Nope, S7ill not Secure: Stealing Private Keys From S7
PLCs

Nadav Adir Eli Biham Sara Bitan Alon Dankner Ron Freudenthal
Or Keret

Faculty of Computer Science, Technion, Haifa 3200003, Israel
{nadav.adir,biham,sarab,dankner,ronf,or.keret}@cs.technion.ac.il

Abstract. Recent years have seen a growing trend within industrial control systems (ICS) towards
adopting secure protocols over unencrypted ones. The last versions of Siemens’ S7 PLCs use TLS 1.3 to
secure the S7 protocol, which is used for communication with the engineering stations and the SCADA
systems. Unfortunately, while trying to improve its security, S7 became highly vulnerable. In this work,
we introduce a series of six new attacks against the S7 protocol. We reverse-engineered the S7 protocol
and analyzed it. We found a severe new vulnerability that surprisingly enables the attacker to steal the
PLC private key, by politely asking the PLC itself. We then leveraged the extracted private key to design
and implement various attacks, such as PLC impersonation and man-in-the-middle. The attacker can,
for example, inject a malicious PLC program while reporting legitimately-looking values to the users,
reincarnating the OT features of Stuxnet on the SIMATIC product line newest version. Furthermore,
we present attacks against the S7 PKI, exploiting the certificate provisioning. The combination of
the presented attacks constitutes a powerful toolset, allowing an attacker to completely takeover the
ICS system, while hiding the attack from the users. The impact of this study is far-reaching, as it
introduces a direct and immediate threat to ICS customers and critical infrastructures, exemplifying
stealth attacks on a secure ICS.

1 Introduction

Industrial Control Systems (ICS) are vital to our modern life, ensuring the reliable and
continuous operation of critical infrastructures such as power plants, water treatment facili-
ties, and transportation systems. The core of the ICS is the Programmable Logic Controller
(PLC), communicating with engineering stations and SCADA HMIs on one side, and con-
trolling industrial systems on the other side. The security of ICS systems has received much
attention in recent years due to the criticality of these systems and the potential damage of
a cyber attack. The outcomes range from physical harm to economic losses, and in severe
situations, even loss of human life and risks to public safety. However, as ICS systems have
become more interconnected and integrated with corporate networks, they have also become
exposed to cybersecurity threats.

Over the past few years, many ICS vendors have incorporated standard security protocols
into their industrial products. In the recent releases of the S7 PLCs, Siemens deployed
TLS 1.3 [14] in the S7 protocol, which is used by the S7 PLCs [I7/I§], to address numerous
weaknesses in the protocol. Ultimately, while trying to improve the security of the protocol,
the S7 protocol became highly vulnerable.

In this work, we introduce six attacks that exploit new vulnerabilities in the latest version
of S7. We unveil the security mechanisms of the new S7 protocol by reverse engineering
the protocol and the PKI. We found a severe new vulnerability in the S7 protocol, in the
PLC configuration, that surprisingly allows an attacker to retrieve the private key directly
from the PLC. Utilizing the extracted private key, we proceeded to design and implement

various attacks, including a PLC impersonation and a stealth man-in-the-middle attack.
Our stealth man-in-the-middle attack tampers with the PLC logic to damage production,
while modifying values of read/write HMI variables, in order to deceive the operators and
camouflage the attack. The uniqueness of this attack is that it is capable of reincarnating
the OT features of Stuxnet, even against the newest version of the SIMATIC product line.
Furthermore, we show that the initial provisioning of the PLC’s keys and certificates is
insecure, providing an attacker with another way to steal the private key, and even a password
that should protect it.

1.1 Owur Contributions

We introduce six new cyber attacks that exploit new vulnerabilities in the latest version of
Siemens S7 protocol. Siemens PLCs are estimated to have 31% of the global PLC market [4].
The presented attacks include:

1. Attack #1: Extracting the PLC’s Secrets During the Initial Key Provisioning: exploits
the initial key provisioning to steal the private key, and even the password that should
protect it.

2. Attack #2: Rogue Client: an impersonation of a client that enables the attacker to send
arbitrary control commands to the PLC.

3. Attack #3: PLC Private Key Retrieval Attack: a severe new vulnerability in the S7
upload configuration feature, meant for retrieval of information from the PLC, enables
the attacker to steal the PLC’s private key.

4. Attack #4: Malicious Control Program Injection: exploits the program encryption to
inject a malicious control program to the PLC.

5. Attack #5: Rogue PLC: utilizes the stolen private key to perform impersonation of a
PLC (an attack that was not possible in the previous S7 version).

6. Attack #6: Stealth Man-in-the-Middle Attack: combines client and server impersonation,
enabling the attacker to read and manipulate values inside the TLS 1.3 payload on live
S7 sessions.

The combination of these attacks forms a powerful toolset that allows an attacker to com-
pletely take over the ICS system, while hiding the attack from the operators and engineers.

Another contribution of this work is an open-source TLS sniffer tailored for the S7 pro-
tocol. We developed this tool to research the protocol and analyze the traffic, as existing
sniffing /proxy tools were incompatible with the S7 protocol’s stack.

Our threat model assumes an attacker with access to the ICS network of the TTA work-
stations and the S7 PLCs. We implemented our attacks using Python scripts and C code,
and successfully tested them against the S7-1500 PLC with firmware v2.9 and TIA v17. The
S7-1200 PLCs employ the same protocol from firmware v4.5. Prior to this paper submission
we disclosed our findings to Siemens.

1.2 Structure of this Paper

The remaining part of the paper proceeds as follows: We review related work and the current
state of ICS security in Section[2] Section [3|provides necessary background on key concepts. In

2

Section 4], we explain the new S7 PKI in details. Section [5]describes our research methodology
and tools. Throughout Sections [6] to [§, we introduce our six new attacks and explain the
vulnerabilities they exploit. Section [9] addresses mitigations, and lastly, Section [I0] concludes
the paper.

2 Related Work

Several research efforts have contributed to the understanding of security challenges associ-
ated with Siemens SIMATIC S7 and identified vulnerabilities in their protocol and system.

Stuxnet worm [IT6] discovered in 2010 targeted Siemens S7 PLCs to cause physical
damage to nuclear centrifuges. It maliciously reprogrammed PLCs to alter the industrial
process, while concealing its activity by displaying to operators counterfeit data and the
original program (through Windows, not through attack on the PLC).

Beresford [I] exposed protocol vulnerabilities in older PLC versions (S7-300 v2.3.4, S7-
400, and S7-1200 v2.2). This research highlighted the lack of cryptographic protection in the
protocol, leading to various weaknesses, including replay attacks and authentication bypass.

In [12], Cheng et al. analyzed the S7-1200 (v4.0) and S7-1500 PLCs. The authors found
proprietary encryption algorithms that did not use private keys, enabling a replay attack
against the protocol.

Biham et al. [2] examined the S7-1200 and S7-1500 (v2.1) PLCs and found the use of hard-
coded keys and server-only (PLC) authentication. The paper presents a rogue engineering
station (rogue client) attack that reprograms the PLC with a malicious control logic, while
causing the PLC to report a false and legitimately-looking logic upon request.

Another publication [19] uncovered a memory vulnerability in the S7-1200 (v4.5.0) and
S7-1500 (versions preceding v2.9.2) PLCs, allowing an attacker to gain a remote read/write
access to the PLC memory, and to extract the above hard-coded keys.

Jian [8] investigated the S7-1500 PLCs (v2.9.2) that incorporate TLS 1.3 in the S7 pro-
tocol. The authors presented a rogue client attack implemented a fuzzer to bypass the access
protection (password) and execure denial-of-service attack.

3 Background

The SIMATIC S7 ecosystem consists of several key components. The S7 PLCs orchestrate
complex sequences of operations with precision and reliability according to a programmable
logic (the control program). They monitor inputs from sensors and control a wide array of
industrial equipment, including conveyor belts, robotic arms, and more.

Engineers use the engineering stations to program the PLCs, whereas the operators mon-
itor and control the industrial process in real time through SCADA (Supervisory Control
And Data Acquisition) stations. The TIA (Totally Integrated Automation) Portal is Siemens’
engineering software. Communication between the system components occurs over TCP /IP.

3.1 The S7TCommPlus Protocol

The S7TCommPlus protocol (commonly referred to as the S7 protocol) is an industrial com-
munication protocol developed by Siemens for its SIMATIC product line. S7 is a proprietary

3

Frame 90: 318 bytes on wire (2544 bits), 318 bytes captured (2544 bits) on interface \Device\NPF_{252F158A-AB53-4029-9E69-154B372005FE}, id @
Ethernet II, Src: PcsCompu_e7:19:ef (08:00:27:e7:19:ef), Dst: SiemensI _61:el:23 (e@:dc:a@:61:el:23)

Internet Protocol Version 4, Src: 192.168.0.81, Dst: 192.168.0.18

Transmission Control Protocol, Src Port: 49756, Dst Port: 102, Seq: 69, Ack: 67, Len: 264

TPKT, Version: 3, Length: 264

IS0 8073/X.224 COTP Connection-Oriented Transport Protocol

Transport Layer Security

Fig.1: An Example of an S7 Packet as Shown in Wireshark

protocol and does not have any official documentation available. The protocol enables the
exchange of data, control commands, and system information necessary for real-time moni-
toring, control, and automation of industrial processes.

The S7 protocol follows a client-server architecture, where the client initiates requests and
the server responds accordingly. In this context, the client can be an HMI, an engineering
station, or another PLC, while the server typically represents the PLC.

Communication is established over the network, utilizing TCP/IP connections. The S7
protocol relies on ITOT [I5] and operates through the well-known TCP port 102. It operates
within a layered protocol stack, which includes Connection-Oriented Transport Protocol
(COTP) [1/I13] and TPKT [I5]. The latest version of the S7 protocol incorporates TLS 1.3 [14]
as the underlying security mechanism [I7/I8|. Fig. [1| shows an example of an S7 packet
captured in Wireshark [22] and the protocol stack.

4 The New S7 Public Key Infrastructure

TLS utilizes digital certificates to authenticate devices, ensuring that communication occurs
between trusted entities. Devices on the Internet commonly rely on trusted third-party en-
tities known as Certificate Authorities (CAs) to sign certificates. To secure the SIMATIC
ecosystem, Siemens has developed its own PKI mechanisms to address the specific require-
ments and challenges of ICS systems (e.g., most networks are air-gapped, with no external
connections).

The latest versions of the TIA Portal (starting from v17) introduce a new tool called cer-
tificate manager [I7/I8]. The certificate manager facilitates the generation, import, export,
and management of digital certificates for S7 PLCs. Users can leverage the certificate man-
ager to view and manage existing certificates. This includes actions like enabling or disabling
certificates, modifying certificate properties, and revoking certificates when necessary.

TTA offers three alternatives for the user to set the certificates of the PLCs:

1. Self-signed certificates generated by the TIA.

2. Certificates issued and signed by the TIA, where TTA acts as the CA.

3. External certificates imported by the user. For example, certificates issued by trusted
third-party CAs or certificates generated within an organization’s internal CA infrastruc-
ture.

By default, TIA uses the first option, while the second and third options require manual
configuration by the user.

In all of these scenarios, the TIA either generates or receives the public and private keys
for the PLC, making it the initial holder of these keys. Consequently, these keys must be

4

securely provisioned to the PLC over the network. One objective of this work is to gain
a thorough understanding of the key provisioning process within the SIMATIC ecosystem.
However, since the S7 protocol is proprietary and lacks official documentation, this process
presents significant challenges.

4.1 Certificate Pinning

For each PLC, the TIA assigns a specific certificate from the Certificate Manager that the
PLC is expected to use, effectively implementing a certificate pinning mechanism.

At the beginning of an S7 session, TIA checks the certificate presented by the PLC in the
TLS handshake. If the presented certificate differs from the pinned certificate, the TIA alerts
the user, who can then review the certificate and decide whether to trust it and proceed with
the connection.

This alert message commonly appears when a new PLC is added to a TIA project or
when an existing PL.C switches to a new certificate. This mechanism protects the TIA, as it
may indicate an attacker’s certificate and expose a potential security breach. In the attack
descriptions later in this paper, we demonstrate how an attacker bypasses this alert message
to avoid detection.

5 Traffic Interception and Decryption

To effectively design and implement the attacks described in this work, it is crucial to gain
visibility into the traffic exchanged between the TTA Portal and S7 PLCs. This investigation
involves packet analysis to gain a thorough understanding of the S7 protocol’s underlying
structure. S7 messages can be parsed using the S7TCommPlus dissector plugin for Wire-
shark [21], but the plugin does not work on encrypted communication.

Analysis of the S7 protocol is challenging due to several factors: the S7 messages are
encrypted with TLS, the PLC is difficult to debug, and the S7 protocol is proprietary.
Our initial approach was to use a standard TLS proxy, but this proved ineffective because
standard TLS proxy tools do not support the COTP and TPKT protocols.

To address this, we implemented a dedicated TLS sniffer for the S7 protocol. The primary
goal of this sniffer is to allow the viewing of the S7 message content. We used a TLS server
to handle the encryption and decryption of communications with the TIA, and a TLS client
to handle the communications with the PLC. For the purpose of the study, we used self-
signed certificates in our lab environment and imported them into the TIA. However, the
TLS client/server also do not support the COTP and TPKT protocols. To resolve this, we
implemented encapsulation and decapsulation of COTP and TPKT within our S7 sniffer.

In total, our sniffer is capable of receiving S7 messages that are encrypted by TLS and
encapsulated by COTP/TPKT, decrypting and displaying them to the user, and then for-
warding them to the intended destination. The sniffer provides three methods to view the
S7 content:

1. Directly within the console.

2. By exporting the TLS keys to a file, referred to as SSLKEYLOGFILE, which can be
fed into Wireshark. Wireshark decrypts the TLS messages and shows the plaintext, but
unfortunately does not parse the S7 messages.

value: 0x0000000000000000, Error code: OK, Generic error code: Ok
e reamed response unknown 1: 0x00
v Ttem Value (UDInt) = 4096
e flags: 0x00

Datatype: UDInt (0x04)

Value: 4096
Integrity Id: 5
Data unknown: 00000000

12 0.318923 192.168.9.50 s7com.
16 0.401727 192.168.0.18 s7com.
20 0.540852 s7com.
s7com.

s7com.
o .
Trailer: Protocol version=V2

st
s7com.

(a) The Transmitted S7 Messages (b) The Content of a Decrypted S7 Message

Fig.2: The Generated PCAP File In Wireshark

3. By exporting the plaintext S7 messages to a new PCAP file, which can then be opened in
Wireshark. The STCommPlus dissector plugin successfully parses the S7 messages using
this method.

Fig. 2| provides an example of a generated PCAP file and a plaintext S7 message.

The S7 sniffer is implemented in Python. It is a valuable tool for researchers/security
professionals, enabling them to analyze encrypted traffic, study the underlying protocol,
conduct security testing, and ultimately advance the understanding and defense against
cyber threats.

6 Extracting the Private Key During Initial Provisioning

Through rigorous testing and experimentation, we designed six attacks that exploit weak-
nesses within the S7 protocol stack, revealing the complex security landscape surrounding
ICS systems. The following sections detail our attacks, aiming to uncover the root causes of
the vulnerabilities they exploit and to explore the underlying technical aspects.

6.1 Attack #1: Extracting the PLC’s Secrets During the Initial Key
Provisioning

Our first attack exploits the initial key provisioning from the TTA to the PLC. As previously
described, the TTA either generates or receives keys from the user and provisions them to the
PLC. During the initial setup, the TTA provisions the private key, public key, and certificate
to the PLC in a request called hardware configuration download. The PLC configuration
encompasses the settings of the PLC, such as its IP address and 1/O modules, as well as the
above cryptographic fields.

Suppose that the attacker successfully establishes a man-in-the-middle position prior to
the initial key provisioning. During this stage, the attacker has the opportunity to capture
the TLS keys intended for the PLC. This is achieved by intercepting the keys from the config-
uration download message, thereby compromising the security of the entire communication
with the PLC.

The attack is feasible due to two primary factors: first, the PLC uses a self-signed cer-
tificate for initial key provisioning, and second, this certificate is not yet pinned to the PLC

TIA

TLS Handshake

Using certo

Hardware Configuration Download Request
pk, {sk}, cert, {passphrase}, epk, {esk}, hash, salt

TLS Handshake

Using cert

More S7 Data

(a) The S7 Configuration Download Protocol

PLC

TIA PLC

TLS Handshake

Using cert

Hardware Configuration Upload Request

pk, {sk}, cert, {passphrase}, epk, {esk}, hash, salt

More S7 Data

(b) The S7 Configuration Upload Protocol

Fig. 3: Outline of Hardware Configuration Protocols

within the TTA, preventing the TIA from authenticating the PLC. Note that some S7 PLCs
are initialized with pre-installed vendor certificates.

The outcome of this attack is unauthorized access to the TLS keys, which enables the
attacker to decrypt, manipulate, or replay the communication between the PLC and con-
nected devices. This jeopardizes the integrity and confidentiality of the control processes,
potentially leading to unauthorized control of industrial operations, data breaches, or even
sabotage of critical infrastructure. The compromise of TLS keys essentially nullifies the se-
curity protections that TLS is meant to provide, exposing the system to various attacks.

6.1.1 Reverse Engineering the Key Provisioning The TLS keys of the PLC are
provisioned from the TTA to the PLC using the download hardware configuration protocol.
These keys can also be uploaded back to the TTA (in the opposite direction) by the upload
hardware configuration protocol (Attack #1 focuses solely on the download protocol).

The configuration download and upload protocols are outlined in Fig. [3] Square brackets
denote an optional field, and curly brackets denote an encrypted field. The left figure shows
how the TIA downloads a new configuration to the PLC and replaces the TLS private key of
the PLC (during key initialization/rotation). The right figure shows how the TTA requests
the existing configuration from the PLC.

The configuration message includes the PLC’s certificate, along with its public and private
keys (cert, pk, and sk, respectively). The private key is delivered in an encrypted form [10]
and must be decrypted before usage. The message contains several additional fields, some
of which are encrypted, that are used to decrypt the private key (passphrase, epk, esk,
salt). We reverse-engineered the decryption used by TIA and implemented it in our attack
tool. Appendix [A] provides details on the private key decryption process and the hardware
configuration message fields.

The TIA allows provisioning multiple keypairs to the PLC. All keys in the certificate
manager are concatenated and sent to the PLC (the figure shows only a single key), with the
TIA specifying which key the PLC should use. When a CA is used (either the TIA itself or
an external CA), the CA (root) certificates are transferred to the PLC along with the PLC’s
keypair. Multiple CA certificates are concatenated before transmission.

We identified two relevant .NET DLLs and used dnSpy [5] to reverse engineer them.
The DLLs are Siemens.Simatic.Hwcn.Basics.Csilnterop and Siemens.Simatic.Hwcn.

7

BusinessLogic. They allowed us to gain insights into the internal workings and structure
of the upload configuration message.

6.1.2 Fetching the PLC Hardware Configuration Password This attack comp-
somises another security mechanism: the configuration password, which is designed to protect
the PLC configuration, and the private key in particular. When a user creates a new project
in the TTA, they have the option to set up a configuration password for the PLC. If specified,
this password is used in the encryption process of the PLC’s private key, safeguarding the
key in transit and at rest. The password must adhere to specific complexity requirements,
including a minimum of eight characters with at least one lowercase letter, one uppercase
letter, and one number. If the user does not set a password, a null string is automatically
used as the default password, making the key easily extractable.

The configuration password is transmitted to the PL.C during the initial hardware config-
uration download, similar to the private key provisioning. However, this transmission occurs
in plaintext over a TLS session. Thus, even if a configuration password is set, a man-in-the-
middle attacker can intercept it during the provisioning protocol and use it to decrypt the
private key.

7 Retrieving the Private Key of a Production PLC

In this section, we describe the PLC Key Retrieval attack, which is designed to steal private
keys from S7 PLCs. This attack introduces an alternative method to fetch the keys, even
if the attacker misses the initial key provisioning (i.e., completely independent of the first
attack). The description starts with rogue client (Attack #2) and then moves to the PLC
Key Retrieval attack (Attack #3).

7.1 Attack #2: Rogue Client

The rogue client exploits vulnerabilities in the authentication process to gain unauthorized
access and potentially manipulate industrial processes. This attack vector leverages the ab-
sence of client certificates, which are used to verify the authenticity of clients in TLS com-
munications.

The rogue client initiates a connection with the PLC, pretending to be a legitimate sta-
tion. During the TLS handshake process, the PLC does not request the client to present a
certificate for authentication. Without client certificate verification, the PLC cannot distin-
guish between legitimate clients and malicious actors, allowing the attacker to complete the
handshake successfully.

Once a secure channel is established, the attacker can send malicious requests to the
PLC, impersonating a legitimate client. These requests can include unauthorized actions,
requests for sensitive data, or any other operation supported by the PLC. As the attacker
controls the PLC, the impact of this attack can be severe, including production shutdowns,
environmental hazards, safety risks, or even injury to personnel.

on wire (32848 bits), 4106 bytes captured (32848 bits) €284 90 €0 30 db 26 ae 36 9b c1 7 d4 7b 01 8F 08& 6 -{
iemensI_61:e1:23 (e@:dc:a@:61:e1:23), Dst: IntelCor 39:b8:e6 (00:1b:21:39:b8:e6) 2d 2d 2d 2d 2d 42 45 47 49 4e 20 45 4e 43 52 59 -----| BEG IN ENCRY
2, Src: 192.168.0.18, Dst: 192.168.0.50 50 54 45 44 20 50 52 49 56 41 54 45 20 4b 45 59 PTED PRI VATE KEY
trol Protocol, Src Port: 102, Dst Port: 18650, Seq: 1, Ack: 2, Len: 4052 2d 2d 2d 2d 2d 0a 4d 49 48 73 4d 46 63 47 43 53 ----- MI HSMFCGCS
Length: 4052 71 47 53 49 62 33 44 51 45 46 44 54 42 4b 4d 43 qGSIb3DQ EFDTBKMC
: L . 6b 47 43 53 71 47 53 49 62 33 44 51 45 46 44 44 kGCSGSI b3DQEFDD
TS0 8073/X.224 COTP Connection-Oriented Transport Protocol 41 65 42 41 6a 2b 32 44 66 %0 4c 74 42 6 33 41 AcBAJs3D fPLEBIIA
S7 Communica ElonfBlus 49 43 43 41 41 77 @a 44 41 59 49 4b 6f 5a 49 68 ICCAAW-D AYIKoZIh

Fig.4: The Key Provisioning Protocol in Wireshark

7.1.1 Attack Implementation The rogue client attack is implemented as an S7 client.
It sends to the PLC a sequence of predefined S7 messages of the requested action and parses
the PLC’s responses.

For this purpose, we recorded in advance S7 sessions in our lab, between a TIA station
and an S7 PLC. We used our S7 sniffer to get the plaintext S7 messages (i.e., the TLS data
after decryption). These messages are then sent one by one to the PLC via a TLS client,
which completes the TLS handshake and encapsulates the messages within the TLS protocol.

A key distinction between the latest, TLS-secured protocol and its predecessor, which
relied on Siemens’ proprietary cryptographic protocol, is the openness of the cryptographic
framework. Unlike the proprietary protocol, TLS benefits from publicly available source code,
allowing the community to review it and identify vulnerabilities. However, this transparency
is a double-edged sword; it also grants potential attackers access to the same code, potentially
facilitating the development of attack tools.

7.2 Attack #3: PLC Private Key Retrieval Attack

The PLC Key Retrieval attack is capable of extracting private keys directly from the PLC.
This attack exploits a new and severe vulnerability in the S7 protocol in an S7 feature used
for remote PLC configuration. As seen before, the TTA can ask the PLC for its hardware
configuration, a request called configuration upload.

We reverse-engineered the S7 protocol and analyzed the S7 messages exchanged during
a configuration upload from the PLC to the TIA. Surprisingly, we found that in the new
version of the S7 protocol, the configuration contains the public key, certificate, and crucially,
the private key. Fig. [4] shows the keys in transit as seen with Wireshark. Hence, when the
TIA asks the PLC for its hardware configuration, the PLC sends its private key as part of
the configuration in a TLS-protected message.

The private key is encrypted [L0], as shown in the figure, and protected by an ephemeral
key (as in Attack #1). However, we exposed the private key, and cracked the encryption, as
described in more details in Appendix [A]

This vulnerability, combined with the lack of client authentication, enables an attacker
to impersonate the TIA and retrieve the PLC’s private key. By leveraging the capability to
issue commands to the PLC, the attacker sends a request to the PLC for its hardware con-
figuration. Since the PLC does not verify the client’s identity, as seen in the previous attack,
the PLC treats the communication as if it were with a legitimate TTA station. Therefore,
in response, the PLC sends its hardware configuration, which contains the private key. The
attacker bypasses the TLS protection and fetches the private key of the PLC, from the PLC
itself. All you have to do is ask.

If a configuration password is set to protect the TLS private key, our attack tool requires
this password to decrypt the private key. This limitation is addressed in Section [6] that shows
how an attacker can steal the password.

Exploiting this vulnerability, an attacker could gain unauthorized access to the PLC’s
TLS keys, compromising the integrity, confidentiality, and availability of critical processes.

8 A Stealth Man-in-the-Middle Attack

Having unveiled the vulnerabilities and methods to obtain the PLC’s private keys, this
section delves into the details of our stealth man-in-the-middle attack. This section details
three attacks: malicious control program injection (Attack #4), rogue PLC (Attack #5),
and stealth man-in-the-middle attack (Attack #6).

8.1 Attack #4: Malicious Control Program Injection

This control logic program is a set of instructions written to control and automate machinery
or processes. It dictates how the PLC manages various tasks and operations based on input
from the field (sensor data). It is typically developed using dedicated programming languages
such as ladder logic (LD), function block diagram (FBD), and structured text (ST). The
program is downloaded to the PLC’s memory and runs continuously to monitor and control
the connected equipment according to the programmed logic. It is critical for ensuring the
safe and efficient operation of automated systems.

Siemens encrypts the control programs transmitted from the TIA to the PLC over the
network. Control programs are encrypted by AES128-CTR with counter incrementation of
LFSR [20], using Siemens’ own implementation (rather than a standard library).

Through reverse engineering, we discovered that TIA derives the AES key from a random
seed and then encrypts this seed under a common hard-coded key, which is shared between
PLC models. This is a highly simplified description of the process; additional technical details
have been omitted for clarity. In program download, TIA sends the encrypted key along with
the encrypted program to the PLC over the TLS session. We analyzed a DLL of TTA called
Siemens.Simatic.Lang.MC7Codegenerator using IDA Pro, WinDBG, and dnSpy.

Siemens’ encryption scheme used in Siemens PLCs is vulnerable to a replay attack. Hence,
a program that was originally compiled and encrypted for one PLC is accepted by a second
PLC. This vulnerability, the use of a common hard-coded key, allows an attacker to reuse a
previously compiled and encrypted program. This enables an attacker to create in advance a
malicious control program, encrypt it as if it were intended for a PLC in the attacker’s lab,
and then replay it to any other victim PLC. The attacker injects unauthorized code into the
PLC, potentially compromising the entire industrial control process.

8.2 Attack #5: Rogue PLC

This attack uses the PLC’s TLS keys, achieved by either Attack #1 or Attack #3. The
attacker sets up a rogue PLC to intercept communication destined for the legitimate PLC.
The rogue PLC mimics the legitimate PLC, establishing a seemingly-secure connection with
clients by presenting valid certificates and keys during the TLS handshake.

10

Recall that TIA uses certificate pinning to check whether a PLC certificate is authentic
or not. If the presented certificate does not match the pinned certificate, TTA alerts the
user. The rogue PLC bypasses the certificate pinning and the alert message, since it uses the
correct certificate of the PLC and the corresponding private key in the TLS handshake.

As a result, the rogue PLC can successfully forge responses for the client, potentially
causing SCADA systems to display false values. Furthermore, a rogue PLC may access
sensitive data transmitted to it, including intellectual property (production data, proprietary
algorithms, or industrial secrets), credentials, and cryptographic keys.

8.3 Attack #6: Stealth Man-in-the-Middle Attack

Combining all the attacks we have seen so far, we design a stealth man-in-the-middle attack
that impersonates both the client and the server. The man-in-the-middle attack intercepts
and manipulates protocol messages between the TIA and the PLC.

The attacker hijacks messages sent from the TIA to the PLC and acts as a relay to
deliver them to the PLC. Likewise, messages sent from the PLC to the TIA are intercepted
and sent to the TIA by the attacker. As a result, the attacker can read and manipulate the
intercepted S7 messages. This manipulation may involve modifying commands, altering data
values, injecting malicious code or commands, or even fabricating false responses to deceive
both ends of the communication.

The S7 communication is protected with TLS, i.e., the S7 messages are encrypted and
authenticated. Therefore, the attacker acts as a TLS server (as explained in Attack #05)
to handle the communication with the TIA, and a TLS client (as explained in Attack #2)
to handle the communication with the PLC. To work successfully, the TLS server uses the
private key, public key, and certificate, which can be acquired by Attack #1 or Attack #3.

The man-in-the-middle attack operates as follows:

Steal the PLC’s keys and certificate (Attack #1 or Attack #3).
Wait for a connection initiation from the TTA.
Complete the TLS handshake with the TIA using the stolen keys and certificate.
Initiate a connection with the PLC and complete the TLS handshake (client certificates
are not required).
Intercept a TLS-encrypted message from the TIA containing an S7 request.
Decapsulate TPKT and COTP headers.
7. Authenticate and decrypt the message (by a TLS server, Attack #5), resulting in an S7
request in plaintext.
8. Read and/or modify the content of the S7 message according to the attacker’s logic and
intentions.
9. Re-encrypt and re-authenticate the message (by a TLS client, Attack #2), ensuring that
the attack remains undetected.
10. Encapsulate the TLS message with COTP and TPKT.
11. Send the message to the PLC, and wait for the PLC’s response.
12. Repeat the process for the PLC’s response.

=N =

SR

By leveraging the man-in-the-middle attack, the attacker can modify any bit inside the
TLS payload, and the results can be disastrous. The attacker can revive the ferocious OT

11

characteristics of Stuxnet against the newest version of the S7 protocol. It can modify the
control program of the PLC, leading the PLC to execute a malicious program and operate
the industrial equipment in an unintended and potentially harmful way (Attack #4). At the
same time, the attacker manipulates the HMI values sent to the TIA or SCADA stations,
leading to legitimatly-looking but wrong displays for the operators. This technique can be
used to damage the industrial system and camouflage malicious activity.

The attack is resilient to legitimate key replacements performed by the TTA; the attacker
can detect and adapt to new keys, ensuring continued control and stealth.

9 Mitigations

To counter the vulnerabilities highlighted in this study, several essential measures can be
implemented.

1. Security of Private Keys: Transmissions of private keys expose them to potential inter-
ception and unauthorized access. The PLC should not send its TLS private key over the
network.

2. Full Mutual Authentication: ICS systems must implement full mutual authentication.
This involves the PLC enforcing client authentication, e.g., by validating the client cer-
tificate. This ensures that only trusted entities establish a connection with the PLC and
prevents unauthorized access.

3. Avoiding Self-Signed Certificates for Key Initialization: PLCs should have pre-installed
certificates issued by a trusted CA (e.g., the vendor) for the initial key provisioning,
rather than relying on self-signed certificates.

4. Use Cryptographic Key Exchange Protocols: Instead of sending encryption keys or pass-
words with ciphertext (a practice considered insecure), key exchange protocols should be
employed to securely create shared secrets between parties.

While the vendors play a critical role in enhancing the security, ICS customers can also
take immediate actions to prevent the presented attacks:

1. Set the PLC configuration password.

2. Provision keys and passwords in a secure environment, i.e., utilizing dedicated and hard-
ened systems for configuring PLCs, separated from the regular network.

3. Set CPU access protection password [16], which restricts access to certain privileged
operations.

Despite these measures, several challenges make this process impractical in complex ICS
deployments with a large number of PLCS, TTA stations, and users:

1. Configuring all PLCs with keys, certificates, and passwords in a secure environment is
resource-intensive and may not scale effectively in large-scale ICS deployments.

2. The customers are required to establish three distinct passwords on their end: a PLC
configuration password, a TTA user password (a user password defined in the project) if
the TIA is the CA, and a CPU access protection password.

3. The selected passwords must be complex and unique for each PLC /user, making password
management highly difficult.

12

4. Securing the control program with know-how protection [16] adds another password to
manage.

Given these challenges, it is conceivable that the vulnerabilities identified in this study could
be exploited in existing ICS systems.

To best address the presented attacks, we recommend a redesign of the security archi-
tecture. The K7 protocol [3] offers a suitable solution, where a dedicated server stores and
manages device credentials and provides authentication and authorization mechanisms.

10 Discussion

Prior studies investigated the security of the Siemens S7 protocol. The Rogue7 attack [2]
showed that remote attackers can issue malicious commands to PLCs, and that all PLCs
(in the studied versions) shared a hard-coded private key. Despite numerous attempts by
researchers worldwide, extracting this key proved challenging until a remote code execu-
tion exploit enabled its extraction [19]. These weaknesses drove Siemens to secure S7 with
TLS 1.3 [17/18] and replace the shared hard-coded key with unique private keys for each
PLC.

However, our findings suggest that the introduction of TLS is not a cure-all. Poor key
management design can introduce significant security vulnerabilities. The aim of the present
research is to examine the resiliency of the SIMATIC ecosystem to network-based attacks.

We designed six attacks targeting the most recent version of Siemens S7 PLCs and
discovered a critical vulnerability: the PLC surprisingly sends its private key in response
to a configuration upload request, without verifying the requestor’s identity. This design
flaw enables an attacker to simply ask for the key and retrieve it. This is a unique ability
that rogue client attacks [2/8] have not presented so far. These attacks were limited to a
client impersonation, and did not find the private key nor show PLC impersonation/man-in-
the-middle. It is unexpected that such an attack is possible in the most recent version of the
system, especially for the most critical systems. These vulnerabilities may lead to operational
downtime, damage to equipment and raw materials, and in some cases, pose risks to public
safety and national security.

This is the first study to demonstrate the extraction of TLS keys from the S7 PLCs and
to examine the new S7 public key infrastructure (PKI). Contrary to expectations, upgrading
to a new version may actually downgrade the overall security level. Our research shows
that flawed deployment of TLS 1.3 exposes Siemens’ ICS to attacks that were not feasible
in previous versions that do not use TLS (see Table [l| for a comparison of the discussed
protocols).

On a positive note, some limitations are worth noting. Customers can prevent these
attacks by setting configuration passwords and provisioning keys in secure environments.
However, in large-scale deployments with a vast array of PLCs, this practice is challenging
to accomplish. A more robust and scalable solution would involve redesigning the security
architecture, incorporating mechanisms such as those proposed in [3|, which align with the
unique needs of ICS systems.

13

Attack S7 without TLS S7 over TLS
1 Extracting PLC secrets during initial download X v
2 Rogue client v 4
3 PLC private key retrieval X v
4 Malicious control program injection v v
5 Rogue PLC X v
6 Stealth MITM attack X v
Table 1: S7 Versions Comparison
Acknowledgments

We would like to acknowledge Michael Blum and Evyatar Ziv for their contributions to this
work and their collaborative efforts.

References

1. Dillon Beresford. Exploiting siemens SIMATIC s7 PLCs. Black Hat USA, 16(2):723-733, 2011.

2. Eli Biham, Sara Bitan, Aviad Carmel, Alon Dankner, Uriel Malin, and Avishai Wool. Rogue7: Rogue engineering-
station attacks on s7 simatic plcs. Black Hat USA, 2019, 2019.

3. Eli Biham, Sara Bitan, and Alon Dankner. K7: A protected protocol for industrial control systems that fits large
organizations. In Sizth Annual Industrial Control System Security (ICSS) Workshop, pages 1-12, 2020.

4. Statista Research Department. Global PLC market share as of 2017, by manufacturer. https://www.statista.
com/statistics/897201/global-plc-market-share-by-manufacturer/, September 2023.

5. dnSpy. dnspy. https://github.com/dnSpy/dnSpy/releases, 2020.

6. Nicolas Falliere, Liam O Murchu, and Eric Chien. W32. stuxnet dossier. White paper, Symantec Corp., Security
Response, 5(6):29, 2011.

7. International Organization for Standardization. ISO 8073: Information processing systems — open systems inter-
connection — connection oriented transport protocol specification. Standard, August 1986.

8. Gao Jian. Fuzzing and breaking security functions of SIMATIC PLCs. Black Hat Europe, 2022, 2022.

9. Burt Kaliski. PKCS #5: Password-based cryptography specification, version 2.0. RFC 2898, September 2000.

10. Burt Kaliski. Public-Key Cryptography Standards (PKCS) #8: Private-Key Information Syntax Specification
Version 1.2. RFC 5208, May 2008.

11. Ralph Langner. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security € Privacy, 9(3):49-51, 2011.

12. Cheng Lei, Li Donghong, and Ma Liang. The spear to break the security wall of s7commplus. Blackhat USA,
2017.

13. Alex McKenzie. ISO transport protocol specification ISO DP 8073. RFC 905, 1984.

14. Eric Rescorla. The transport layer security (TLS) protocol version 1.3. Technical report, 2018.

15. Marshall T Rose and Dwight E Cass. ISO transport service on top of the TCP, version: 3. RFC 1006, 1987.

16. Siemens. Security with SIMATIC controller. https://support.industry.siemens.com/cs/attachments/
90885010/77431846_Security_SIMATIC_DOKU_V20_en.pdf, March 2016.

17. Siemens. Using certificates with TIA portal. https://support.industry.siemens.com/cs/document/
109769068/using-certificates-with-tia-portal, September 2019.

18. Siemens. Configuration of TLS-based PG/HMI communication and the protection of confidential PLC configu-
ration data. https://support.industry.siemens.com/cs/ww/en/view/109798583, November 2021.

19. Team&2. The race to native code execution in PLCs: Using RCE to wuncover siemens
SIMATIC s7-1200/1500 hardcoded cryptographic keys. https://claroty.com/team82/research/
the-race-to-native-code-execution-in-plcs-using-rce-to-uncover-siemens-simatic-s7-1200-1500-hardcoded-cryptog
October 2022.

20. Roy Ward and Tim Molteno. Table of linear feedback shift registers. Datasheet, Department of Physics, University
of Otago, 2007.

21. Thomas Wiens. S7comm wireshark dissector plugin, 2014.

22. Wireshark. https://www.wireshark.org/.

14

https://www.statista.com/statistics/897201/global-plc-market-share-by-manufacturer/
https://www.statista.com/statistics/897201/global-plc-market-share-by-manufacturer/
https://github.com/dnSpy/dnSpy/releases
https://support.industry.siemens.com/cs/attachments/90885010/77431846_Security_SIMATIC_DOKU_V20_en.pdf
https://support.industry.siemens.com/cs/attachments/90885010/77431846_Security_SIMATIC_DOKU_V20_en.pdf
https://support.industry.siemens.com/cs/document/109769068/using-certificates-with-tia-portal
https://support.industry.siemens.com/cs/document/109769068/using-certificates-with-tia-portal
https://support.industry.siemens.com/cs/ww/en/view/109798583
https://claroty.com/team82/research/the-race-to-native-code-execution-in-plcs-using-rce-to-uncover-siemens-simatic-s7-1200-1500-hardcoded-cryptographic-keys
https://claroty.com/team82/research/the-race-to-native-code-execution-in-plcs-using-rce-to-uncover-siemens-simatic-s7-1200-1500-hardcoded-cryptographic-keys
https://www.wireshark.org/

~ 57 Communication Plus
Header: Protocol version=V2
*~ Dota: Request CreateObject
Opcode: Request (@x31)
Reserved: @xPpgd
Function: CreateDbject (@wddca)
Reserved: Bxdod
Sequence number: 56
Session Id: @x7@008cac
Transport flags: @x36, Bitl-SometimesSet?, Bit2-AlwaysSet?, Bitd-AlwaysSet?, BitS-AlwaysSet?
Aequest Set
Ttem Value: ID=NativeObjects.thedSAoct Rid (UDInt) = @
Unknown value 1: Sx00888008
Unknown value 2: 1%
¥ Object: ClsId=PkiContainer.Class_Rid, RelId=NativeObjects.thePkiContainer Rid
Element Tag 1d: Start of Dhjr‘rt (@xal)
Relation Id: NativeObjects.thePkiContainer_Rid
Class Id: PkiContairer.Class_Rid
Class Flags: OxB0000038, NativeFixed, Persistent

€

Attribute Id: None
Attribute
~ Attribute
Element Tag-Id: Attribute (@xa3)
Item Value: ID=PkiContainer.PublicKey Rid (Blob) = @x2d 241 4543784b d2d2d 3-
~ Attribute
Element Tag-Td: Attribute [Bxa3)
Item Value: ID=PkiContainer.Privatekey_Rid (Elob) = @x@lo00le00927100020217bcBEdb24cb92bsef2end2sefaf SodbdbibaTe0bce22bcfobt..
¥ Object: ClsId=PkiStore.Class_Rid, Relld=Unknown (2382811964)
Element Tag-Id: Start of Object (@xal)

Relation Id: Unknown (2362811984)
Class Id: Pkistore.Class_Rid
Class Flags: BwBG@se2a, Persistent
Attribute Id: None
Attribute
~ Object: Clsld=Pkiltem.Class_Rid, Relld=Unknown (2382888861}
Element Tag-Id: Start of Object (Bxal)
Relation Id: Unknown (Z382888864)
Class Id: Pkiltem.Class Mid
Class Flags: @x@o8eaaze, Persistent
Attribute Id: Mone
Attribute
w artribute
Element Tag-Id: Attribute (8xa3)
Item Value: ID=Pkiltes.PublicData Rid (Blcb) - @x@189036e2d2d2d2d2d42454749482043455 4154452d2d2d2d.

Attribute
v Attribute
Element Tag-Id: Attribute (8wa3)
Item Value: ID<Pkiltem.PrivateData_Rid (Blob) = @x0100010@a7cdbee?I@f521d39d0d6cdEd9Beaffb5198ead21ad2f35FdEbodSE63B6ca0b2..

Fig. 5: The Hardware Configuration Message, as Seen in Wireshark

A Details of the Private Key Decryption

In the following section, we present a detailed description of the decryption process to obtain
the PLC private key. We also explain the content of the hardware configuration message and
the fields that are used in the decryption.

The configuration message is generated by the TIA during the hardware configuration
download and is then sent to the PLC. Upon hardware configuration upload, the PLC sends
the configuration message to the client. The message comprises multiple fields, facilitating
the decryption process for the client to acquire the private key:

— pk, sk the encrypted private key of the PLC and its corresponding public key.

— cert the public key certificate of the PLC.

— passphrase an encrypted random string.

— epk, esk an ephemeral public-private RSA keypair. esk is also in an encrypted form.

— hash a SHA-1 digest calculated on the protocol version (0x0002), the public key, and the
certificate fingerprint.

— salt a random salt.

— pwd the configuration password. If the configuration password is disabled, its default
value is an empty string . The password is included in the configuration message when
downloading the configuration to the PLC, but is not present when uploading the con-
figuration from the PLC to the client.

See Fig. o] for a screenshot of the message from Wireshark.
Upon receiving the configuration message, the client follows these steps to decrypt sk:

15

pwd
(Empty by Default)
A 4
SHA-256 salt
A 4 Y
pwdh > PBKDF2 {esk}

Y Y

pwdk > AE?)_;:E;SCM {passphrase}
Y Y
RSA
) Ny
esk > Decrypt J {sk}
Y Y

PKCS#8
Decrypt

Y

7
passphrase

Fig.6: The Decryption Process of the PLC Private Key

1. Deriving an AES-128 key from salt and pwd. The key derivation is done using PBKDF2 [0]
with HMAC-SHA-256 as follows:

PBKDF2(HMAC-SHA-256, SHA-256(pwd), salt, 10,000, 0x2c).

2. Decrypting esk using the AES-128 key in GCM mode.
3. Decrypting passphrase using the decrypted esk.
4. Using the decrypted passphrase to decrypt sk under PKCS#8 [10].

Fig. [0] illustrates the client’s decryption process. In a download hardware configuration, the
TTA generates the above fields and encrypts the keys in a symmetric manner.

B Control Program Decryption

As described before, the encrypted seed and the encrypted program are sent to the PLC
from the TTA, and the encrypted key is secured by a hard-coded common key (that is shared
between PLC models). Since the encrypted seed is sent along with the encrypted program,
a man-in-the-middle attacker that previously obtained the common key (for example, as
demonstrated in [I9]) can extract the AES key and decrypt the PLC program, despite the
program encryption.

With the decrypted control program in hand, the attacker gains insight into the logic
and instructions intended for the PLC, leading to unauthorized access and data leakage.

16

Depending on the attacker’s intentions, they may read the encrypted control program, or
even alter the program to introduce malicious commands. Hence, the attacker compromises
the confidentiality and integrity of the program.

We emphasize that this attack has been found to be effective on older versions of the
S7 protocol, such as TTA Portal 12, where the protocol lacks TLS encryption. As a result,
encrypted programs are transmitted with their keys in the plain. Hence, this attack is even
more dangerous against previous versions of the S7 protocol, as attackers in the network can
decrypt the control program.

17

	Nope, S7ill not Secure: Stealing Private Keys From S7 PLCs
	Introduction
	Our Contributions
	Structure of this Paper

	Related Work
	Background
	The S7CommPlus Protocol

	The New S7 Public Key Infrastructure
	Certificate Pinning

	Traffic Interception and Decryption
	Extracting the Private Key During Initial Provisioning
	Attack #1: Extracting the PLC’s Secrets During the Initial Key Provisioning

	Retrieving the Private Key of a Production PLC
	Attack #2: Rogue Client
	Attack #3: PLC Private Key Retrieval Attack

	A Stealth Man-in-the-Middle Attack
	Attack #4: Malicious Control Program Injection
	Attack #5: Rogue PLC
	Attack #6: Stealth Man-in-the-Middle Attack

	Mitigations
	Discussion
	Details of the Private Key Decryption
	Control Program Decryption

