| -

|:>|z.=;‘|-<’=khat X |
USA 202

AUGUST 7-8, 2024

BRIEFINGS

PageJack: A Powerful Exploit Technigue With Pagelevel UAF

Speaker: Zhiyun Qian
Contributors: Jiayi Hu, Jinmeng Zhou, Qi Tang, Wenbo Shen
8/8/2024

#BHUSA @BlackHatEvents

bIQCK hat

USA 2024

Who we are

Wenbo Shen

Jinmeng Zhou

bIQCK hat

USA 2024

OS kernel exploits

Control flow hijack

EX: corrupt function pointer = return-oriented programming (ROP)

Arbitrary code

corrupted_obj->func_ptr() —7 — Tereerier

Data-only attacks
EX: corrupt data pointer - arbitrary read/write to modify key objects (e.g., cred)

*corrupted_obj->data_ptr = val; Arbitrary data
pted_obj->data_p = _
location

O

black hat
USA 2024

Control-flow integrity

p‘;ﬁ LWN User: [: Password:[][Log inJ | [Su bscribeJ | [RegisterJ

. .net

News from the source CO ntrOI 'ﬂOW I nteg rlty for the kernEI

Content i

Weekly Edition Did you know...?

Archives . : L .

Search LWN.net is a subscriber-supported publication; we rely on subscribers to keep

Kernel the entire operation going. Please help out by buying_a subscription and

Security keeping LWN on the net.

Events calendar

Unread comments By Jake Edge Control-flow integrity (CFl) is a technique used to reduce the ability to redirect the execution of a program's code

LWN FAQ January 22, 2020 in attacker-specified ways. The Clang compiler has some features that can assist in maintaining control-flow

Write for us integrity, which have been applied to the Android kernel. Kees Cook gave a talk about CFl for the Linux kernel at

LCA the recently concluded linux.confau in Gold Coast, Australia.

Edition

Return to the Front Cook said that he thinks about CFl as a way to reduce the attack, or exploit, surface of the kernel. Most compromises of the kernel
page involve an attacker gaining execution control, typically using some kind of write flaw to change system memory. These write flaws come

in many flavors, generally with some restrictions (e.g. can only write a single zero or only a set of fixed byte values), but in the worst
case, they can be a "write anything anywhere at any time" flaw. The latter, thankfully, is relatively rare.

Data-only attack needed

blgc}:k hat

USA 2024

Control-flow hijacking vs data-only attack

18
16

14

12

10 }
I I I I Data-only attacks

2019-2020 2021 2022 2023
m control-flow attack exploits mdata-only attacks exploits

o N b~ OO

bIQCK hat

USA 2024

Previous data-only attacks

global variable, e.g., modprobe_path
Corrupt
heap variable, e.g., cred

O

black hat
USA 2024

Previous data-only attacks

global variable, e.g., modprobe_path
Corrupt

[+1 test@ubuntu: ~/Desk

H $ build/nightswatch
pipe2 ret ©
[+] Kernel version 5.13.0-23-generic #23-Ubuntu SMP Fri Nov 26 11:41:15 UTC 2021
[+] Found supported kernel offsets
L KASLR bypaSS nEEdEd [+] modprobe path: exffffffffa82e6e0a0
[+] Spraying 300 chunks..
[+] Spraying 300 messages in kmalloc-96

 AAW ca Pd blllty needed DEBUG: diff: exfdo

[+] Found the matching qid of an adjacent msg msg 899

DEBUG: Leak 2

* Protected by CONFIG_STATIC_USERMODEHELPER DEBUG: diff: exfde

|+] KASLR bypass - modprobe path: exffffffffa2e6efad

bIQCK hat

USA 2024

Previous data-only attack

Corrupt
heap variable, e.g., cred, file
uid
- Relative write (e.g., gid f _mode
OOB) on heap
AAW not needed f_mapping

struct cred struct file

bIQCK hat

USA 2024

Previous data-only attack: cross-cache challenge

 Most vulnerabilities happen in generic caches.
(UAF, Double Free, Out-of-bound write)

* Most critical heap objects are in dedicated caches.

* How to reach critical heap objects with relative writes?

cross-cache attack needed

bIQCK hat

USA 2024

Previous data-only attack: cross-cache challenge

* Cross-cache attack techniques vary by vulnerability type, e.g.,
OOB: less reliable

. UAF: more reliable but not future-proof

* Cross-cache still a significant hurdle for exploits

bIQCK hat

USA 2024

Previous data-only attack: cross-cache challenge

OOB write:

p

N

OOBW object

K

<

/

Object cache

-~

~

victim object

victim object

victim object

victim object

\

/

Victim cache
(critical data)

Any way to edit the victim
critical heap objects directly
with the OOB write capability?

bIQCK hat

USA 2024

Previous data-only attack: cross-cache challenge

OOB write:. £ D\ —

low address

OOBW object | — Object cache page

U) — Page fengshui
4 N —

victim object

— Critical object cache page

high address \ =

bIQCK hat

USA 2024

Previous data-only attack: cross-cache challenge

OOB write:. £ D\ —

low address

OOBW object | — Object cache page

p Z CONFIG_SLAB_FREELIST RANDOM=y?

victim object

— Critical object cache page

Unreliable, low stability

high address \ =

bIQCK hat

USA 2024

Previous data-only attack: limited write capability
OOB write capability (few bytes etc..)

Pivoting to out-of-bound write to double free / use after free:

corrupt lower bits of heap data pointers

bIQCK hat

USA 2024

Previous data-only attack: pivot OOB to UAF

Ex: CVE-2021-22555: corrupt lower byte(s) of msg_msg->mlist->next
to force an object to be double referenced.

low address | nex T nex [nex /! next
»

next

mext next | next

next

next | next

%t table info

next

mext et | next

v

high address
Previous msg_msg linked list Corrupted msg_msg linked list

Figure credit: Andy Nguyen

bIQCK hat

USA 2024

Previous data-only attack: pivot OOB to UAF

Free the object once and create a dangling pointer = UAF

low address | next r| next next
free
g g
next | next next next
>
next | next next
xt table info
»
IE:-II | next fiext next
\ 4
high address

Previous msg_msg linked list Corrupted msg_msg linked list

Figure credit: Andy Nguyen

bIQCK hat

USA 2024

UAF to privilege escalation

Two challenges

* How to overlap the UAF object with the victim critical object?

* How to corrupt victim object without causing side effects?

bIQCK hat

USA 2024

UAF to privilege escalation

Challenge I : Bypass cache isolation

{

Allocated | Vuln object | Allocated Allocated

Step1: Allocate many padding objects/and
vuln' object|in the same cache P\

\

occupying specific positions in the heap mgmory

which has UAF vulnerability

bIQCK hat

USA 2024

UAF to privilege escalation

Challenge I : Bypass cache isolation

} b
| |
Allocated | Vuln object| Allocated | Allocated Allocated : Vuln object | Allocated | Allocated
| j
Stepl: Allocate many padding objects and Step2: Free the vuln object in the cache P.

vuln object in the same cache P.

O

black hat
USA 2024

UAF to privilege escalation

Challenge I : Bypass cache isolation

} b
| |
Allocated | Vuln object| Allocated | Allocated Allocated : Vuln object | Allocated | Allocated
| j
Stepl: Allocate many padding objects and Step2: Free the vuln object in the cache P.

vuln object in the same cache P.

[
i
Freed :

Vuln object | Freed Freed
i

Step3: Free other padding objects in the

cache P to recycle the page of cache P.

O

black hat
USA 2024

UAF to privilege escalation

Challenge I : Bypass cache isolation

{

!

Allocated | Vuln object | Allocated

Allocated

Allocated

|
|

Vuln object; Allocated
@

Allocated

Stepl: Allocate many padding objects and

vuln object in the same cache P.

Step2: Free the vuln object in the cache P.

Vuln object : Freed

|
Freed :
|

Freed

; i

Step3: Free other padding objects in the
cache P to recycle the page of cache P.

Vitim object

Vitim object

Vitim object

Step4: Allocate many victim objects to new
a cache to reuse the freed page of cache P.

bIQCK hat

USA 2024

UAF to privilege escalation

Challenge I : Bypass cache isolation

+confilz SLAP VIETTAL

virtual memory used as a slab cache is never reused to store
objects from other slab caches or non-slab data.

+ kool “Allocate slab objects from virtual memory”

+ depends on SLUB && !SLUBE _TINY

+ # If EFENCE support 1s desired, it could ke implemented on top of our

+ # virtual memory allocation facilitiles

+ depends on 'EFENCE

+ ¥ ASAN support will require that shadow memory 1s allocated

I i et M 7 Cross cache attack
+ depends on EASAN

+ help .

+ bllocate slab objects from kernel-virtual memory, and ensure that Has kllled
n

+

+

Google new mitigation: CONFIG_SLAB_ VIRTUAL

bIQCK hat

USA 2024

UAF to privilege escalation

Two challenges

* How to corrupt victim object without causing side effects?

black hat

USA 2024

UAF to privilege escalation

Challenge II: avoid damaging other fields

struct 1list_node f_1llist; I/* 0] 8 *f
struct callback_head f_rcuhead __ attribute_ ((__aligned_ (8))); /*
unsigned int f iocb flags; I* 6] 4 *f
} __attribute_ ((__aligned_ (8))); e 16 */
struct path f_path; 16 16 */
struct inode * f_inode; 32 8 *f
const struct file_operations * f_op; 40 8 *f
spinlock_t f_lock; 48 4 */

/* XXX 4 bytes hole, try to pack */

atomic_long_t f_count; 56
/* --- cacheline 1 boundary (64 bytes) --- */

unsigned int f _flags; /* 64 e [[)
-~ Target field = Offset + Field size
struct mutex f_pos_lock; I* 72 —

loff_t f_pos; I/* 104

struct fown_struct f_owner; I/* 112

/* --- cacheline 2 boundary (128 bytes) was 16 bytes ago ---

const struct cred * f_cred; 144

struct file_ra_state f_ra; 152

u64 f version; 184

/* --- cacheline 3 boundary (192 bytes) --- */

void * f_security; 192

void * private_data; 200

struct hlist_head * f_ep; 208

struct address_space * f_mapping;

errseqg_t f wb_err;

errseq_t f_sb_err;

/* size: 232, cachelines: 4, members: 28 */
/* sum members: 228, holes: 1, sum holes: 4 */
/* forced alignments: 1 */
/* last cacheline: 48 bytes */
} __attribute_ ((__aligned_ (8)));

blg?:k hat

USA 2024

UAF to privilege escalation

Challenge II: avoid damaging other fields

_—0Other field

f mode

\
Struct _ Target field
file

blg?:k hat

USA 2024

UAF to privilege escalation

Challenge II: avoid damaging other fields

____________________ " UAF-write
f op
Struct IS However, the capability of UAF-
ftj|uc P S write often doesn’t match the
"~ victim field.

blg?:k hat

USA 2024

UAF to privilege escalation

Challenge II: avoid damaging other fields

R _~UAF-write
f op
Struct R To write appropriate values, might
fr'-|uc R - 4 need additional steps for KASLR
" bypass or other info-leak.

blg?zk hat

USA 2024

Review typical kernel exploit steps

Often needed SRR -omneee » Avoid side effects

Pivoting Cross cache Corrupt target

Sometimes needed ¢ R i

Needed in most cases, not stable,
defended by SLAB_VIRTUAL

blg?zk hat

USA 2024

Review typical kernel exploit steps

Often needed SRR -omneee » Avoid side effects

Pivoting Cross cache Corrupt target

Sometimes needed *-- PR 5 .
, New ideas?
Needed in most cases, not stable,

defended by SLAB_VIRTUAL

O

black hat
USA 2024

Page UAF to the rescue

.de 2504: Linux >=6.4: io_uring: page UAF via buffer ring mmap PhySicaI page frEEd’ but Sti" accessible
Reported by jannh@google.com on Tue, Nov 28, 2023, 3:12 AM GMT+8 . . .
* Direct physical page read/write

Since commit ¢56e022c0a27 ("io_uring: add support for user mapped provided
buffer ring"), landed in Linux 6.4, io_uring makes it possible to allocate,
mmap, and deallocate "buffer rings".

A "buffer ring” can be allocated with Da ngl I ng refe rence
io_uring_register(..., IORING_REGISTER_PBUF _RING, ...) and later deallocated

with io_uring_register(..., IORING_UNREGISTER PBUF RING, ...).

It can be mapped into userspace using mmap() with offset

IORING_OFF PBUF RING]|..., which creates a VIM_PFNMAP mapping, meaning the MM
subsystem will treat the mapping as a set of opaque page frame numbers not
associated with any corresponding pages; this implies that the calling code is
responsible for ensuring that the mapped memory can not be freed before the
userspace mapping is removed.

However, there is no mechanism to ensure this in io_uring: It is possible to p— —X -

just register a buffer ring with IORING_REGISTER_PBUF RING, mmap() it, and then
free the buffer ring's pages with IORING_UNREGISTER_PBUF _RING, leaving free
pages mapped into userspace, which is a fairly easily exploitable situation.

O

black hat
USA 2024

Page UAF to the rescue

Dangling reference Dangling reference Dangling reference
victim object victim object
victim object victim object

victim object | tampered |

victim object victim object

O

black hat
USA 2024

PagedJack: a new exploit strategy

To derive Page UAF from different initial primitives

Invalid-write victim object victim object
(OOB, UAF write) \ victim object victim object
victim object _
victim object victim object
Invalid-free /
(double free)

Stepl: pivot to Page UAF Step2: spray victim objects Step3: corrupt victim objects

O

black hat
USA 2024

PagedJack: pivoting relative writes to page UAF

Step 1 Memory layout manipulation (OOB example): arrange the vulnerable object to be
adjacent to the objects containing the struct page*.

Allocated Freed
object/page object/page
" " U6 struct page { 26 | struct pipe_buffer {
page page unsigned long flags; struct page *page;
————— : - : unsigned int offset, len;
kma”OC | /: e const struct pipe_buf_operations sxops;
. : . (20/40 bytes) are unsigned int flags;
VUI Ob eCt e Uffer pe Uffer * WARNING: bit @ of the first w . A
(Slab) J p:’p - p p - * means the other users of this . unsigned long PREIEEEE;
] - * avoid collision and false-pos ¥
*/

union {
) struct { /* Page cache and anonymous pages */
__________________ 81 /**
v % @lru: Pageout list, eg. active_list protected by
% lruvec—>lru_lock. Sometimes used as a generic list

* by the page owner.

page pool pagel| page2 ;
OX4O OX4C __________________ V szuct list_head 1lru;
/* See page-flags.h for PAGE_MAPPING_FLAGS x/

struct address_space *mapping;
/* Our offset within mapping. */

pgoff_t index;

—_——— /%%
% @private: Mapping-private opaque data.
% Usually used for buffer_heads if PagePrivate.

physical '
) % Used for swp_entry_t if PageSwapCache.
4KB * Indicates order in the buddy system if PageBuddy.
—_—— e — g x/
unsigned long private;

memory 4KB
}.

’
ctruct {

~
~
. ~~a
~ ~
~ ~~
~, ~~
~ ~~
~. ~~a
~ ~~
~
~ ~
~, ~-
~. ~-
~ ~
~o ~
~-

/% nane nnnl n<ed hv netctark x/

bIQCK hat

USA 2024

PagedJack: pivoting relative writes to page UAF

Step 2 Page pointer corruption: Trigger the OOB write to corrupt a page* pointer to make it point
to the nearby struct page object.

Allocated

object/page

kmalloc
(slab)

page pool

physical
memory

OOB corrupt

Freed
object/page

page* page*

pe@%uffer o ipg%uffer

pagel

0x40

~

~

. ~~a

~ ~
~ ~~
~, ~~
~ ~~
~. ~~a
~ ~~
~
~ ~
~, ~-
~. ~-
~ ~
~o ~

~-

General to all kinds of bugs:

e Pivoting Invalid-Write (e.g., OOB & UAF write)
We use OOB as an example.

* Pivoting Invalid-Free (e.g., Double-Free)
we can use heap spray&&FUSE technique.

bIQCK hat

USA 2024

PagedJack: pivoting relative writes to page UAF

Step 2 Page pointer corruption: Trigger the OOB write to corrupt a page* pointer to make it point
to the nearby struct page object.

Allocated Freed

object/page object/page
______ page* page* L

kmall :

?;;b(;C pe@)uffer pipe@mffer No r.Ieed to bypass KASLR:
_____ L e sizeof (struct page) = 0x40
______POB corrupt/ _— * change the last byte to to 0x00

page pool pagel| page2 * succuss if the last byte is originally:

_______ ; 0x40 0x4C mmmmmm oo 0x40, 0x80, 0xCO
S e fail but no harm ifitis: 0x00

physical

bIQCK hat

USA 2024

PagedJack: pivoting relative writes to page UAF

Step 3 Page UAF construction: free the 4KB physical page, leaving a dangling pointer still points
(reads and writes) to it.

Allocated Freed
object/page object/page
_____ page* page* L
kmall : ; : :
?;I?:\b(;c aul albfie pe@)uffer pipe@)uffer The freed page is reclal.med in buddy system:
_____ L * A 4KB physical page is managed by a struct
___Danglingpointer] _—Free page object.
page pool pagel pagezi » We trigger a free page() to tell the buddy
——————— x40, o system the page can be reclaimed.

=
~
~
SS ~~o
~ -
~ ~~
. ~~
~ ~~
SS S=<
~ ~~
~ ~~
. ~~o
N -
~ ~o
~
~ ~

physical
memory 4KB 4KB L

bIQCK hat

USA 2024

PagedJack: tamper with critical objects

Step 4 Spray critical objects: allocate many critical objects (e.g., file) to reuse the freed page.

Allocated Freed

object/page object/page
_____ page* page* L

kmalloc @% .

(slab) vul object |@ipe buffer|igip CE%uffer Slub page reuse'_ . _ .
_____ L e Spray many critical objects to claim the freed
__Dangling pointer, page in the buddy system.

page pool pagel| page2 The page is full of critical objects, which is

——————— 040l used as a page of its slub cache.
______ : e * |t access the critical objects easily without

physical

file |ifile cross cache attack, can bypass SLAB_VIRTUAL.
memory 4KB KB

O

black hat
USA 2024

PagedJack: tamper with critical objects

Step 5 Read/Write critical objects: we can read/write the whole 4KB physical page through the
dangling pointer.

Allocated Freed
object/page object/page
/write

e* page*

kmlalg)oc vul object pe@%uffer pipe@%uffer Read/Write the whole page (arbitrary read/write):
(slab) _ - e Linux kernel provides the read/write interfaces
__Dangling pointer, based on g struct page *, such as
page pool pagel| page2 copy page_ from iter, copy page to iter.
——————— gl _oad e Corrupt file->f mode to gain root privilege.

~
~
S ~~a
~ ~
~ ~~
~, ~~
~ ~~
SS S=<
~ ~~
~
~ ~
~. ~-
~., ~-
~ ~
~o ~
~

hysical -
PRy le |ifile
memory 4KB KB

O

black hat
USA 2024

CVE-2022-0995

Anout-of-bounds (OOB) memory write in the watch_queue event notification subsystem.

| Primitive #1:
| 'Out of bound populate!

if (copy_from_user(&filter, _filter, sizeof(filter)) != 0) | for (i = 0; i < filter.nr_filters; i++) {

return -EFAULT; | if (tf[i].type >= sizeof(wfilter->type_filter) * BITS_PER_LONG)
type compare with 0x80 when continue;
tf memdup_user(_filter->filters, filter.nr_filters * sizeof(*tf)); Compute the number of filters g->type = tf[il.type;

for (i = 0; i < filter.nr_filters; i++) { /*use q to copy the filter*/

if (tf[i].type >= sizeof(wfilter->type_filter) * 8)
continue

nr_filter++;

q++;

}

iPrimitive #2 :
'Out of bound set_bit!

| #define BIT_MASK(nr) (UL(1) << ((nr) % BITS_PER_LONG))
| #define BIT_WORD(nr) ((nr) / BITS_PER_LONG)
I static inline void __set_bit(int nr, volatile unsigned long *addr)

I

g = wfilter->filters;
for (i = 0; i < filter.nr_filters; i++) {
if (tf[i].type >= sizeof(wfilter->type_filter) * BITS_PER_LONG)
continue;

\;\;%ilter->nr_filters = nr_filter; but type compare with 0x400
when populate and set_bit!!!

unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
*p |= mask;

g->type = tf[i].type;

__set_bit(g->type, wfilter->type_filter);
q++;

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
,
: wfilter = kzalloc(struct_size(wfilter, filters, nr_filter), GFP_KERNEL);
:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

O

black hat
USA 2024

Exploit CVE-2022-0995

« We use primitive #2 for exploit , modify the 6t bit of the page™ in the
pipe_buffer, making two pipe_buffer->page points to the same page.

low
address
type_filter
‘ Trigger the
*page . Oxff....00 Vulnerab|||ty *page b=l Oxff....00
pipe_buffer page — | pipe_buffer \ page
*page > 0xff....40 *page Oxff....40
v pipe_buffer page pipe_buffer page
high

address

O

black hat
USA 2024

Exploit CVE-2022-0995

* Close one of the pipe_buffer to free the page, creating page UAF

type_filter
Danglin
pipe_ buffer Jing
Freed
*page —> :
_ Free physical
plpe_buffer page > page

O

black hat
USA 2024

Exploit CVE-2022-0995

» Spray “/etc/passwd” or suid struct file objects to realloc the uaf page.

* Write to uaf pipe_buffer to modify the file->f_mode to O_RW.
* Editthe passwd or suid file to get root.

type filter

_ Dangling
pipe_ buffer File

*page —>

Write
Free /
pipe_buffer

page

bIQCK hat

USA 2024

Demo: SLAB VIRTUAL and CFI enabled

black hat /
USA 2024

Demo: SLAB VIRTUAL and CFI enabled

~$ |

blgk hat

USA 2024

Advantages of PageJack

Typical:

Pivoting K Cross cache Corrupt Target

Pagelack:

Pivoting Corrupt Target

bIQCK hat

USA 2024

Black Hat Sound Bytes

A novel OS kernel data-only exploit technique
Bypass CFI

* Applicable for a variety of vulnerabilities in the real world
Linux and Android, vul type: OOB, UAF, double free

* Bypass mitigations, fewer steps, and improve stability
KASLR, SLAB_VIRTUAL

O

blackhat
USA 2024
Thank you!
More exploits with PageJack: https://github.com/Lotuhu/Page-UAF
White paper:
@ | |
M £} | https://iwww.cs.ucr.edu/~zhiyung
@pkgzy388 O https://github.com/seclab-ucr

[TH RIVERSIDE

https://github.com/Lotuhu/Page-UAF
https://arxiv.org/abs/2401.17618
mailto:zhiyunq@cs.ucr.edu

	Slide 1
	Slide 2: Who we are
	Slide 3: OS kernel exploits
	Slide 4: Control-flow integrity
	Slide 5: Control-flow hijacking vs data-only attack
	Slide 6: Previous data-only attacks
	Slide 7: Previous data-only attacks
	Slide 8: Previous data-only attack
	Slide 9: Previous data-only attack: cross-cache challenge
	Slide 10: Previous data-only attack: cross-cache challenge
	Slide 11: Previous data-only attack: cross-cache challenge
	Slide 12: Previous data-only attack: cross-cache challenge
	Slide 13: Previous data-only attack: cross-cache challenge
	Slide 14: Previous data-only attack: limited write capability
	Slide 15: Previous data-only attack: pivot OOB to UAF
	Slide 16: Previous data-only attack: pivot OOB to UAF
	Slide 17: UAF to privilege escalation
	Slide 18: UAF to privilege escalation
	Slide 19: UAF to privilege escalation
	Slide 20: UAF to privilege escalation
	Slide 21: UAF to privilege escalation
	Slide 23: UAF to privilege escalation
	Slide 24: UAF to privilege escalation
	Slide 25: UAF to privilege escalation
	Slide 26: UAF to privilege escalation
	Slide 27: UAF to privilege escalation
	Slide 28: UAF to privilege escalation
	Slide 29: Review typical kernel exploit steps
	Slide 30: Review typical kernel exploit steps
	Slide 31: Page UAF to the rescue
	Slide 32: Page UAF to the rescue
	Slide 33: PageJack: a new exploit strategy
	Slide 34: PageJack: pivoting relative writes to page UAF
	Slide 35: PageJack: pivoting relative writes to page UAF
	Slide 36
	Slide 37: PageJack: pivoting relative writes to page UAF
	Slide 38: PageJack: tamper with critical objects
	Slide 39: PageJack: tamper with critical objects
	Slide 40: CVE-2022-0995
	Slide 41: Exploit CVE-2022-0995
	Slide 42: Exploit CVE-2022-0995
	Slide 43: Exploit CVE-2022-0995
	Slide 44: Demo: SLAB_VIRTUAL and CFI enabled
	Slide 45: Demo: SLAB_VIRTUAL and CFI enabled
	Slide 46: Advantages of PageJack
	Slide 48: Black Hat Sound Bytes
	Slide 49: Thank you!

