1(%rsi)

Determined address: mov off(%rip), %rax

Load

Code Analyzer

• Identify Linux Kernel’s instructions 

• Indirect jump

• Indirect call

• Memory write

• Subject switch
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Indirect jump: call *%rax

Memory write: mov $0x0, (%rsi, %rdx, 1)

Stack frame create: sub offset, %rsp

Stack access: mov x, off (%rsp/rbp)

1. Analyze Kernel Binary File
2. Load custom rules
3. Identify desired instructions
4. Output entries

• Efficiency Optimization: 

• Skip read

• Skip determining address

• Skip redundant check

vmlinux

Ghidra
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Redundant check: mov  $0x0, off2(%rsi)

Redundant check: mov  $0x0, off1(%rsi)

Determined address: mov off(%rip), %rax

Load

Code Analyzer

• Identify Linux Kernel’s instructions 

• Indirect jump

• Indirect call

• Memory write

• Subject switch

101

Indirect jump: call *%rax

Memory write: mov $0x0, (%rsi, %rdx, 1)

Stack frame create: sub offset, %rsp

Stack access: mov x, off (%rsp/rbp)

1. Analyze Kernel Binary File
2. Load custom rules
3. Identify desired instructions
4. Output entries

• Efficiency Optimization: 

• Skip read

• Skip determining address

• Skip redundant check

vmlinux

Ghidra

Reduced 24.07% instrument entries.
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eBPF Program

• Add extra eBPF helper functions for

O2Q’s functionality:

• bpf_set_regs(): set register values, for 

switching stacks.

• bpf_create_slab_cache(): creates private 

slab caches for the need of quarantine zone.

• bpf_cache_alloc() / bpf_cache_free(): 

allocates from and frees to private caches.

• For better interaction with quarantine 

zone data:

• bpf_get_slab_*() / bpf_get_vm_struct(): 

get the description of the slab and vmalloc

directly, without traversing slab pages or 

vm_struct rb-trees.

102

eBPF

[…]

cpu = bpf_get_smp_processor_id();

[…]

+ helper functions used by O2Q

eBPF helper functions

Linux Kernel

Metadata of 
quarantine 

and ML 
Model in 

eBPF Maps
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O2Q Workflow Summary

1. Object Profiler to collect object’s 

type and content at its release 

site.

2. Train ML Model offline based on 

collected object’s content, type, 

stacktrace and if belonging to 

quarantine.

3. Code Analyzer to identify code 

entries which need 

instrumentation for auditing.

4. eBPF programs to do quarantine 

and type examination with trained 

ML Model at runtime.

103
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Evaluation
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Evaluation

106
[3] HAKC: Preventing Kernel Hacks with HAKCs, NDSS’22
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Evaluation

107

Per Type Per Component

Accuracy Macro F1 Accuracy Macro F1

IPV6

Decision Tree 96.88 ± 0.65 75.56 ± 1.84 99.99 ±0.02 99.98 ± 0.03

Random Forest 96.91 ± 0.63 78.81 ± 0.73 100 ± 0.01 99.99 ± 0.01

Neural Network 89.63 ± 1.29 38.76± 2.70 99.99 ± 0.01 99.99 ±0.01

Sched

Decision Tree 80.48 ± 0.76 71.04 ± 1.77 99.93 ± 0.14 97.74 ± 4.22

Random Forest 80.61 ± 0.69 76.28 ± 0.49 100 ± 0 99.99 ± 0.01

Neural Network 65.98 ± 6.91 39.18 ± 1.48 99.66±0.03 89.47±1.20

Netfilter

Decision Tree 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Random Forest 89.54 ± 0.15 81.87 ± 1.86 99.96 ± 0.05 99.77 ± 0.29

Neural Network 72.9 ± 2.23 37.98 ± 2.83 97.16 ±0.17 74 ± 2.56

performance of ML auditing



#BHUSA @BlackHatEvents

Evaluation

108

Per Type Per Component

Accuracy Macro F1 Accuracy Macro F1

IPV6

Decision Tree 96.88 ± 0.65 75.56 ± 1.84 99.99 ±0.02 99.98 ± 0.03

Random Forest 96.91 ± 0.63 78.81 ± 0.73 100 ± 0.01 99.99 ± 0.01

Neural Network 89.63 ± 1.29 38.76± 2.70 99.99 ± 0.01 99.99 ±0.01

Sched

Decision Tree 80.48 ± 0.76 71.04 ± 1.77 99.93 ± 0.14 97.74 ± 4.22

Random Forest 80.61 ± 0.69 76.28 ± 0.49 100 ± 0 99.99 ± 0.01

Neural Network 65.98 ± 6.91 39.18 ± 1.48 99.66±0.03 89.47±1.20

Netfilter

Decision Tree 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Random Forest 89.54 ± 0.15 81.87 ± 1.86 99.96 ± 0.05 99.77 ± 0.29

Neural Network 72.9 ± 2.23 37.98 ± 2.83 97.16 ±0.17 74 ± 2.56

performance of ML auditing



#BHUSA @BlackHatEvents

Evaluation

109

Per Type Per Component

Accuracy Macro F1 Accuracy Macro F1

IPV6

Decision Tree 96.88 ± 0.65 75.56 ± 1.84 99.99 ±0.02 99.98 ± 0.03

Random Forest 96.91 ± 0.63 78.81 ± 0.73 100 ± 0.01 99.99 ± 0.01

Neural Network 89.63 ± 1.29 38.76± 2.70 99.99 ± 0.01 99.99 ±0.01

Sched

Decision Tree 80.48 ± 0.76 71.04 ± 1.77 99.93 ± 0.14 97.74 ± 4.22

Random Forest 80.61 ± 0.69 76.28 ± 0.49 100 ± 0 99.99 ± 0.01

Neural Network 65.98 ± 6.91 39.18 ± 1.48 99.66±0.03 89.47±1.20

Netfilter

Decision Tree 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Random Forest 89.54 ± 0.15 81.87 ± 1.86 99.96 ± 0.05 99.77 ± 0.29

Neural Network 72.9 ± 2.23 37.98 ± 2.83 97.16 ±0.17 74 ± 2.56

performance of ML auditing



#BHUSA @BlackHatEvents

Evaluation

110

Per Type Per Component

Accuracy Macro F1 Accuracy Macro F1

IPV6

Decision Tree 96.88 ± 0.65 75.56 ± 1.84 99.99 ±0.02 99.98 ± 0.03

Random Forest 96.91 ± 0.63 78.81 ± 0.73 100 ± 0.01 99.99 ± 0.01

Neural Network 89.63 ± 1.29 38.76± 2.70 99.99 ± 0.01 99.99 ±0.01

Sched

Decision Tree 80.48 ± 0.76 71.04 ± 1.77 99.93 ± 0.14 97.74 ± 4.22

Random Forest 80.61 ± 0.69 76.28 ± 0.49 100 ± 0 99.99 ± 0.01

Neural Network 65.98 ± 6.91 39.18 ± 1.48 99.66±0.03 89.47±1.20

Netfilter

Decision Tree 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Random Forest 89.54 ± 0.15 81.87 ± 1.86 99.96 ± 0.05 99.77 ± 0.29

Neural Network 72.9 ± 2.23 37.98 ± 2.83 97.16 ±0.17 74 ± 2.56

performance of ML auditing
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Per Type Per Component

Accuracy Macro F1 Accuracy Macro F1

IPV6

Decision Tree 96.88 ± 0.65 75.56 ± 1.84 99.99 ±0.02 99.98 ± 0.03

Random Forest 96.91 ± 0.63 78.81 ± 0.73 100 ± 0.01 99.99 ± 0.01

Neural Network 89.63 ± 1.29 38.76± 2.70 99.99 ± 0.01 99.99 ±0.01

Sched

Decision Tree 80.48 ± 0.76 71.04 ± 1.77 99.93 ± 0.14 97.74 ± 4.22

Random Forest 80.61 ± 0.69 76.28 ± 0.49 100 ± 0 99.99 ± 0.01

Neural Network 65.98 ± 6.91 39.18 ± 1.48 99.66±0.03 89.47±1.20

Netfilter

Decision Tree 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Random Forest 89.54 ± 0.15 81.87 ± 1.86 99.96 ± 0.05 99.77 ± 0.29

Neural Network 72.9 ± 2.23 37.98 ± 2.83 97.16 ±0.17 74 ± 2.56

performance of ML auditing

Neural Network is not good enough

Random Forest is too heavy to be embedded via eBPF
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Accuracy Macro F1 Accuracy Macro F1

Feature Length

32 88.40 ± 0.42 73.97 ± 3.83 98.75 ± 0.41 91.91 ± 2.32

64 89.15 ± 0.33 77.24 ± 4.21 99.91 ± 0.07 99.47 ± 0.45

128 89.18 ± 0.29 77.44 ± 4.33 99.85 ± 0.1 99.46 ± 0.64

256 89.26 ± 0.29 77.34 ± 5.06 99.92 ± 0.08 99.51 ± 0.49

1024 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Max Depth

3 61.18 ± 2.45 1.72 ± 0.19 97.47 ± 0.4 79.34 ± 3.03

7 76.59 ± 2.38 8.48 ± 0.58 99.44 ± 0.21 96.44 ± 1.32

10 83.54 ± 2.19 21.06 ± 2.19 99.65 ± 0.14 97.78 ± 0.86

14 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Performance of tuning decision tree feature length and depth
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Accuracy Macro F1 Accuracy Macro F1

Feature Length

32 88.40 ± 0.42 73.97 ± 3.83 98.75 ± 0.41 91.91 ± 2.32

64 89.15 ± 0.33 77.24 ± 4.21 99.91 ± 0.07 99.47 ± 0.45

128 89.18 ± 0.29 77.44 ± 4.33 99.85 ± 0.1 99.46 ± 0.64

256 89.26 ± 0.29 77.34 ± 5.06 99.92 ± 0.08 99.51 ± 0.49

1024 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Max Depth

3 61.18 ± 2.45 1.72 ± 0.19 97.47 ± 0.4 79.34 ± 3.03

7 76.59 ± 2.38 8.48 ± 0.58 99.44 ± 0.21 96.44 ± 1.32

10 83.54 ± 2.19 21.06 ± 2.19 99.65 ± 0.14 97.78 ± 0.86

14 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Performance of tuning decision tree feature length and depth
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Accuracy Macro F1 Accuracy Macro F1

Feature Length

32 88.40 ± 0.42 73.97 ± 3.83 98.75 ± 0.41 91.91 ± 2.32

64 89.15 ± 0.33 77.24 ± 4.21 99.91 ± 0.07 99.47 ± 0.45

128 89.18 ± 0.29 77.44 ± 4.33 99.85 ± 0.1 99.46 ± 0.64

256 89.26 ± 0.29 77.34 ± 5.06 99.92 ± 0.08 99.51 ± 0.49

1024 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Max Depth

3 61.18 ± 2.45 1.72 ± 0.19 97.47 ± 0.4 79.34 ± 3.03

7 76.59 ± 2.38 8.48 ± 0.58 99.44 ± 0.21 96.44 ± 1.32

10 83.54 ± 2.19 21.06 ± 2.19 99.65 ± 0.14 97.78 ± 0.86

14 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Performance of tuning decision tree feature length and depth
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Takeaway

• Our work revealed the legacy object problem, which is 

critical to protect the kernel on-the-fly before patches are 

available.

• We demonstrated how embedding machine learning into 

the kernel can effectively solve the legacy object problem.

• Limitation: ML model accuracy is not 100%, only sufficing 

as a temporary remediation before patches are available.

• Future work: 

• Mature the prototype implementation and solution to corner cases in 

ML model. Expecting collaboration.

• Reduce overhead using PKS like hardware feature.
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Qinrun Dai (@2st___)

Looking for

2025 summer internship!
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