
#BHUSA @BlackHatEvents

PageJack: A Powerful Exploit Technique With Page-Level UAF

Speaker: Zhiyun Qian

Contributors: Jiayi Hu, Jinmeng Zhou, Qi Tang, Wenbo Shen

8/8/2024

#BHUSA @BlackHatEvents

Who we are

Zhiyun Qian

Jinmeng Zhou Qi Tang Wenbo Shen

Jiayi Hu

#BHUSA @BlackHatEvents

OS kernel exploits

Control flow hijack

Ex: corrupt function pointer → return-oriented programming (ROP)

Data-only attacks

Ex: corrupt data pointer → arbitrary read/write to modify key objects (e.g., cred)

corrupted_obj->func_ptr() Arbitrary code
location

*corrupted_obj->data_ptr = val; Arbitrary data
location

#BHUSA @BlackHatEvents

Control-flow integrity

Data-only attack needed

#BHUSA @BlackHatEvents

Control-flow hijacking vs data-only attack

0

2

4

6

8

10

12

14

16

18

2019-2020 2021 2022 2023

control-flow attack exploits data-only attacks exploits

Data-only attacks

#BHUSA @BlackHatEvents

Previous data-only attacks

Corrupt
global variable, e.g., modprobe_path

heap variable, e.g., cred

#BHUSA @BlackHatEvents

Previous data-only attacks

Corrupt

• KASLR bypass needed
• AAW capability needed
• Protected by CONFIG_STATIC_USERMODEHELPER

global variable, e.g., modprobe_path

heap variable, e.g., cred

#BHUSA @BlackHatEvents

Previous data-only attack

Corrupt
global variable, e.g., modprobe_path

heap variable, e.g., cred, file

...

f_mode

...

f_mapping

......

uid

gid

...

...
• Relative write (e.g.,

OOB) on heap

• AAW not needed

struct file struct cred

#BHUSA @BlackHatEvents

Previous data-only attack: cross-cache challenge

• Most vulnerabilities happen in generic caches.

(UAF, Double Free, Out-of-bound write)

• Most critical heap objects are in dedicated caches.

• How to reach critical heap objects with relative writes？

cross-cache attack needed

#BHUSA @BlackHatEvents

Previous data-only attack: cross-cache challenge

• Cross-cache attack techniques vary by vulnerability type, e.g.,

• OOB: less reliable

• UAF: more reliable but not future-proof

• Cross-cache still a significant hurdle for exploits

#BHUSA @BlackHatEvents

OOB write：

Object cache

…

…
…

OOBW object

Victim cache
(critical data)

Any way to edit the victim
critical heap objects directly
with the OOB write capability？

victim object

victim object

victim object

victim object

Previous data-only attack: cross-cache challenge

#BHUSA @BlackHatEvents

OOB write：
…

…
OOBW object

…

…

victim object

Object cache page

Critical object cache page

Page fengshui

low address

high address

Previous data-only attack: cross-cache challenge

#BHUSA @BlackHatEvents

OOB write：
…

…
OOBW object

…

…

victim object

Object cache page

Critical object cache page

CONFIG_SLAB_FREELIST_RANDOM=y?

Unreliable, low stability

low address

high address

Previous data-only attack: cross-cache challenge

#BHUSA @BlackHatEvents

Previous data-only attack: limited write capability

OOB write capability (few bytes etc..)

Pivoting to out-of-bound write to double free / use after free:

corrupt lower bits of heap data pointers

#BHUSA @BlackHatEvents

Ex: CVE-2021-22555: corrupt lower byte(s) of msg_msg->mlist->next
to force an object to be double referenced.

Previous msg_msg linked list Corrupted msg_msg linked list

low address

high address

Previous data-only attack: pivot OOB to UAF

Figure credit: Andy Nguyen

#BHUSA @BlackHatEvents

Free the object once and create a dangling pointer → UAF

Previous data-only attack: pivot OOB to UAF

Previous msg_msg linked list Corrupted msg_msg linked list

low address

high address

Figure credit: Andy Nguyen

#BHUSA @BlackHatEvents

UAF to privilege escalation

Two challenges

• How to overlap the UAF object with the victim critical object?

• How to corrupt victim object without causing side effects?

#BHUSA @BlackHatEvents

UAF to privilege escalation

Challenge Ⅰ: Bypass cache isolation

Step1: Allocate many padding objects and
vuln object in the same cache P.

occupying specific positions in the heap memory

which has UAF vulnerability

Allocated Vuln object Allocated Allocated

#BHUSA @BlackHatEvents

UAF to privilege escalation

Challenge Ⅰ: Bypass cache isolation

Allocated Vuln object Allocated Allocated

Step1: Allocate many padding objects and
vuln object in the same cache P.

Allocated Vuln object Allocated Allocated

Step2: Free the vuln object in the cache P.

#BHUSA @BlackHatEvents

UAF to privilege escalation

Challenge Ⅰ: Bypass cache isolation

Freed Vuln object Freed Freed

Step3: Free other padding objects in the
cache P to recycle the page of cache P.

Allocated Vuln object Allocated Allocated

Step1: Allocate many padding objects and
vuln object in the same cache P.

Allocated Vuln object Allocated Allocated

Step2: Free the vuln object in the cache P.

#BHUSA @BlackHatEvents

UAF to privilege escalation

Challenge Ⅰ: Bypass cache isolation

Vitim object Vitim object Vitim object Vitim object

Step4: Allocate many victim objects to new
a cache to reuse the freed page of cache P.

Allocated Vuln object Allocated Allocated

Step1: Allocate many padding objects and
vuln object in the same cache P.

Allocated Vuln object Allocated Allocated

Step2: Free the vuln object in the cache P.

Freed Vuln object Freed Freed

Step3: Free other padding objects in the
cache P to recycle the page of cache P.

#BHUSA @BlackHatEvents

UAF to privilege escalation

Challenge Ⅰ: Bypass cache isolation

Google new mitigation: CONFIG_SLAB_VIRTUAL

Cross cache attack

Has killed

#BHUSA @BlackHatEvents

UAF to privilege escalation

Two challenges

• How to corrupt victim object without causing side effects?

#BHUSA @BlackHatEvents

UAF to privilege escalation

Challenge Ⅱ: avoid damaging other fields

Target field = Offset + Field size

#BHUSA @BlackHatEvents

UAF to privilege escalation

Challenge Ⅱ: avoid damaging other fields

f_op

f_mode

Struct
file

Target field

Other field

#BHUSA @BlackHatEvents

UAF to privilege escalation

Challenge Ⅱ: avoid damaging other fields

f_op

f_mode

Struct
file

UAF-write

However, the capability of UAF-
write often doesn’t match the
victim field.

#BHUSA @BlackHatEvents

UAF to privilege escalation

Challenge Ⅱ: avoid damaging other fields

f_op

f_mode

Struct
file

UAF-write

To write appropriate values, might
need additional steps for KASLR
bypass or other info-leak.

#BHUSA @BlackHatEvents

Review typical kernel exploit steps

Pivoting KASLR bypass Cross cache Corrupt target

Sometimes needed

Often needed

Needed in most cases , not stable,
defended by SLAB_VIRTUAL

Avoid side effects

#BHUSA @BlackHatEvents

Review typical kernel exploit steps

Pivoting KASLR bypass Cross cache Corrupt target

Needed in most cases , not stable,
defended by SLAB_VIRTUAL

New ideas?

Often needed

Sometimes needed

Avoid side effects

#BHUSA @BlackHatEvents

Page UAF to the rescue

Physical page freed, but still accessible
• Direct physical page read/write

Freed
physical
page

Virtual
page

Dangling reference

#BHUSA @BlackHatEvents

Page UAF to the rescue

victim object

victim object

tampered

victim object

…

victim object

victim object

victim object

victim object

…

Freed
physical
page

Dangling reference Dangling reference Dangling reference

#BHUSA @BlackHatEvents

Invalid-write
(OOB, UAF write)

To derive Page UAF from different initial primitives

PageJack: a new exploit strategy

Invalid-free
(double free)

Step1: pivot to Page UAF Step2: spray victim objects Step3: corrupt victim objects

victim object

victim object

tampered

victim object

…

victim object

victim object

victim object

victim object

…

Freed
physical
page

#BHUSA @BlackHatEvents

Step 1 Memory layout manipulation (OOB example): arrange the vulnerable object to be
adjacent to the objects containing the struct page*.

page pool

physical
memory 4KB 4KB

0x40 0x40
page1 page2

pipe_buffer

page* page*

kmalloc
(slab)

① ②
vul object pipe_buffer

PageJack: pivoting relative writes to page UAF

Allocated
object/page

Freed
object/page

#BHUSA @BlackHatEvents

Step 2 Page pointer corruption: Trigger the OOB write to corrupt a page* pointer to make it point
to the nearby struct page object.

page pool

physical
memory 4KB 4KB

0x40 0x40
page1 page2

kmalloc
(slab)

OOB corrupt

Allocated
object/page

Freed
object/page

General to all kinds of bugs:
• Pivoting Invalid-Write (e.g., OOB & UAF write)

We use OOB as an example.

• Pivoting Invalid-Free (e.g., Double-Free)

we can use heap spray&&FUSE technique.

PageJack: pivoting relative writes to page UAF

pipe_buffer

page* page*

① ②
vul object pipe_buffer

#BHUSA @BlackHatEvents

Step 2 Page pointer corruption: Trigger the OOB write to corrupt a page* pointer to make it point
to the nearby struct page object.

page pool

physical
memory 4KB 4KB

0x40 0x40
page1 page2

page* page*

kmalloc
(slab)

OOB corrupt

No need to bypass KASLR:
• sizeof (struct page) = 0x40

• change the last byte to to 0x00

• succuss if the last byte is originally:

0x40, 0x80, 0xC0

• fail but no harm if it is: 0x00

PageJack: pivoting relative writes to page UAF

pipe_buffer
① ②

vul object pipe_buffer

Allocated
object/page

Freed
object/page

#BHUSA @BlackHatEvents

Step 3 Page UAF construction: free the 4KB physical page, leaving a dangling pointer still points
(reads and writes) to it.

page pool

physical
memory 4KB

0x40 0x40
page1 page2

pipe_buffer

page* page*

kmalloc
(slab)

① ②

Dangling pointer

vul object pipe_buffer The freed page is reclaimed in buddy system:
• A 4KB physical page is managed by a struct

page object.

• We trigger a free_page() to tell the buddy

system the page can be reclaimed.

4KB

Free

PageJack: pivoting relative writes to page UAF

Allocated
object/page

Freed
object/page

#BHUSA @BlackHatEvents

Step 4 Spray critical objects: allocate many critical objects (e.g., file) to reuse the freed page.

page pool

physical
memory 4KB

0x40 0x40
page1 page2

page* page*

kmalloc
(slab)

Dangling pointer

Slub page reuse:
• Spray many critical objects to claim the freed

page in the buddy system.

• The page is full of critical objects, which is

used as a page of its slub cache.

• It access the critical objects easily without

cross cache attack, can bypass SLAB_VIRTUAL.
4KB

PageJack: tamper with critical objects

pipe_buffer
① ②

vul object pipe_buffer

file file

Allocated
object/page

Freed
object/page

#BHUSA @BlackHatEvents

Step 5 Read/Write critical objects: we can read/write the whole 4KB physical page through the
dangling pointer.

page pool

physical
memory 4KB

0x40 0x40
page1 page2

page* page*

kmalloc
(slab)

Dangling pointer

Read/Write the whole page (arbitrary read/write):
• Linux kernel provides the read/write interfaces

based on a struct page *, such as

copy_page_from_iter, copy_page_to_iter.

• Corrupt file->f_mode to gain root privilege.

4KB
file

user read/write

PageJack: tamper with critical objects

pipe_buffer
① ②

vul object pipe_buffer

file

Allocated
object/page

Freed
object/page

#BHUSA @BlackHatEvents

CVE-2022-0995
• An out-of-bounds (OOB) memory write in the watch_queue event notification subsystem.

long watch_queue_set_filter(…)
{

...
if (copy_from_user(&filter, _filter, sizeof(filter)) != 0)

return -EFAULT;
…
tf = memdup_user(_filter->filters, filter.nr_filters * sizeof(*tf));
for (i = 0; i < filter.nr_filters; i++) {

…
if (tf[i].type >= sizeof(wfilter->type_filter) * 8)

continue
nr_filter++;

}
...
wfilter = kzalloc(struct_size(wfilter, filters, nr_filter), GFP_KERNEL);
...

wfilter->nr_filters = nr_filter;
q = wfilter->filters;
for (i = 0; i < filter.nr_filters; i++) {

if (tf[i].type >= sizeof(wfilter->type_filter) * BITS_PER_LONG)
continue;

q->type = tf[i].type;
…
__set_bit(q->type, wfilter->type_filter);
q++;

}
}

type compare with 0x80 when

compute the number of filters

but type compare with 0x400

when populate and set_bit!!!

Primitive #1:
Out of bound populate!
for (i = 0; i < filter.nr_filters; i++) {

if (tf[i].type >= sizeof(wfilter->type_filter) * BITS_PER_LONG)
continue;

q->type = tf[i].type;
/*use q to copy the filter*/
…
q++;

}

Primitive #2 :
Out of bound set_bit!
#define BIT_MASK(nr) (UL(1) << ((nr) % BITS_PER_LONG))
#define BIT_WORD(nr) ((nr) / BITS_PER_LONG)

static inline void __set_bit(int nr, volatile unsigned long *addr)
{

unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
*p |= mask;

}

#BHUSA @BlackHatEvents

Exploit CVE-2022-0995
• We use primitive #2 for exploit , modify the 6th bit of the page* in the

pipe_buffer, making two pipe_buffer->page points to the same page.

type_filter

pipe_buffer

*page

pipe_buffer

*page

page

page

0xff….40

0xff….00

Trigger the
vulnerability

type_filter

pipe_buffer

*page

pipe_buffer

*page

page

page

1 0xff….00

0xff….40

low
address

high
address

#BHUSA @BlackHatEvents

Exploit CVE-2022-0995

• Close one of the pipe_buffer to free the page, creating page UAF

page

type_filter

pipe_buffer

*page

pipe_buffer

*page
Freed

physical

page

Dangling

Free

#BHUSA @BlackHatEvents

Exploit CVE-2022-0995
• Spray “/etc/passwd” or suid struct file objects to realloc the uaf page.

• Write to uaf pipe_buffer to modify the file->f_mode to O_RW.

• Edit the passwd or suid file to get root.

Write

page

File

f_mode

type_filter

pipe_buffer

*page

pipe_buffer

*page

Dangling

Free

#BHUSA @BlackHatEvents

Demo: SLAB_VIRTUAL and CFI enabled

#BHUSA @BlackHatEvents

Demo: SLAB_VIRTUAL and CFI enabled

#BHUSA @BlackHatEvents

Advantages of PageJack

Pivoting KASLR bypass Cross cache Corrupt Target

Typical:

Pivoting Corrupt Target

PageJack:

#BHUSA @BlackHatEvents

Black Hat Sound Bytes

• A novel OS kernel data-only exploit technique

Bypass CFI

• Applicable for a variety of vulnerabilities in the real world

Linux and Android, vul type: OOB, UAF, double free

• Bypass mitigations, fewer steps, and improve stability

KASLR, SLAB_VIRTUAL

#BHUSA @BlackHatEvents

Thank you!

More exploits with PageJack: https://github.com/Lotuhu/Page-UAF

White paper: https://arxiv.org/abs/2401.17618

@pkqzy888

zhiyunq@cs.ucr.edu https://www.cs.ucr.edu/~zhiyunq

https://github.com/seclab-ucr

https://github.com/Lotuhu/Page-UAF
https://arxiv.org/abs/2401.17618
mailto:zhiyunq@cs.ucr.edu

	Slide 1
	Slide 2: Who we are
	Slide 3: OS kernel exploits
	Slide 4: Control-flow integrity
	Slide 5: Control-flow hijacking vs data-only attack
	Slide 6: Previous data-only attacks
	Slide 7: Previous data-only attacks
	Slide 8: Previous data-only attack
	Slide 9: Previous data-only attack: cross-cache challenge
	Slide 10: Previous data-only attack: cross-cache challenge
	Slide 11: Previous data-only attack: cross-cache challenge
	Slide 12: Previous data-only attack: cross-cache challenge
	Slide 13: Previous data-only attack: cross-cache challenge
	Slide 14: Previous data-only attack: limited write capability
	Slide 15: Previous data-only attack: pivot OOB to UAF
	Slide 16: Previous data-only attack: pivot OOB to UAF
	Slide 17: UAF to privilege escalation
	Slide 18: UAF to privilege escalation
	Slide 19: UAF to privilege escalation
	Slide 20: UAF to privilege escalation
	Slide 21: UAF to privilege escalation
	Slide 23: UAF to privilege escalation
	Slide 24: UAF to privilege escalation
	Slide 25: UAF to privilege escalation
	Slide 26: UAF to privilege escalation
	Slide 27: UAF to privilege escalation
	Slide 28: UAF to privilege escalation
	Slide 29: Review typical kernel exploit steps
	Slide 30: Review typical kernel exploit steps
	Slide 31: Page UAF to the rescue
	Slide 32: Page UAF to the rescue
	Slide 33: PageJack: a new exploit strategy
	Slide 34: PageJack: pivoting relative writes to page UAF
	Slide 35: PageJack: pivoting relative writes to page UAF
	Slide 36
	Slide 37: PageJack: pivoting relative writes to page UAF
	Slide 38: PageJack: tamper with critical objects
	Slide 39: PageJack: tamper with critical objects
	Slide 40: CVE-2022-0995
	Slide 41: Exploit CVE-2022-0995
	Slide 42: Exploit CVE-2022-0995
	Slide 43: Exploit CVE-2022-0995
	Slide 44: Demo: SLAB_VIRTUAL and CFI enabled
	Slide 45: Demo: SLAB_VIRTUAL and CFI enabled
	Slide 46: Advantages of PageJack
	Slide 48: Black Hat Sound Bytes
	Slide 49: Thank you!

