
Team82

From Exploits to Forensic
Evidence: Unraveling the
Unitronics Attack
Noam Moshe
Claroty Research, Claroty Team82

$whoami

Noam Moshe
Vulnerability researcher -
mostly breaking IoT clouds.
Master of Pwn @
Pwn2Own ICS 2023.

* Special thanks to Claroty Team82 researchers:
 Sharon Brizinov, Vera Mens, Tomer Goldschmidt

So what’s the sitch?

So what’s the sitch?

• Nov ’23: APT targets Unitronics PLCs
• CyberAv3ngers

• Used in water facilities worldwide

So what’s the sitch?

• Nov ’23: APT targets Unitronics PLCs
• CyberAv3ngers

• Used in water facilities worldwide

• Why??

Fear and Panic

Modern Defacing ICS Style

• Defacing HMI screens
• How?

• Downloading new project
• Override current logic

• Was the defacement the only thing
the attackers did?

Not The First Time

• Feb ‘22 - Same attack on Israeli devices:
• 1.5~ years prior

• Same PLC lineup
• Attackers were not identified

• Probably same APT:
shared assets

2022 Attack
on Israeli
Parcel
Services

Unitronics Vision 101

• PLC + HMI
• Vendor is an Israeli PLC makers
• Old PLCS - Samba and Vision Series
• PCOM protocol (serial or TCP/20256)
• Almost no security mechanisms

• No encryption
• “Weak” authentication

10

“Weak” Authentication?

• From CISA advisory, they recommend:
• Change default password
• Add PCOM password

11

However…

More Like No Authentication!

• Prior to v9.9.00 - no PCOM authentication
• To attack you need:

• EWS: Visilogic
• IP

4/25/23

There are no internet-facing PLCs right?
 Right???

Hundreds of Exposed Devices

• Using shodan.io:
• 900 devices
• PCOM exported

• Unpatched devices have
no authentication!

http://shodan.io

Real Video of the APT Attack!

Attackers

Internet-facing
PLCs

We Were Noted of This Attack

• We began investigating
• There is no forensic tools for such device!

• Develop new forensic tools
• Extract evidence from affected PLCs

18

We Were Noted of This Attack

• We began investigating
• There is no forensic tools for such device!

• Develop new forensic tools
• Extract evidence from attacked PLCs

• Wait, evidence from the PLC???
• This is an embedded system!
• This was a new-ish approach

19

The Old Approach of Forensic in ICS

• In most cases - evidence is collected from Windows machines
• Triton, Stuxnet, …

•In this case - attack did not involve Windows machines
• Can we extract forensic data from the PLC?

• No evidence was collected from PLCs
• No evidence stored on PLC?
• Not easy to collect it
• Microsoft released a ICS evidence collection tool - ICSpector

•

20

https://github.com/microsoft/ics-forensics-tools

So We Bought a Device…

Uh-oh, our device is
missing an Ethernet card

Let’s Build One!

• Vision pin layout (RJ11):

Pin Layout

Pin Layout

• Vision pin layout (RJ11): • DB9 pin layout:

Pin Layout

• DB9 pin layout:• Vision pin layout (RJ11):

DB9

RJ11

Connecting EWS to PLC Using Serial

• We can connect to the PLC
• Can debug/RE the binaries

• Start understanding the protocol

Connecting EWS to PLC Using Serial

• But…
• We cannot MiTM/sniff the packets

• Engineering Work Station opens serial port in
exclusive mode

• Cannot capture data

Let’s figure out a plan

Current Situation

Custom Cable Serial

Exclusive
Open

Vision
Device Computer

EWS

Current Situation

PCOMPCOM PCOM PCOM

Vision
Device Computer

EWS

What We Want - MiTM & Sniffing

Vision
Device Computer

EWS

Attacker

Tool #1 - PCOM2TCP

• Encapsulates serial COM in
PCOM\TCP layer

• We now can:
• Use wireshark
• MiTM

PCOM2TCP

Vision
Device Computer

EWS

PCOM2TCP

PCOM2TCP - MiTM & Sniffing

PCOM Protocol 101

• Communication layer: Serial vs. TCP
• TCP/20256

• Two mods: Binary vs. ASCII
• Binary: 0x01 (read), 0x02 (auth)
• ASCII: ID (get id), UG (get unit-id)

• Unencrypted
• Basic Wireshark dissector + documentation

• prior research: A Comprehensive Security Analysis of a SCADA Protocol: from OSINT to
Mitigation, Luis Rosa et al., 2019. Thanks! :)

37

PCOM Binary Format

MAGIC
(/_OPLC)

6 Bytes

ID
(0x00)

1 Byte 5 Bytes 1 Byte

Command examples:

1 Byte

Reserved
(0x00)

2 Bytes

Command Details
(0x000000006A0

0)
6 Bytes

Opcode
(0x0C)

Reserved
(0xFE01010000)

Header
CRC

(0x4DFC)

Length
(0x7E00)

2 Bytes

Data
…

Footer
CRC

(0x4DFC)

2 Bytes

MAGIC
(\)

Desc Request Response

Read
Operand

0x4D 0xCD

Get PLC
Name

0x0C 0x8C

opcode is a request or response?
Check MSB:
0b00000000 => request
0b10000000 => response

MAGIC
(/)

PCOM ASCII Format

1\2 Bytes
req \
resp

2 Bytes Changes 2 Bytes

Data
(…)

CRC
(0x4346)

Command
Code
(ID)

Suffix
(\r)

UID
(0x3030)

1 Byte

Command examples:

Code Description

ID Send Identification
Command

UG Get Unit ID Command

Different magic for requests and responses:
/ => request
/a => response

Tool #2 - PCOMClient

• Supports:
• PCOM\TCP and serial
• PCOM Binary and PCOM

ASCII
• Interface for adding opcodes
• Many built-in opcodes and

operations

Tool #2 - PCOMClient

Releasing today as
open-source tool!

Arbitrary Memory Read/Write

• Discovering function codes:
• 0x01 - memory READ
• 0x41 - memory WRITE

• Let's analyze!

Read/Write Memory Structure

MAGIC
(/_OPLC)

6 Bytes

ID
(0x00)

1 Byte 5 Bytes 1 Byte 1 Byte

Reserved
(0xXX)

2 Bytes

Command Details
(0xXXXXXXXXXXXX)

6 Bytes

Opcode
(0x01)

Reserved
(0xFE01000000)

Header
CRC

(0x4DFC)

Length
(0x0000)

2 Bytes

Footer
CRC

(0x4DFC)

2 Bytes

MAGIC
(\)

Opcode: 0x01

Read/Write Memory Structure

MAGIC
(/_OPLC)

6 Bytes

ID
(0x00)

1 Byte 5 Bytes 1 Byte 1 Byte

Reserved
(0xXX)

2 Bytes

Command Details
(0xXXXXXXXXXXXX)

6 Bytes

Opcode
(0x01)

Opcode: 0x01
Reserved: 0xFE01000000
Reserved 2: 0x01 \ 0x04 (changes memory
region/chip)

Reserved
(0xFE01000000)

Header
CRC

(0x4DFC)

Length
(0x0000)

2 Bytes

Footer
CRC

(0x4DFC)

2 Bytes

MAGIC
(\)

Read/Write Memory Structure

MAGIC
(/_OPLC)

6 Bytes

ID
(0x00)

1 Byte 5 Bytes 1 Byte 1 Byte

Reserved
(0xXX)

2 Bytes

Command Details
(0xXXXXXXXXXXXX)

6 Bytes

Opcode
(0x01)

Reserved
(0xFE01000000)

Header
CRC

(0x4DFC)

Length
(0x0000)

2 Bytes

Footer
CRC

(0x4DFC)

2 Bytes

MAGIC
(\)

Opcode: 0x01
Reserved: 0xFE01000000
Reserved 2: 0x01 \ 0x04
Command Details:

• High 4 Bytes: Address (LE)
• Low 2 Bytes: Length (LE)

PCOMClient - Capabilities

Transport layer
• Serial + TCP

PCOM Flavors
• Binary + ASCII

Memory Read/Write

We Have Arbitrary Read: Now what?

• Dump entire memory region (RAM)
• 0x00000000 - 0x00FFFFFF

• Look for interesting sections
• Strings
• Opcodes
• Structures
• Resources

47

Bad News: Some regions are protected

• Can’t WRITE to some regions
• write-protected (unwriteable memory)

• Can’t READ from some regions
• Return zeroed out memory + error

• What’s in these memory regions???

48

Password Mechanism: Upload Password

• Program-related memory regions
are protected

• Requires Upload Password to read
them

• EWS authenticates using specific
opcode

Authenticate Memory Structure

MAGIC
(/_OPLC)

6 Bytes

ID
(0x00)

1 Byte 5 Bytes 1 Byte 1 Byte

Reserved
(0x00)

2 Bytes

Command Details
(0x000000000000)

6 Bytes

Opcode
(0x02)

Reserved
(0xFE01000000)

Header
CRC

(0x4DFC)

Length
(0x0800)

2 Bytes

Footer
CRC

(0x4DFC)

2 Bytes

MAGIC
(\)

Password
(0xA2A2..A2)

8 Bytes

Opcode: 0x02

Opcode: 0x02
Data Length: 0x08 (Const - password length)

Authenticate Memory Structure

MAGIC
(/_OPLC)

6 Bytes

ID
(0x00)

1 Byte 5 Bytes 1 Byte 1 Byte

Reserved
(0x00)

2 Bytes

Command Details
(0x000000000000)

6 Bytes

Opcode
(0x02)

Reserved
(0xFE01000000)

Header
CRC

(0x4DFC)

Length
(0x0800)

2 Bytes

Footer
CRC

(0x4DFC)

2 Bytes

MAGIC
(\)

Password
(0xA2A2..A2)

8 Bytes

Authenticate Memory Structure

MAGIC
(/_OPLC)

6 Bytes

ID
(0x00)

1 Byte 5 Bytes 1 Byte 1 Byte

Reserved
(0x00)

2 Bytes

Command Details
(0x000000000000)

6 Bytes

Opcode
(0x02)

Reserved
(0xFE01000000)

Header
CRC

(0x4DFC)

Length
(0x0800)

2 Bytes

Footer
CRC

(0x4DFC)

2 Bytes

MAGIC
(\)

Password
(0xA2A2..A2)

8 Bytes

Opcode: 0x02
Data Length: 0x08
Data: password

• charest: digits, asterisk
• length: 8 bytes (fixed)
• Default password: ******** (8 asterisks)

PCOMClient - Capabilities

Transport layer
• Serial + TCP

PCOM Flavors
• Binary + ASCII

Memory Read/Write
Authentication

PCOM Function Codes - All supported in our tool!

Func Code
Req / Resp Desc

0x42 / 0xC2 Reset Upload
Password

0x4D / 0xCD Read Operand

0xFF Error

ID (ASCII) Get PLC Version

UG (ASCII) Get UnitID

GF (ASCII) Read Integer

CSS (ASCII) Stop PLC

Func Code
Req / Resp Desc

0x01 / 0x81 Read Memory

0x02 / 0x82 Check Password

0x0C / 0x8C Get PLC Name

0x10 / 0x90 Find Resource

0x16 / 0x96 Translate Resource
Index to Address

0x1A / 0x9A Flush Memory Buf

0x41 / 0xC1 Write Memory

Project Upload

• Some of the attacked PLCs were password protected
• By attackers? before attack?
• Who knows…

• Can we get the old project back?

• Can we get the attacker’s project???
• => Extract TONS of forensic evidence from project

Let’s Break the Upload Password!

Analyzing Upload Password

• There is a password reset process
• rewrite the project + change password

• We don’t want to do that
• Don’t have old project
• Don’t want to overwrite evidence

• We found another technique!

57

Opcode: 0x42
After: ANY password will
be accepted!

MAGIC
(/_OPLC)

6 Bytes

ID
(0x00)

1 Byte 5 Bytes 1 Byte 1 Byte

Reserved
(0x00)

2 Bytes

Command Details
(0x000000000000)

6 Bytes

Opcode
(0x02)

Reserved
(0xFE01000000)

Header
CRC

(0x4DFC)

Length
(0x0000)

2 Bytes

Footer
CRC

(0x0000)

2 Bytes

MAGIC
(\)

Opcode: 0x42
After: ANY password will be accepted!

Password Reset Command (CVE-2024-38434)

PCOMClient: Capabilities

Transport layer
• Serial + TCP

PCOM Flavors
• Binary + ASCII

Memory Read/Write

Authentication

Upload Password Bypass
(CVE-2024-38434)

Unitronics Project File

• access.db database
• Containing all of the information related to the project

• Functions
• Assets
• Metadata

• On PLC, saved as an encrypted ZIP

60

Project File: Forensic Evidence

• Full project path
• Table: ProjectTable
• many times contains the username

Project File: Forensic Evidence

• Project Dates
• Table: ProjectTable
• project creation/modification dates

Project File: Forensic Evidence

• Project Events
• Table: Events
• Events related to project (+ dates)

Project File: Forensic Evidence

• Computer languages
• Table: tblKeyboards
• Languages installed on computer

No Upload Project

• Attacker’s did not “burn” project
• Download without enabling upload

• Can’t extract evidence

65

Signature Log: The answer to our prayers

• We discovered the signature log - unexpected forensic source
• From strings, RE, documentations

• Everything that happened
• Download/upload
• Turn on/off
• etc.

• Exactly what we need!

66

Our Goal: Read Signature Log

Our Goal: Read Signature Log

PLC
Memory

Signature
Table

Our Goal: Read Signature Log

PLC
Memory

Signature
Table

Where?

NOT SO

Step 1: Get Resource Table Address

Opcode: 0x16

Find resource
table address

* Everything is my interpretation

Find
resource

table
address

Step 2 - Read Resource Table Address

Opcode: 0x16

Find resource
table address

Read resource
table memory

Opcode: 0x01

* Everything is my interpretation

Find
resource

table
address

Read
resource

table
memory

Step 3: Get Signature Table Index From Resource Table

Opcode: 0x16

Find resource
table address

Read resource
table memory

Opcode: 0x01

Get signature
table resource

index

Parse struct

* Everything is my interpretation

Find
resource

table
address

Read
resource

table
memory

Get signature
table

resource
index

Step 4: Get Signature Table Address

Opcode: 0x16

Find resource
table address

Read resource
table memory

Opcode: 0x01

Get signature
table resource

index

Parse struct

Find signature
table address
(using index)

Opcode: 0x16

* Everything is my interpretation

Find
resource

table
address

Read
resource

table
memory

Get signature
table

resource
index

Find
signature

table
address

(using index)

Step 5: Read signature table address

Opcode: 0x16

Find resource
table address

Read resource
table memory

Opcode: 0x01

Get signature
table resource

index

Parse struct

Find signature
table address
(using index)

Opcode: 0x16

Read signature
table memory

Opcode: 0x01

* Everything is my interpretation

Find
resource

table
address

Read
resource

table
memory

Get signature
table

resource
index

Find
signature

table
address

(using index)

Read
signature

table
memory

Step 6: Parse signature table

Opcode: 0x16

* Everything is my interpretation

Find
resource

table
address

Read
resource

table
memory
Opcode: 0x01

Get signature
table

resource
index

Parse struct

Find
signature

table
address

(using index)
Opcode: 0x16

Read
signature

table
memory

Opcode:
0x01

Parse
signature

table

Parse struct
(+ zlib

decompress
)

Signature Log

PCOMClient - Capabilities

Transport layer
• Serial + TCP

PCOM Flavors
• Binary + ASCII

Memory Read/Write

Authentication

Password Bypass
(CVE-2024-38434)
Signature Log fetcher + parser

Signature Log: Forensic Evidence

• Project path
• Limited to 40 characters
• Uses Windows short names
• Usually contains username/path

Signature Log: Forensic Evidence

• Project path
• Attackers used weird drive letter (B:/)
• They created different projects for each device type

Signature Log: Forensic Evidence

• Username
• Limited to 16 characters

Signature Log: Forensic Evidence

• Connection Date
• From attacker’s computer
• Down to the second

Signature Log: Forensic Evidence

• Connection Date
• Shows attacker’s time zone
• Can be used to correlate evidence from other sources (logs)

Signature Log: Forensic Evidence

• Keyboard Layout
• Taken from attacker’s computer

Signature Log: Forensic Evidence

• Connection string
• IP/PORT used by attacker
• Shows the target IP (tunneling/internet exposed device)

Forensic Evidence
Forensic
Evidence

Is Inside
Signature Table

Is Inside Project
File

Project Path Yes Yes

PC Username Yes No (could be in
path)

Project File
Creation Date

No Yes

PLC Connection
Dates

Yes Yes

Computer
Keyboards

Yes Yes

PLC Connection
String

Yes Yes

Images used in
Project File

No Yes

Project Functions No Yes

Link To Project

* Help us by adding code to this project

Summary & Takeaways

• Sometimes - there are no IT logs

• Can’t rely on vendors
• Don’t have the knowledge/motivation

• Community must require more logs from actual PLCs

• When all else fails - go to the community!
• Develop community forensic tools

©Copyright Claroty. All rights reserved

Thank you

