
#BHUSA @BlackHatEvents

Stop! Sandboxing Exploitable
Functions and Modules

Using In-Kernel Machine Learning

Presenter: Qinrun Dai

Contributors: Zicheng Wang, Tiejin Chen, Yueqi Chen, and Hua Wei

#BHUSA @BlackHatEvents

About us

35

Qinrun Dai

PhD Student
University of Colorado, Boulder

Zicheng Wang

PhD
Nanjing University

Tiejin Chen

PhD Student
Arizona State University

Yeuqi Chen

Assistant Professor
University of Colorado, Boulder

Hua Wei

Assistant Professor
Arizona State University

#BHUSA @BlackHatEvents

Agenda

• Motivation

• Risky Time Window in Kernel Development

• Existing Solutions and Limitations

• Challenges of On-the-Fly Solution

• Challenges & Design Overview

• Example Workflow by CVE-2022-0995 & Video Demo

• Technical Details

• Evaluation

36

Tool is available at: https://github.com/a8stract-lab/o2c

Paper is available at: https://arxiv.org/abs/2401.05641

https://github.com/a8stract-lab/o2c
https://arxiv.org/abs/2401.05641

#BHUSA @BlackHatEvents

Risky Time Window in Kernel Development

37

#BHUSA @BlackHatEvents

Risky Time Window in Kernel Development

38

Linux Kernel Development Timeline

#BHUSA @BlackHatEvents

Risky Time Window in Kernel Development

39

Vulnerability
Introduction

Linux Kernel Development Timeline

#BHUSA @BlackHatEvents

Risky Time Window in Kernel Development

40

Vulnerability
Discovery

Vulnerability
Introduction

Linux Kernel Development Timeline

#BHUSA @BlackHatEvents

Risky Time Window in Kernel Development

41

Vulnerability
Discovery

Vulnerability
Introduction

Upstream Patch
Merging

Linux Kernel Development Timeline

Developers: analyze bugs,
develop and test patches

#BHUSA @BlackHatEvents

Risky Time Window in Kernel Development

42

Vulnerability
Discovery

Vulnerability
Introduction

Patch Deployment
in Distros

Upstream Patch
Merging

Linux Kernel Development Timeline

Developers: analyze bugs,
develop and test patches

#BHUSA @BlackHatEvents

Risky Time Window in Kernel Development

43

Vulnerability
Discovery

Vulnerability
Introduction

Patch Deployment
in Distros

Upstream Patch
Merging

Linux Kernel Development Timeline

51 days on average

Launching attacks!

Developers: analyze bugs,
develop and test patches

#BHUSA @BlackHatEvents

Risky Time Window in Kernel Development

44

Vulnerability
Discovery

Vulnerability
Introduction

Patch Deployment
in Distros

Upstream Patch
Merging

Linux Kernel Development Timeline

51 days on average

Launching attacks!

How to remediate newly discovered vulnerabilities

before official patches are available?

Developers: analyze bugs,
develop and test patches

#BHUSA @BlackHatEvents

Disruptive Solution is Unacceptable

45

of bug reports by Syzbot per month

#BHUSA @BlackHatEvents

Disruptive Solution is Unacceptable

46

Avg. over 3 bugs reported per day by Syzbot

of bug reports by Syzbot per month

#BHUSA @BlackHatEvents

Disruptive Solution is Unacceptable

Takeaway:

A disruptive solution that

requires rebooting and

disrupting running

service is unacceptable.

Otherwise over 3 times

of rebooting is needed to

have a full coverage.

47

Avg. over 3 bugs reported per day by Syzbot

of bug reports by Syzbot per month

#BHUSA @BlackHatEvents

Disruptive Solution is Unacceptable

Takeaway:

A disruptive solution that

requires rebooting and

disrupting running

service is unacceptable.

Otherwise over 3 times

of rebooting is needed to

have a full coverage.

48

An On-the-Fly

solution

is desired

Avg. over 3 bugs reported per day by Syzbot

of bug reports by Syzbot per month

#BHUSA @BlackHatEvents

Existing Solutions and Limitations

49[1] PET: Prevent Discovered Errors from Being Triggered in the Linux Kernel, USENIX Security’23

#BHUSA @BlackHatEvents

Existing Solutions and Limitations

• PET[1]

50[1] PET: Prevent Discovered Errors from Being Triggered in the Linux Kernel, USENIX Security’23

#BHUSA @BlackHatEvents

Existing Solutions and Limitations

• PET[1]

51[1] PET: Prevent Discovered Errors from Being Triggered in the Linux Kernel, USENIX Security’23

• Core idea:

• Construct triggering conditions.

• Determine if triggering condition is met at runtime.

• Prevent triggering if yes.

#BHUSA @BlackHatEvents

Existing Solutions and Limitations

• PET[1]

52[1] PET: Prevent Discovered Errors from Being Triggered in the Linux Kernel, USENIX Security’23

path

2

error

site

• Core idea:

• Construct triggering conditions.

• Determine if triggering condition is met at runtime.

• Prevent triggering if yes.

• Limitation:

• Can be bypassed if exploits target another

triggering site along a different path.

#BHUSA @BlackHatEvents

Existing Solutions and Limitations (cont.)

53
[2] SeaK: Rethinking the Design of a Secure Allocator for OS Kernel, USENIX Security’24

#BHUSA @BlackHatEvents

Existing Solutions and Limitations (cont.)

• SeaK[2]

54
[2] SeaK: Rethinking the Design of a Secure Allocator for OS Kernel, USENIX Security’24

#BHUSA @BlackHatEvents

Existing Solutions and Limitations (cont.)

• SeaK[2]

55
[2] SeaK: Rethinking the Design of a Secure Allocator for OS Kernel, USENIX Security’24

vuln obj vic. obj

Typical memory layout of heap
out-of-bound exploitation

#BHUSA @BlackHatEvents

Existing Solutions and Limitations (cont.)

• SeaK[2]

56
[2] SeaK: Rethinking the Design of a Secure Allocator for OS Kernel, USENIX Security’24

vuln obj vic. obj

guard vic. obj guard vic. obj

guard vuln. obj guard vuln. obj

guard sprayed vic2 sprayed vic2

Typical memory layout of heap
out-of-bound exploitation

Memory layout after isolation

• Core idea:

• Isolates vulnerable objects,

victim objects, and spray

objects in different regions.

guard

#BHUSA @BlackHatEvents

Existing Solutions and Limitations (cont.)

• SeaK[2]

57
[2] SeaK: Rethinking the Design of a Secure Allocator for OS Kernel, USENIX Security’24

vuln obj vic. obj

guard vic. obj guard vic. obj

guard vuln. obj guard vuln. obj

guard sprayed vic2 sprayed vic2

Typical memory layout of heap
out-of-bound exploitation

Memory layout after isolation

• Core idea:

• Isolates vulnerable objects,

victim objects, and spray

objects in different regions.

• Limitation:

• While more general than PET,

SeaK[2] can be bypassed if

attackers exploit legacy objects.

guard

#BHUSA @BlackHatEvents

Legacy Objects Problem in Detail

58

#BHUSA @BlackHatEvents

Legacy Objects Problem in Detail

• Definition: objects allocated before protection

is deployed (t0) and released after t0.

59

t0

Legacy Object
allocated

Deployment
begins

Legacy Object
released

#BHUSA @BlackHatEvents

Legacy Objects Problem in Detail

• Definition: objects allocated before protection

is deployed (t0) and released after t0.

60

t0

• Our statistics:

• Lifetime of legacy objects is long: 10,862 objects last

more than 10s.

• Many chances to manipulate legacy objects: average

22.87 modifications during the object’s lifetime.

Legacy Object
allocated

Deployment
begins

Legacy Object
released

#BHUSA @BlackHatEvents

Legacy Objects Problem in Detail

• Definition: objects allocated before protection

is deployed (t0) and released after t0.

61

Legacy objvuln. obj

t0

NOT isolated

• Our statistics:

• Lifetime of legacy objects is long: 10,862 objects last

more than 10s.

• Many chances to manipulate legacy objects: average

22.87 modifications during the object’s lifetime.

• What if a vulnerable / victim object is legacy?

• Not isolated and mixed up with other objects.

Legacy Object
allocated

Deployment
begins

Legacy Object
released

vic. obj

#BHUSA @BlackHatEvents

Legacy Objects Problem in Detail

• Definition: objects allocated before protection

is deployed (t0) and released after t0.

62

Legacy objvuln. obj

t0

NOT isolated

• Our statistics:

• Lifetime of legacy objects is long: 10,862 objects last

more than 10s.

• Many chances to manipulate legacy objects: average

22.87 modifications during the object’s lifetime.

• What if a vulnerable / victim object is legacy?

• Not isolated and mixed up with other objects.

Auditing legacy objects access is the focus of this briefing

Legacy Object
allocated

Deployment
begins

Legacy Object
released

vic. obj

#BHUSA @BlackHatEvents

Agenda

• Motivation

• Challenges & Design Overview

• Legacy Object Auditing - Challenge 1

• Solution to Challenge 1

• Legacy Object Auditing - Challenge 2

• Solution to Challenge 2

• Approach overview

• Example Workflow by CVE-2022-0995 & Video Demo

• Technical Details

• Evaluation

63

#BHUSA @BlackHatEvents

Legacy Object Auditing - Challenge 1

64

#BHUSA @BlackHatEvents

Legacy Object Auditing - Challenge 1

• Fact: Legacy objects are allocated

before protection is enabled.

We cannot record KASAN-like

metadata for legacy objects.

65

? (untracked)

Access

#BHUSA @BlackHatEvents

Legacy Object Auditing - Challenge 1

• Fact: Legacy objects are allocated

before protection is enabled.

We cannot record KASAN-like

metadata for legacy objects.

66

? (untracked)

obj (tracked)

Access

• Consequence: When a legacy object

is accessed, start address, end

address, and type are untracked.

Access

0xffff888… 0xffff888…

#BHUSA @BlackHatEvents

Solution to Challenge 1

67

#BHUSA @BlackHatEvents

Solution to Challenge 1

68

C: __set_bit(q->type, watch_filter->type_filter);

Asm: BTS [R15], RAX

R15 (base) RAX (offset)

watch_filter

#BHUSA @BlackHatEvents

Solution to Challenge 1

69

• We use Machine Learning to

infer the type of an accessed

object, compared with access

pointer type.

C: __set_bit(q->type, watch_filter->type_filter);

Asm: BTS [R15], RAX

R15 (base) RAX (offset)

watch_filter msg_msg

#BHUSA @BlackHatEvents

A0 79 04 02 81 88 FF FF

41 62 73 74 72 61 63 74

Solution to Challenge 1

70

0xffff88810738e5c0 41 62 73 74 72 61 63 74

0xffff88810738e5c8 A0 79 04 02 81 88 FF FF

00 AC 04 02 81 88 FF FF

Human: What does these unorganized
data mean?

Trained AI: According to byte1, byte2, …, byteN, the
object’s type is inferred as msg_msg, indicating error
because expected type should be watch_filter.

• We use Machine Learning to

infer the type of an accessed

object, compared with access

pointer type.

0xffff88810738e5d0

0xffff88810738e5c0

0xffff88810738e5c8

00 AC 04 02 81 88 FF FF0xffff88810738e5d0

C: __set_bit(q->type, watch_filter->type_filter);

Asm: BTS [R15], RAX

R15 (base) RAX (offset)

watch_filter msg_msg

#BHUSA @BlackHatEvents

Legacy Object Auditing - Challenge 2

• Auditing integrity

• How to ensue the following

integrity of auditing will not be

compromised?

• ML model integrity

• Data-Flow integrity

• Control-Flow integrity

71

Kernel

Vulnerable
Component

ML model

Write -> Bypass -> Compromise

#BHUSA @BlackHatEvents

Solution to Challenge 2

72

• Kernel Code instrumentation

• Audit each read / write

• Audit subject switch

• Private heap & stack

• Vulnerable Component only use

its own private data structures.

Vulnerable
Component

private
heap & stackwrite data

read data

write data

read data

Kernel

ML model

subject switch

#BHUSA @BlackHatEvents

Access Auditing Policy to Challenge 2

73

Trusted Kernel Untrusted component

read write exec read write exec

Kernel Code ✓ ✓ ✓

Kernel Data ✓ ✓ ✓

Kernel Heap ✓ ✓ ✓

Kernel Stack ✓ ✓ ✓

Auditing mechanism ✓ ✓ ✓ ✓

Component Code ✓ ✓ ✓ ✓ ✓

Component Data ✓ ✓ ✓ ✓

Component Heap ✓ ✓ ✓ ✓

Component Stack ✓ ✓ ✓ ✓

Access auditing policy

#BHUSA @BlackHatEvents

On-the-Fly Quarantine (O2Q) Overview

74

#BHUSA @BlackHatEvents

On-the-Fly Quarantine (O2Q) Overview

75

#BHUSA @BlackHatEvents

On-the-Fly Quarantine (O2Q) Overview

76

Collect data for ML model training: object’s type and content

#BHUSA @BlackHatEvents

On-the-Fly Quarantine (O2Q) Overview

77

Train ML model inferring object’s type based on its content

#BHUSA @BlackHatEvents

On-the-Fly Quarantine (O2Q) Overview

78

Identify instructions for instrumentation

#BHUSA @BlackHatEvents

On-the-Fly Quarantine (O2Q) Overview

79

Implement quarantine, examine object’s type at runtime

#BHUSA @BlackHatEvents

On-the-Fly Quarantine (O2Q) Overview

80

#BHUSA @BlackHatEvents

Agenda

• Motivation

• Challenges & Design Overview

• Example Workflow by CVE-2022-0995 & Video Demo

• Technical Details

• Evaluation

81

#BHUSA @BlackHatEvents

A Working Example: CVE-2022-0995

82

#BHUSA @BlackHatEvents

A Working Example: CVE-2022-0995

83

next

next

watch_filter

next

next

next

next

next

sprayed object
primary msg

sprayed object
prima msg

vulnerable legacy object
watch_filter

#BHUSA @BlackHatEvents

A Working Example: CVE-2022-0995

84

next

next

watch_filter

next

next

next

next

next

sprayed object
primary msg

sprayed object
prima msg

vulnerable legacy object
watch_filter

Two primary msg reference
this secondary msg.

Results in UAF

#BHUSA @BlackHatEvents

O2Q Workflow on CVE-2022-0995

85

#BHUSA @BlackHatEvents

Untracked

memory

O2Q Workflow on CVE-2022-0995

86

• The kernel is executing vulnerable

component in quarantine zone.

Access

#BHUSA @BlackHatEvents

Untracked

memory

O2Q Workflow on CVE-2022-0995

87

vulnerable object

watch_filter

next

struct msg_msg

• The kernel is executing vulnerable

component in quarantine zone.

• The executing instruction should

access watch_filter by Code Analyzer

and Object Profiler.

Access

• The eBPF program instrumented to the

executing instructions encompasses the

trained ML model.

#BHUSA @BlackHatEvents

Untracked

memory

O2Q Workflow on CVE-2022-0995

88

vulnerable object

watch_filter

next

struct msg_msg

• The kernel is executing vulnerable

component in quarantine zone.

• The executing instruction should

access watch_filter by Code Analyzer

and Object Profiler.

• The ML model infers the accessed

object is msg_msg, indicating error.

Access

• The eBPF program instrumented to the

executing instructions encompasses the

trained ML model.

#BHUSA @BlackHatEvents

DEMO

89

#BHUSA @BlackHatEvents

DEMO

90

#BHUSA @BlackHatEvents

Agenda

• Motivation

• Challenges & Design Overview

• Example Workflow by CVE-2022-0995 & Video Demo

• Technical Details

• Technical Backgrounds – eBPF & ML

• O2Q Components

• Evaluation

91

#BHUSA @BlackHatEvents

Technical Background - eBPF

• Sandbox virtual machine in

kernel.

• No need to modify kernel

code or load module.

• Can hook any instruction.

• Own verifier.

• High performance using JIT.

• eBPF maps for data

exchange.

• eBPF helper functions.

92

User space Kernel

eBPF bytecode kprobes

collect data

Verifier

eBPF

eBPF maps

uprobes

tracepoints

perf_events

1. generate 2. load

3. read / async

helper funcs

#BHUSA @BlackHatEvents

Technical Background - AI Models

93

Source: https://medium.com/analytics-vidhya/machine-learning-decision-trees-and-random-forest-classifiers-81422887a544
https://www.linkedin.com/pulse/introduction-neural-networks-how-machines-process-data-lakhani

https://medium.com/analytics-vidhya/machine-learning-decision-trees-and-random-forest-classifiers-81422887a544
https://www.linkedin.com/pulse/introduction-neural-networks-how-machines-process-data-lakhani

#BHUSA @BlackHatEvents

Object Profiler

94

#BHUSA @BlackHatEvents

collect data
for training

store / query

Object Profiler

• Use Syzkaller to enrich data source.

• Collect each object’s content and

type for training.

95

call kfree(a)

Original kernel functions

eBPF
progs

eBPF Maps

a = kmalloc()

collect
stacktrace and

object’s address

collect object’s
content

Object Profiler

Syzkaller fuzzing syscalls

User

Kernel

#BHUSA @BlackHatEvents

collect data
for training

store / query

Object Profiler

• Use Syzkaller to enrich data source.

• Collect each object’s content and

type for training.

96

call kfree(a)

Original kernel functions

eBPF
progs

eBPF Maps

a = kmalloc()

collect
stacktrace and

object’s address

collect object’s
content

00 00 00 00 00 00 00 00

00 01 00 00 00 01 00 00

00 01 00 00 00 01 00 01

41 62 73 74 72 61 63 74

A0 79 04 02 81 88 FF FF

00 AC 04 02 81 88 FF FF

Objs’ content in use
Objs before releasing

Uncharacterized vs. characterized Object Profiler

Syzkaller fuzzing syscalls

User

Kernel• Collect at object’s release site: object

possesses the most features that

best reflect its characteristics.

#BHUSA @BlackHatEvents

ML Model

97

• Feature:

• Object’s data content as feature

• Label

• Object’s type and whether belongs to quarantine zone

Tabular Data

Processing
Interpretable

Defined

Execution Time
Quantitative Accuracy

Convert to BPF

Implementation

Decision Tree ✓ ✓ ✓ ✓ ✓

Random Forest ✓ ✓ ✓ ✓

Neural Network ✓

different ML model comparison

#BHUSA @BlackHatEvents

Code Analyzer

98

#BHUSA @BlackHatEvents

Redundant check: mov $0x0, off2(%rsi)

Redundant check: mov $0x0, off1(%rsi)

Determined address: mov off(%rip), %rax

Load

Code Analyzer

• Identify Linux Kernel’s instructions

• Indirect jump

• Indirect call

• Memory write

• Subject switch

99

Indirect jump: call *%rax

Memory write: mov $0x0, (%rsi, %rdx, 1)

Stack frame create: sub offset, %rsp

Stack access: mov x, off (%rsp/rbp)

1. Analyze Kernel Binary File
2. Load custom rules
3. Identify desired instructions
4. Output entries

vmlinux

Ghidra

#BHUSA @BlackHatEvents

Redundant check: mov $0x0, off2(%rsi)

Redundant check: mov $0x0, off1(%rsi)

Determined address: mov off(%rip), %rax

Load

Code Analyzer

• Identify Linux Kernel’s instructions

• Indirect jump

• Indirect call

• Memory write

• Subject switch

100

Indirect jump: call *%rax

Memory write: mov $0x0, (%rsi, %rdx, 1)

Stack frame create: sub offset, %rsp

Stack access: mov x, off (%rsp/rbp)

1. Analyze Kernel Binary File
2. Load custom rules
3. Identify desired instructions
4. Output entries

• Efficiency Optimization:

• Skip read

• Skip determining address

• Skip redundant check

vmlinux

Ghidra

#BHUSA @BlackHatEvents

Redundant check: mov $0x0, off2(%rsi)

Redundant check: mov $0x0, off1(%rsi)

Determined address: mov off(%rip), %rax

Load

Code Analyzer

• Identify Linux Kernel’s instructions

• Indirect jump

• Indirect call

• Memory write

• Subject switch

101

Indirect jump: call *%rax

Memory write: mov $0x0, (%rsi, %rdx, 1)

Stack frame create: sub offset, %rsp

Stack access: mov x, off (%rsp/rbp)

1. Analyze Kernel Binary File
2. Load custom rules
3. Identify desired instructions
4. Output entries

• Efficiency Optimization:

• Skip read

• Skip determining address

• Skip redundant check

vmlinux

Ghidra

Reduced 24.07% instrument entries.

#BHUSA @BlackHatEvents

eBPF Program

• Add extra eBPF helper functions for

O2Q’s functionality:

• bpf_set_regs(): set register values, for

switching stacks.

• bpf_create_slab_cache(): creates private

slab caches for the need of quarantine zone.

• bpf_cache_alloc() / bpf_cache_free():

allocates from and frees to private caches.

• For better interaction with quarantine

zone data:

• bpf_get_slab_*() / bpf_get_vm_struct():

get the description of the slab and vmalloc

directly, without traversing slab pages or

vm_struct rb-trees.

102

eBPF

[…]

cpu = bpf_get_smp_processor_id();

[…]

+ helper functions used by O2Q

eBPF helper functions

Linux Kernel

Metadata of
quarantine

and ML
Model in

eBPF Maps

#BHUSA @BlackHatEvents

O2Q Workflow Summary

1. Object Profiler to collect object’s

type and content at its release

site.

2. Train ML Model offline based on

collected object’s content, type,

stacktrace and if belonging to

quarantine.

3. Code Analyzer to identify code

entries which need

instrumentation for auditing.

4. eBPF programs to do quarantine

and type examination with trained

ML Model at runtime.

103

#BHUSA @BlackHatEvents

Agenda

• Motivation

• Challenges & Design Overview

• Example Workflow by CVE-2022-0995 & Video Demo

• Technical Details

• Evaluation

104

#BHUSA @BlackHatEvents

Evaluation

105

1.0029 1.0088 1.00981.0039 1.0029 1.00551.0121 1.0096 1.01691.0171 1.0136 1.0154

0

0.2

0.4

0.6

0.8

1

1.2

ip6_output.c
(1470 loc)

ipv6
(78213 loc)

scalability
(255330 loc)

Overall system overhead

LMBench w/ ML LMBench w/o ML Phoronix w/ ML Phoronix w/o ML

#BHUSA @BlackHatEvents

0.98 0.99 0.980.98 0.99 1
0.94

0.88

0.76

0.94

0.7
0.66

0.8

0.88

0.98

0

0.2

0.4

0.6

0.8

1

1.2

100KB 1MB 10MB

Performance loss of vulnerable component

ip6_output.c ip_output.c-ml IPv6 IPv6-ml HAKC[3]

Evaluation

106
[3] HAKC: Preventing Kernel Hacks with HAKCs, NDSS’22

#BHUSA @BlackHatEvents

Evaluation

107

Per Type Per Component

Accuracy Macro F1 Accuracy Macro F1

IPV6

Decision Tree 96.88 ± 0.65 75.56 ± 1.84 99.99 ±0.02 99.98 ± 0.03

Random Forest 96.91 ± 0.63 78.81 ± 0.73 100 ± 0.01 99.99 ± 0.01

Neural Network 89.63 ± 1.29 38.76± 2.70 99.99 ± 0.01 99.99 ±0.01

Sched

Decision Tree 80.48 ± 0.76 71.04 ± 1.77 99.93 ± 0.14 97.74 ± 4.22

Random Forest 80.61 ± 0.69 76.28 ± 0.49 100 ± 0 99.99 ± 0.01

Neural Network 65.98 ± 6.91 39.18 ± 1.48 99.66±0.03 89.47±1.20

Netfilter

Decision Tree 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Random Forest 89.54 ± 0.15 81.87 ± 1.86 99.96 ± 0.05 99.77 ± 0.29

Neural Network 72.9 ± 2.23 37.98 ± 2.83 97.16 ±0.17 74 ± 2.56

performance of ML auditing

#BHUSA @BlackHatEvents

Evaluation

108

Per Type Per Component

Accuracy Macro F1 Accuracy Macro F1

IPV6

Decision Tree 96.88 ± 0.65 75.56 ± 1.84 99.99 ±0.02 99.98 ± 0.03

Random Forest 96.91 ± 0.63 78.81 ± 0.73 100 ± 0.01 99.99 ± 0.01

Neural Network 89.63 ± 1.29 38.76± 2.70 99.99 ± 0.01 99.99 ±0.01

Sched

Decision Tree 80.48 ± 0.76 71.04 ± 1.77 99.93 ± 0.14 97.74 ± 4.22

Random Forest 80.61 ± 0.69 76.28 ± 0.49 100 ± 0 99.99 ± 0.01

Neural Network 65.98 ± 6.91 39.18 ± 1.48 99.66±0.03 89.47±1.20

Netfilter

Decision Tree 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Random Forest 89.54 ± 0.15 81.87 ± 1.86 99.96 ± 0.05 99.77 ± 0.29

Neural Network 72.9 ± 2.23 37.98 ± 2.83 97.16 ±0.17 74 ± 2.56

performance of ML auditing

#BHUSA @BlackHatEvents

Evaluation

109

Per Type Per Component

Accuracy Macro F1 Accuracy Macro F1

IPV6

Decision Tree 96.88 ± 0.65 75.56 ± 1.84 99.99 ±0.02 99.98 ± 0.03

Random Forest 96.91 ± 0.63 78.81 ± 0.73 100 ± 0.01 99.99 ± 0.01

Neural Network 89.63 ± 1.29 38.76± 2.70 99.99 ± 0.01 99.99 ±0.01

Sched

Decision Tree 80.48 ± 0.76 71.04 ± 1.77 99.93 ± 0.14 97.74 ± 4.22

Random Forest 80.61 ± 0.69 76.28 ± 0.49 100 ± 0 99.99 ± 0.01

Neural Network 65.98 ± 6.91 39.18 ± 1.48 99.66±0.03 89.47±1.20

Netfilter

Decision Tree 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Random Forest 89.54 ± 0.15 81.87 ± 1.86 99.96 ± 0.05 99.77 ± 0.29

Neural Network 72.9 ± 2.23 37.98 ± 2.83 97.16 ±0.17 74 ± 2.56

performance of ML auditing

#BHUSA @BlackHatEvents

Evaluation

110

Per Type Per Component

Accuracy Macro F1 Accuracy Macro F1

IPV6

Decision Tree 96.88 ± 0.65 75.56 ± 1.84 99.99 ±0.02 99.98 ± 0.03

Random Forest 96.91 ± 0.63 78.81 ± 0.73 100 ± 0.01 99.99 ± 0.01

Neural Network 89.63 ± 1.29 38.76± 2.70 99.99 ± 0.01 99.99 ±0.01

Sched

Decision Tree 80.48 ± 0.76 71.04 ± 1.77 99.93 ± 0.14 97.74 ± 4.22

Random Forest 80.61 ± 0.69 76.28 ± 0.49 100 ± 0 99.99 ± 0.01

Neural Network 65.98 ± 6.91 39.18 ± 1.48 99.66±0.03 89.47±1.20

Netfilter

Decision Tree 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Random Forest 89.54 ± 0.15 81.87 ± 1.86 99.96 ± 0.05 99.77 ± 0.29

Neural Network 72.9 ± 2.23 37.98 ± 2.83 97.16 ±0.17 74 ± 2.56

performance of ML auditing

#BHUSA @BlackHatEvents

Evaluation

111

Per Type Per Component

Accuracy Macro F1 Accuracy Macro F1

IPV6

Decision Tree 96.88 ± 0.65 75.56 ± 1.84 99.99 ±0.02 99.98 ± 0.03

Random Forest 96.91 ± 0.63 78.81 ± 0.73 100 ± 0.01 99.99 ± 0.01

Neural Network 89.63 ± 1.29 38.76± 2.70 99.99 ± 0.01 99.99 ±0.01

Sched

Decision Tree 80.48 ± 0.76 71.04 ± 1.77 99.93 ± 0.14 97.74 ± 4.22

Random Forest 80.61 ± 0.69 76.28 ± 0.49 100 ± 0 99.99 ± 0.01

Neural Network 65.98 ± 6.91 39.18 ± 1.48 99.66±0.03 89.47±1.20

Netfilter

Decision Tree 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Random Forest 89.54 ± 0.15 81.87 ± 1.86 99.96 ± 0.05 99.77 ± 0.29

Neural Network 72.9 ± 2.23 37.98 ± 2.83 97.16 ±0.17 74 ± 2.56

performance of ML auditing

Neural Network is not good enough

Random Forest is too heavy to be embedded via eBPF

#BHUSA @BlackHatEvents

Evaluation

112

Accuracy Macro F1 Accuracy Macro F1

Feature Length

32 88.40 ± 0.42 73.97 ± 3.83 98.75 ± 0.41 91.91 ± 2.32

64 89.15 ± 0.33 77.24 ± 4.21 99.91 ± 0.07 99.47 ± 0.45

128 89.18 ± 0.29 77.44 ± 4.33 99.85 ± 0.1 99.46 ± 0.64

256 89.26 ± 0.29 77.34 ± 5.06 99.92 ± 0.08 99.51 ± 0.49

1024 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Max Depth

3 61.18 ± 2.45 1.72 ± 0.19 97.47 ± 0.4 79.34 ± 3.03

7 76.59 ± 2.38 8.48 ± 0.58 99.44 ± 0.21 96.44 ± 1.32

10 83.54 ± 2.19 21.06 ± 2.19 99.65 ± 0.14 97.78 ± 0.86

14 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Performance of tuning decision tree feature length and depth

#BHUSA @BlackHatEvents

Evaluation

113

Accuracy Macro F1 Accuracy Macro F1

Feature Length

32 88.40 ± 0.42 73.97 ± 3.83 98.75 ± 0.41 91.91 ± 2.32

64 89.15 ± 0.33 77.24 ± 4.21 99.91 ± 0.07 99.47 ± 0.45

128 89.18 ± 0.29 77.44 ± 4.33 99.85 ± 0.1 99.46 ± 0.64

256 89.26 ± 0.29 77.34 ± 5.06 99.92 ± 0.08 99.51 ± 0.49

1024 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Max Depth

3 61.18 ± 2.45 1.72 ± 0.19 97.47 ± 0.4 79.34 ± 3.03

7 76.59 ± 2.38 8.48 ± 0.58 99.44 ± 0.21 96.44 ± 1.32

10 83.54 ± 2.19 21.06 ± 2.19 99.65 ± 0.14 97.78 ± 0.86

14 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Performance of tuning decision tree feature length and depth

#BHUSA @BlackHatEvents

Evaluation

114

Accuracy Macro F1 Accuracy Macro F1

Feature Length

32 88.40 ± 0.42 73.97 ± 3.83 98.75 ± 0.41 91.91 ± 2.32

64 89.15 ± 0.33 77.24 ± 4.21 99.91 ± 0.07 99.47 ± 0.45

128 89.18 ± 0.29 77.44 ± 4.33 99.85 ± 0.1 99.46 ± 0.64

256 89.26 ± 0.29 77.34 ± 5.06 99.92 ± 0.08 99.51 ± 0.49

1024 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Max Depth

3 61.18 ± 2.45 1.72 ± 0.19 97.47 ± 0.4 79.34 ± 3.03

7 76.59 ± 2.38 8.48 ± 0.58 99.44 ± 0.21 96.44 ± 1.32

10 83.54 ± 2.19 21.06 ± 2.19 99.65 ± 0.14 97.78 ± 0.86

14 89.47 ± 0.23 78.17 ± 4.88 99.92 ± 0.07 99.51 ± 0.46

Performance of tuning decision tree feature length and depth

#BHUSA @BlackHatEvents

Takeaway

• Our work revealed the legacy object problem, which is

critical to protect the kernel on-the-fly before patches are

available.

• We demonstrated how embedding machine learning into

the kernel can effectively solve the legacy object problem.

• Limitation: ML model accuracy is not 100%, only sufficing

as a temporary remediation before patches are available.

• Future work:

• Mature the prototype implementation and solution to corner cases in

ML model. Expecting collaboration.

• Reduce overhead using PKS like hardware feature.

115

Qinrun Dai (@2st___)

Looking for

2025 summer internship!

	Slide 34
	Slide 35: About us
	Slide 36: Agenda
	Slide 37: Risky Time Window in Kernel Development
	Slide 38: Risky Time Window in Kernel Development
	Slide 39: Risky Time Window in Kernel Development
	Slide 40: Risky Time Window in Kernel Development
	Slide 41: Risky Time Window in Kernel Development
	Slide 42: Risky Time Window in Kernel Development
	Slide 43: Risky Time Window in Kernel Development
	Slide 44: Risky Time Window in Kernel Development
	Slide 45: Disruptive Solution is Unacceptable
	Slide 46: Disruptive Solution is Unacceptable
	Slide 47: Disruptive Solution is Unacceptable
	Slide 48: Disruptive Solution is Unacceptable
	Slide 49: Existing Solutions and Limitations
	Slide 50: Existing Solutions and Limitations
	Slide 51: Existing Solutions and Limitations
	Slide 52: Existing Solutions and Limitations
	Slide 53: Existing Solutions and Limitations (cont.)
	Slide 54: Existing Solutions and Limitations (cont.)
	Slide 55: Existing Solutions and Limitations (cont.)
	Slide 56: Existing Solutions and Limitations (cont.)
	Slide 57: Existing Solutions and Limitations (cont.)
	Slide 58: Legacy Objects Problem in Detail
	Slide 59: Legacy Objects Problem in Detail
	Slide 60: Legacy Objects Problem in Detail
	Slide 61: Legacy Objects Problem in Detail
	Slide 62: Legacy Objects Problem in Detail
	Slide 63: Agenda
	Slide 64: Legacy Object Auditing - Challenge 1
	Slide 65: Legacy Object Auditing - Challenge 1
	Slide 66: Legacy Object Auditing - Challenge 1
	Slide 67: Solution to Challenge 1
	Slide 68: Solution to Challenge 1
	Slide 69: Solution to Challenge 1
	Slide 70: Solution to Challenge 1
	Slide 71: Legacy Object Auditing - Challenge 2
	Slide 72: Solution to Challenge 2
	Slide 73: Access Auditing Policy to Challenge 2
	Slide 74: On-the-Fly Quarantine (O2Q) Overview
	Slide 75: On-the-Fly Quarantine (O2Q) Overview
	Slide 76: On-the-Fly Quarantine (O2Q) Overview
	Slide 77: On-the-Fly Quarantine (O2Q) Overview
	Slide 78: On-the-Fly Quarantine (O2Q) Overview
	Slide 79: On-the-Fly Quarantine (O2Q) Overview
	Slide 80: On-the-Fly Quarantine (O2Q) Overview
	Slide 81: Agenda
	Slide 82: A Working Example: CVE-2022-0995
	Slide 83: A Working Example: CVE-2022-0995
	Slide 84: A Working Example: CVE-2022-0995
	Slide 85: O2Q Workflow on CVE-2022-0995
	Slide 86: O2Q Workflow on CVE-2022-0995
	Slide 87: O2Q Workflow on CVE-2022-0995
	Slide 88: O2Q Workflow on CVE-2022-0995
	Slide 89
	Slide 90
	Slide 91: Agenda
	Slide 92: Technical Background - eBPF
	Slide 93: Technical Background - AI Models
	Slide 94: Object Profiler
	Slide 95: Object Profiler
	Slide 96: Object Profiler
	Slide 97: ML Model
	Slide 98: Code Analyzer
	Slide 99: Code Analyzer
	Slide 100: Code Analyzer
	Slide 101: Code Analyzer
	Slide 102: eBPF Program
	Slide 103: O2Q Workflow Summary
	Slide 104: Agenda
	Slide 105: Evaluation
	Slide 106: Evaluation
	Slide 107: Evaluation
	Slide 108: Evaluation
	Slide 109: Evaluation
	Slide 110: Evaluation
	Slide 111: Evaluation
	Slide 112: Evaluation
	Slide 113: Evaluation
	Slide 114: Evaluation
	Slide 115: Takeaway

