
White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 1

White Paper(Super Hat Trick:
Exploit Chrome and Firefox Four
Times)

Background
With the widespread use of the JavaScript language, JavaScript engines are
becoming increasingly feature-rich. There are various JavaScript engines, such as
V8 used by Google Chrome and SpiderMonkey used by Firefox. From runtime
support to compilation optimization, they add a lot of new code, but with it comes
a bunch of hidden security issues. We have once again identified four high-risk
vulnerabilities in these new implementations: one is related to a classic callback
issue within the new runtime support implementations, another is related to type
confusion caused by missing type checking in the compilation optimization, and

Background
Callback issue in runtime support

Background
Root cause analysis
How to exploit

Incorrect Assumption on JS Map
Background
Root cause analysis
How to exploit

Initialization Flaw in WebAssembly Instances
Background
Root cause analysis
How to exploit

Integer Overflow in WebAssembly JIT
Background
Root cause analysis
How to exploit

Conclusions

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 2

the remaining two are related to wasm gc issues—improper initialization order and
integer overflow, resulting in controllable out-of-bounds read/write.

Callback issue in runtime support

Background
The first part is a callback issue, which is hidden in the runtime support code
logic, and is related to a new Javascript proposal. Before dive deeper into the root
causes of vulnerability, let's first have a brief understanding of the background
knowledge.

In 2015, a new data structure Set , was introduced into the Javascript, to make the
developer more easier to code. However, as you can see, the functions available
in this Set structure are very limited, providing only some very basic methods.

So, all of these methods operate on the Set itself, so if we want to perform some
operations on two Sets, such as getting their intersection or union, what should
we do? The answer is simple: you have to write your own functions to handle this
situation. You need to traverse the two Sets, compare the elements, and then take
out the elements that meet the conditions and put them into a new set, and return
the set to the caller. The whole process is very tedious.

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 3

So, TC39 has made a new proposal in the last two years that introduces more
useful methods for the Set data structure, such as union and intersection. And
you do not need to write your own function any more. It is very convenient for you
to compare and operate on both Set. However，v8 engine introduced a callback
vulnerability when try to support this feature.

Root cause analysis
Lets take a look at the Proof of concept.
As you can see, the poc is pretty simple. First we create two different set
structure, then define a callback function on one of the sets, and then call the
isDisjointFrom function to operate both of sets. This callback function will be
trigged when v8 try to take the value of property ‘sizeʼ on v1. In this callback
function, it only clear all the elements on v0 set. And the method isDisjointFrom
will triggers this callback function internally.

const v0 = new Set();

const v1 = new Set();

Object.defineProperty(v1, "size", {

get: function () {

v0.clear();

return 1;

},

});

v0.isDisjointFrom(v1);

The following figure shows the error output of v8 when try to execute the POC.
The error message suggests that there may be a type confusion vulnerability
because it tries to use an object as if it were an object of another type, which
triggers a debug check.

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 4

How this vulnerability is trigged? Actually itʼs very easy to understand. Lets take a
look at the v8 source code. When executing new implemented methods on Set, v8
first try to take out the pointer of backing store from the JSSet object, and store it
into variable |table|. Then, v8 execute GetSetRecored function, triggering user-
defined callback function when fetching the value of property ‘size .̓ However, the
v8 developers did not take into account a side effect of the GetSetRecord
function, which can cause the previously fetched pointer to become obsolete.

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 5

How to exploit
When exploiting V8 vulnerabilities, one of the most common exploits is called
fakeobj. As the name suggests, if we can fake an actual memory-controllable
object to make it fake as a JS Arrray, we can use this fake JSArray to read and
write to arbitrary addresses in the V8 heap, and thus achieve RCE.

However, the hardest part of the whole exploit process is actually the first step;
how do we get such a memory-controllable object through the vulnerability? We
need to dig a little deeper to understand the related object model. As
demonstrated in the figure, there are two object model.

The first is JSSet. As you can see, JSSet holds a pointer to an OrderedHashSet. All
the elements of JSSet are actually stored in this OrderedHashSet. The second is
OrderedHashSet, and the underlying structure is an Array, so there is a
FixedArrayLength property stored behind the Map. The blue-marked element
count property is what we're going to focus on next. Normally it's a small integer
that represents the number of elements currently stored in the hash table.

Here's an example where we create a JSSet with integer 1 and integer 2, and the
element count on the table is 2. Let's dive even deeper into JSSet. Take a look at
the JS example.

let v0 = new Set([1, 2]);

%DebugPrint(v0);

v0.clear();

%DebugPrint(v0);

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 6

At first, we create a Set structure with two element. The internal memory layout of
V8 is consistent with the examples in the object model we introduced earlier. The
variable V0 take a pointer to an OrderedHashSet, storing two elements, and the
elements count property is a small integer of 2.

Can you still remenber the clear method invoked in POC? What happend if we call
the clear method on the set? After executing the clear function on variable v0,
something happend. v8 first create a new empty OrderedHashSet, then change
the pointer on the JSSet to point to this new hash table.
One thing we need to keep in mind is that with this new hash table, the element
count is still a small integer, 0. However, the element count property of the
OrderedHashSet structure that JSSet previously pointed to is modified to be a
pointer to the new hash table. That previous hash table was also considered
obsolete.

In this way, we can see that the table held in the v8 code after the vulnerability is
triggered will have its size property changed from a small integer to a pointer. In
this case, the property NextTable and the property element_count share the same
memory slot.

Get back to the vulnerability exploitation. From the previous analysis, we know
that the table variable holds an obsoleted hash table after the vulnerability is
triggered, and the size field on the obsoleted hash table is a pointer instead of a
small integer, which is called NextTable. So how do we leak a pointer to controlled
memory? Let's ignore whether the memory is controllable or not, and let's first try
to leak out a pointer to an object that shouldn't have been in the user layer in the
first place.

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 7

While browsing the source code, the method SetPrototypeUnion gets our interest.
This method will copy all the memory content from the obsoleted hashtable to a
new one, and uses this newly created Hashtable to create a new JSSet and return.
Since the Union method makes a complete copy of the entire obsoleted table.
Therefore, the table of JSSet returned by this method is also obsoleted.

Repeat again, the property NextTable and the propery size share the same
memory slot in OrderedHashSet. We can then try to leak this NextTable value by

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 8

accessing the size property of the JSSet. We have made very minor changes to
the POC. We replace the method called with union, and then we get and print the
size on the Set object returned by union function. You can see that it prints out the
internal structure OrderedHashSet, not a regular integer.

const firstSet = new Set();

const otherSet = new Set();

Object.defineProperty(otherSet, 'size', {

get: function() {

 firstSet.clear();

 return 0;

}

});

const unionSet = firstSet.union(otherSet);

const obj = unionSet.size;

%DebugPrint(obj);

But leaking out one such internal OrderedHashSet doesn't really help our exploit,
and we can't make any changes to this internal structure or read sensitive data. If
we can control the leaking NextTable pointer, offset this pointer slightly. This way,
the NextTable pointer in the obsoleted OrderedHashSet will be offset to user-
controllable memory, making it easier for us to subsequently fake the object.

Once again, since NextTable and size properties share the same memory slot in
obsoleted OrderedHashSet. We can manipulate the NextTable pointer by adding or
deleting elements on this JSSet, which holds this obsoleted OrderedHashSet.
When the NextTable pointer can be manipulated for a slight offset, what we only
need to do is lay out a user-controlled memory object, such as a JSArray, in front
of the obsolete OrderedHashSet object, so that the leaked pointer points to the
mid position on this JSArray, and we can modify the data on the JSArray as
expected, and then leak the NextTable pointer to the user for fake the objects.

Here, we start with a heap feng shui layout, carefully laying out the user-
controllable JSArray in a suitable memory location, and then performing multiple
delete operations on the obsoleted OrderedHashSet to offset the NextTable
pointer forward into this JSArray. Finally, the NextTable pointer is retrieved by

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 9

accessing the size property, which is then forged into a JSArray object of
sufficient length.

In this way, since we have successfully forged a JSArray object of controlled
length with a controlled backing store pointer, we have the ability to read and write
to arbitrary addresses within the V8 heap memory. At that time, the V8 heap
sandbox had not yet formed a security boundary, so we could exploit this
powerful vulnerability to reach remote code execution through this powerful
exploit primitive.

Incorrect Assumption on JS Map

Background
In the next part we are going to introduce the issue of missing checks due to
wrong assumptions in code optimization. This vulnerability and the classic
callback vulnerability above have relatively simple root causes, but this
vulnerability involves code optimization design, so it will be more difficult to
understand. We'll introduce with more background on this vulnerability. With a
better understanding of the background, the subsequent content can be more
easily understood.

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 10

The most important and complex part of the V8 engine is the compilation
optimization part. The first thing we need to understand is the design of
CheckMap node. As you know, the javascript is not a compiled language. There is
no way to do any advanced optimization of the target function without being able
to determine the type of the arguments, because the caller is likely to pass in a
variety of different types of arguments when calling the target function.

To get around this, V8 uses feedback from the function's previous execution to
assume the type of its arguments. There is an example of Javascript code
optimization. The function to be optimized, func, is allowed to take two arguments,
a and s. Afterwards, the function saves the value s to the x property of the
variable a.

function func(a, s) {

 a.x = s;

}

var obj = {x:0};

func(obj, 0);

%PrepareFunctionForOptimization(func);

func(obj, 0);

%OptimizeFunctionOnNextCall(func);

func(obj, 0);

Before we actually start optimizing this function, we pass in the same object to the
function to create some execution feedback of this function. After optimizing the
function func, the middle representation of the turbofan optimization is shown.
Let's ignore parameter 2 here, it's not our focus. Parameter 1 will be assumed to
be an object whose shape contains a property x. Parameter 2 will then be saved
directly to the property x of the object. This way, a simple type comparison is all
that is needed, and later operations on that parameter can be based on
assumptions about that type.

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 11

And this is what the CheckMap node does, when the optimized function is called,
the CheckMap node will determine whether the type of the current incoming
parameter is the expected one, if it is the expected one, then it will execute the
specialization code behind normally, if it is the non-expected one, then it needs to
un-optimize the function, to prevent the appearance of the type-confusion
vulnerability.

Let's see how CheckMap is implemented at the assembly code level. First, v8 will
try to get the incoming parameters from the stack to start two rounds of checking.
The first round of checks is to determine whether the argument is an object.
Since v8 enabled pointer compression when saving data, the lowest bit of the
small integer is not set and the lowest bit of the object pointer is set. If the
parameter is found not to be of object type, then jump directly to the un-optimize
exception routine, otherwise perform the second round of checking. The second
round of checking is very simple; it gets the address of the Map on the object
pointed to by that pointer. If the Map address of the passed-in parameter does not
match the optimization expectation, it means that some types were passed in that
were not taken into account when optimizing the function, and v8 will jump out to
perform the unoptimization operation.

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 12

In order to detect in time that the function has been passed an unintended type,
and also to prevent type confusion vulnerabilities, the CheckMap node checks the
types of the arguments. This check is a runtime check, and the incoming
parameters will be checked every time the function being optimized is executed.
When CheckMap checks for an unintended type, then the function will be
unoptimized and the slow path code will be executed instead. And this
unintended argument type will be taken into account in the next code optimization.

Since the CheckMap is a runtime check, it is necessary to perform this check
before assuming that the parameter is of a certain type, and then performe
refinement operations such as uncheck pointer dereference. This design
introduces some performance overhead because conventionally, a function's
arguments will always be of the same type. In this case, it is actually unnecessary
to check the type of parameters each time the function being called.

This brings us to the key point we're going to introduce, Map Dependency.

CheckMap is more like checking before a piece of code that relies on some type
assumption, kind of like a type guard. StableMapDependency is even more like
checking for the codes which is possible to break the type assumptions in
optimized function. If V8 finds a type transition during JS execution that might
cause an optimized function to break its type assumptions, then the function's
deoptimization callback function will be called immediately. Optimized functions
don't even need to be executed to be unoptimized early in this way to improve

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 13

efficiency. The most intuitive understanding is that if there is no path to transition
from one map to another, this map will be considered stable.
So for StableMapDependency, there are two way to hunt the vulnerabilities inside
this component. The first way is to find the logic where the compiler depends on a
map but forgets to register it. Another way is to try to find a code path to break
the type assumption without triggering the callback function that deoptimize the
code.

The commonality between these two ways is that they break the type assumption
on the optimized function, leading to a type confusion vulnerability. And the
vulnerability we discovered is the second scenario, where there is a way to trigger
changes in the relied Map, but it does not trigger the de-optimization of the
function.

Root cause analysis
Turboshaft is a new architecture for the top-tier optimizing compiler in v8. It is still
under development. In machine optimization reducer of turboshaft, V8 attemps to
optimize the map loads and directly operate on the objects. To keep the object
map assumption, v8 will attempt to create a Stable Map Dependence before
optimizing map loads.

In this code, you can see that it first checks whether the current map is stable, and
if so, creates a stable map dependency and optimizes the loads of that map.
However, there are slight discrepancies in determining whether a map is stable. It
is considered stable only when a map is not further specialized to other maps.
This approach is a bit interesting for primitive types such as String. Because
primitive types cannot be changed, the maps of these types are always
considered stable.

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 14

However, primitive objects do not necessarily mean that their Map will not change,
which allows us to try changing their type through primitive objects without
triggering an un-optimization callback. In this way, we will ultimately cause the
type confusion.

Due to the inability of StableMapDependency to detect map changes of primitive
types such as String, we can change the type of incoming parameters without
triggering an optimization callback, resulting in type confusion.

How to exploit
The entire vulnerability exploitation process is divided into three steps. The first
step is to prepare a specific type of string in advance, and then write a function to
be optimized, attempting to read the value from this string and return it. Then
trigger the code optimization of the function to establish a Stable Map
dependency on this string type. The second step is pretty easy. Just find a way to
change its map without changing its original type String). Attempting to trigger
garbage collection in this step usually has a miraculous effect. The final step is to
trigger type confusion and see if it can have a greater impact on vulnerability
exploitation.

Let's verify the vulnerability exploitation strategy. Firstly, we created a string
variable of type ThinString, highlighted in yellow in the code. Afterwards, we
created a function called CheckCS to be optimized, which has a simple function of
reading a value from a specific offset position in the variable str and returning it.
Then we optimize the CheckCS function manually. At this point, the CheckCS
function will establish a Stable Map Dependence for ThinString.

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 15

function get_thin_string(a, b) {

 var str = a + b;

 var o = {};

 o[str];

 return str;

}

var str = get_thin_string("bar");

function CheckCS() {

 return str.charCodeAt(8).toString(16);

}

%PrepareFunctionForOptimization(CheckCS);

CheckCS();

%OptimizeFunctionOnNextCall(CheckCS);

CheckCS();

print("Before gc: ");

print(CheckCS());

gc();

print("After gc: ");

print(CheckCS());

Before calling garbage collection, when we call the CheckCS function, we can
see that the entire function call process still returns the correct value. However,
after completing garbage collection, v8 immediately triggers a crash in next
function call, because the variable str changed its Map to SeqString during the
garbage collection process. However, CheckCS still operates on str as a
ThinString type, which triggers type confusion.

Let's take a look at these two different types of string object models. Each
different type of String will have two fields, which respectively store the hash
value and the length of the current string.
From the graph, we can clearly see that the ThinString object does not actually
store string data, but rather holds a pointer to SeqString. The string content is
actually stored in the memory of the SeqString structure. In other words,
ThinString is a reference to SeqString.

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 16

So, what happens if the optimized function mistakenly identifies SeqString as
ThinString?
The answer is obvious, we will be able to freely control the pointer values on the
ThinString structure. The process of type confusion can be shown in the figure
below. Before triggering garbage collection, the variable str references the
ThinString object, which in turn references the SeqString that actually stores
character data.

However, after triggering garbage collection, v8 discovered that SeqString was
already in the old generation memory, so there was no need to move the
ThinString object from the new generation memory to the old generation memory
and update the pointer on it. Instead, the pointing relationship of variable str can
be directly updated, pointing directly to SeqString, and releasing useless
ThinString.

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 17

Since the function CheckCS still assumes that the variable str is of type
ThinString, the operation of reading data from the string in the function will be
specialized to obtain the pointer on String, dereference it and read the data from
pointed memory. In this way, we can trigger vulnerability by adjusting the string
content to read arbitrary addresses within the V8 heap, thereby causing sensitive
information leakage. This shows how we trigger vulnerabilities to leak the base
address of the V8 heap.

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 18

After we trigger garbage collection, calling the CheckCS function will successfully
leak the base heap address. We created a string with the content of \1\0\0\0,
which represents a four byte data with a value of 1 at the memory level. In this
way, we can use this type confusion vulnerability to arbitrarily read data from the
first page on the V8 heap. Due to the fact that the first page of V8 heap contains a
large amount of V8 heap metadata, we can find the base address of the V8 heap
on that page, which is considered as sensitive information.

Because String belongs to Primitive type, we cannot make any memory
modifications through type confusion. However, from the vulnerability patch, it
can be seen that besides the String type, there are quite a few types that can be
attempted to trigger through this vulnerability. Due to time limits, we haven't done
any further research here, and you can give it a try if interested.

Initialization Flaw in WebAssembly Instances

Background
In 2019, a new proposal for wasm GC introduced several new types, making it
easier for developers to manipulate complex types such as reference types,

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 19

structs, and arrays.

With the support of garbage collection, a WebAssembly instance is initialized in
WasmInstance.cpp's Instance::init. It sequentially initializes imported functions,
memories, tables, labels, and types to ensure that complex types (such as structs
and arrays) are handled correctly during instantiation and execution.

Additionally, we briefly introduce an interesting feature in SpiderMonkey, namely,
array initialization expressions.

Array initialization expressions allow us to use them when adding tables. For
example:

(table (;0;) 2 9 (ref 1) i32.const 134217728 array.new_default 1

(table) is used to add a table.

2 and 9 represent the initial and maximum sizes of the table, respectively.

(ref 1 specifies the type of elements in the table.

i32.const 134217728 array.new_default 1 is an initialization expression that
generates an array of size 134217728 0x8000000 and initializes it with
default values.

Root cause analysis
Let's delve into the situation occurring in the Instance::init function in
WasmInstance.cpp . In this function, a WebAssembly instance initializes imported
functions, memories, tables, tags, and types sequentially. It's worth noting that
type initialization occurs after table initialization.

// Initialize function imports in the instance data

Tier callerTier = code_->bestTier();

for (size_t i = 0; i < metadata(callerTier).funcImports.length()

{

 JSObject* f = funcImports[i];

 MOZ_ASSERT(f->isCallable());

 const FuncImport& fi = metadata(callerTier).funcImports[i];

 const FuncType& funcType = metadata().getFuncImportType(fi);

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 20

 ...

}

// Initialize memories in the instance data

for (size_t i = 0; i < memories.length(); i++)

{

 const MemoryDesc& md = metadata().memories[i];

 MemoryInstanceData& data = memoryInstanceData(i);

 WasmMemoryObject* memory = memories.get()[i];

 ...

}

// Initialize tables in the instance data

for (size_t i = 0; i < tables_.length(); i++)

{

 const TableDesc& td = metadata().tables[i];

 TableInstanceData& table = tableInstanceData(i);

 table.length = tables_[i]->length();

 table.elements = tables_[i]->instanceElements();

 ...

}

// Initialize tags in the instance data

for (size_t i = 0; i < metadata().tags.length(); i++)

{

 MOZ_ASSERT(tagObjs[i] != nullptr);

 tagInstanceData(i).object = tagObjs[i];

 ...

}

// Initialize type definitions in the instance data.

const SharedTypeContext& types = metadata().types;

Zone* zone = realm()->zone();

for (uint32_t typeIndex = 0; typeIndex < types->length(); typeIn

{

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 21

 const TypeDef& typeDef = types->type(typeIndex);

 TypeDefInstanceData* typeDefData = typeDefInstanceData(typeInd

 ...

}

Next, let's examine the crucial source code snippet for initializing arrays using
array initialization expressions:

uint32_t elementTypeSize = typeDefData->arrayElemSize;

MOZ_ASSERT(elementTypeSize > 0);

MOZ_ASSERT(elementTypeSize == typeDef->arrayType().elementType_

CheckedUint32 outlineBytes = elementTypeSize;

outlineBytes *= numElements;

if (!outlineBytes.isValid() ||

 outlineBytes.value() > uint32_t(MaxArrayPayloadBytes)) {

 JS_ReportErrorNumberUTF8(cx, GetErrorMessage, nullptr,

 JSMSG_WASM_ARRAY_IMP_LIMIT);

 return nullptr;

}

...

outlineData = nursery.mallocedBlockCache().alloc(outlineBytes.va

...

arrayObj->numElements_ = numElements;

This code calculates the size of the array as elementTypeSize * numElements,
where elementTypeSize represents the size of each element and numElements
represents the number of elements. However, since the type is not yet initialized at
this point, all members of typeDefData are 0, causing elementTypeSize to be 0
as well. Consequently, the calculated total size of the array, outlineBytes, is also
0.

When outlineBytes is 0, a smaller memory space is allocated to store the array,
similar to calling malloc(0) in ptmalloc, which returns a heap block of size 0x20.

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 22

Meanwhile, numElements can be any controllable value, allowing us to perform
out-of-bounds reads and writes on the array.

How to exploit
If we can perform out-of-bounds reads and writes on arrays, we can further
construct attacks for Remote Code Execution RCE against SpiderMonkey.

Next, we will demonstrate how to leverage this vulnerability to perform out-of-
bounds reads of critical data. As for more advanced exploitation details, we'll
showcase them in the next vulnerability

In this script, we start by adding a global variable of type i32 using (global (;0;)
(mut i32 i32.const 0. This variable will serve as the offset for our out-of-bounds
read/write operations. Then, within the defined function, we use global.set to set
the value of this global variable to 0x1000, which will be used as the offset for
out-of-bounds read/write operations.
Next, we use
table.get to obtain the array pointer created earlier using an array initialization
expression. We also use global.get to obtain the previously set value of 0x1000
as the offset for our out-of-bounds read/write.

Finally, we use this offset within the array to retrieve the value at that offset using
array.get, and then we print it out.

const importObject = {

 "imports": {

 imported_func : (offset, num) => {

 console.log("[+] oob i32 offset: 0x" + offset.toString(16)

 console.log("[+] oob i32 result: 0x" + num.toString(16));

 },

 }

};

var wasm_code = wasmTextToBinary(`

(module

 (type (;0;) (func (param i32 i32)))

 (type (;1;) (sub (array (mut i32))))

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 23

 (type (;2;) (func (param i32 i32 i32)))

 (import "imports" "imported_func" (func (;0;) (type 0)))

 (func (;1;) (type 2) (param i32 i32 i32)

 i32.const 4096

 global.set 0 ;; Set the value of this global variable to 0x1

 global.get 0

 i32.const 0

 table.get 0 ;; Argument for kExprArrayGet ptr, here it repre

 global.get 0 ;; Argument for kExprArrayGet offset, here the

 array.get 1 ;; Perform out-of-bounds read of arr[0x1000] thr

 call 0

)

 (table (;0;) 2 9 (ref 1) i32.const 134217728 array.new_default

 (global (;0;) (mut i32) i32.const 0) ;; Add a global variable

 (export "main" (func 1))

)

`);

var wasm_module = new WebAssembly.Module(wasm_code);

var wasm_instance = new WebAssembly.Instance(wasm_module,importO

var f = wasm_instance.exports.main;

f();

By running this POC, we successfully leak the value.

Integer Overflow in WebAssembly JIT

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 24

Background
With the introduction of WebAssembly GC objects, Firefox has also implemented
related JIT Just-In-Time) optimization code for them. However, a latent integer
overflow issue in this optimization code leads to controllable array out-of-bounds
reads and writes.

Root cause analysis
In the SpiderMonkey engine used in the Firefox browser, when creating an array,
its size needs to be specified. This size is checked at runtime to ensure that the
allocated memory size does not overflow.

The branch responsible for checking the array size at runtime verifies whether
there is any overflow in the memory size required for array allocation. If an
overflow is detected, the program enters the out-of-line OOL path in C,
leading to program termination.

However, the overflow check performed by the multiplication uses signed checks,
which allows certain special values to bypass this check.

As a result, this issue leads to the possibility of integer overflow in arrays.

Let's delve into the proof of concept POC.

As you can see, the POC is straightforward. First, we create an array with an initial
value of 0x11223344, a size of 0x5, and an index of 0.

Then, we create another array with an initial value of 0x11223344 and a size of
0xffffffff (a special value that can bypass signed check overflow). We set its index
to 0.

var wasm_code = wasmTextToBinary(`

(module

 (type (;0;) (array (mut i32)))

 (type (;1;) (func))

 (func (;0;) (type 1)

 i32.const 287454020 ;; init value 0x11223344

 i32.const 5 ;; size 5

 array.new 0

 drop

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 25

 i32.const 287454020 ;; init value 0x11223344

 i32.const -1 ;; size 0xffffffff

 array.new 0

 drop

)

 (export "main" (func 0))

)

`);

var wasm_module = new WebAssembly.Module(wasm_code);

var wasm_instance = new WebAssembly.Instance(wasm_module);

var f = wasm_instance.exports.main;

f();

The image below shows the error output when SpiderMonkey attempts to execute
the POC. The error message indicates that the program has crashed.

How was this vulnerability triggered? It's relatively easy to understand. Let's take
a look at the SpiderMonkey source code.

When creating an array using array.new, the emitArrayNew function is called to
allocate the necessary memory for the array.

Then, the emitArrayNew function calls emitArrayAlloc.

bool BaseCompiler::emitArrayNew() {

 uint32_t typeIndex;

 Nothing nothing;

 if (!iter_.readArrayNew(&typeIndex, ¬hing, ¬hing)) {

 return false;

 }

...

 RegRef object = needRef();

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 26

 RegI32 numElements = popI32();

 if (!emitArrayAlloc<false>(typeIndex, object, numElements,

 arrayType.elementType_.size())) {

 return false;

 }

 ...

 return true;

}

The emitArrayAlloc function is responsible for generating code to allocate memory
for the array. In this function, the wasmNewArrayObject function is called.

template <bool ZeroFields>

bool BaseCompiler::emitArrayAlloc(uint32_t typeIndex, RegRef obj

 RegI32 numElements, uint32_t e

{

 // We eagerly sync the value stack to the machine stack here s

 // confuse things with the conditional instance call below.

 sync();

 ...

 masm.wasmNewArrayObject(instance, object, numElements, typeDef

 &fail, elemSize, ZeroFields);

 ...

 return true;

}

The purpose of the wasmNewArrayObject function is to allocate memory and
initialize a WebAssembly array object. In it, branchMul32 is used to calculate the
total size of the array by multiplying elemSize * numElements and checking for
overflow. elemSize represents the size of the elements (which is 4 in this case),
and numElements represents the number of elements (which is 0xffffffff passed
in).

In other words, here we have 0xffffffff * 0x4, which obviously results in an
overflow for a 32-bit integer.

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 27

void MacroAssembler::wasmNewArrayObject(Register instance, Regis

 Register numElements,

 Register typeDefData, Re

 Label* fail, uint32_t el

 bool zeroFields) {

 ...

 // TODO: Compute the maximum number of elements for each elemS

 // single branch up front rather than checking overflow consta

 // Compute the size of the allocation in bytes, checking for o

 // of overflow, we'll just fall back to the OOL path in C++, w

 // and all that. The final size must correspond to an AllocKin

 // overflow vs. unsigned overflow doesn't matter; any overflow

 // we are too big and must bail to C++.)

 //

 // See WasmArrayObject::calcStorageBytes and WasmArrayObject:

 //

 // We start with elemSize * numElements and go from there.

 move32(Imm32(elemSize), temp);

 branchMul32(Assembler::Overflow, temp, numElements, &popAndFai

 ...

}

However, SpiderMonkey developers did not consider that signed overflow check
(jo jump instruction) should not be used here. This oversight allows us to bypass
this condition with special values like 0xffffffff, resulting in a large numElements but a
small amount of allocated memory for the out-of-bounds read/write array.

The provided JavaScript code crashes because array.new initializes the memory
after allocating it. However, we obtain an array with a large numElements but a
small amount of allocated memory, causing the array to initialize out of bounds
and crash the program. To perform stable out-of-bounds read/write without
crashing the program, we simply need to replace array.new with
array.new_default. This way, out-of-bounds initialization during array creation is
avoided, preventing program crashes and enabling further exploitation.

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 28

How to exploit
When exploiting SpiderMonkey vulnerabilities, we typically aim to construct
primitives for arbitrary read and write operations. With these primitives in hand,
we can achieve Remote Code Execution RCE on SpiderMonkey.

In the Root Cause Analysis phase, we've identified an out-of-bounds read/write
array. However, the most challenging part of the entire exploitation process is how
we can leverage this vulnerability to obtain an array for arbitrary read/write
operations.

To understand this, we need to delve deeper into the relevant object model. As
depicted in the image below, this is an object model created by array.new
WasmArrayObject):

The first two members are inherited from WasmGcObject and JSObject objects,
which are not our focus. The members we need to pay attention to are highlighted
in blue, namely numElements_ and data_.

numElements_ represents the number of elements, which can be specified by our
parameters.

The data_ pointer points to the beginning of where the array's data is stored,
typically located just after the WasmArrayObject object, as shown in the diagram:

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 29

If we use array.new to create two arrays, what would the memory layout look like?

The starting position of the second array object will be after the memory region
where the first array stores its data. In other words, if the first array is an out-of-
bounds read/write array, we can read all data after the first array's data area out
of bounds, and at the same time, we can also modify all data after the first array's
data area out of bounds.

Returning to our initial question, how do we convert this out-of-bounds read/write
into arbitrary read/write?

First, we can utilize out-of-bounds read to read stack data after the first array's
data area. For example, we can read the array content pointed to by the data_
pointer of the second array (which can be an object, integer, or floating point
number), or we can read the data_ pointer of the second array (which is a stack-
related address). This way, we can obtain a stack-related address.

White Paper(Super Hat Trick: Exploit Chrome and Firefox Four Times) 30

Through this powerful exploitation primitive, we can leverage this potent
vulnerability to achieve Remote Code Execution.

Conclusions
First. The code in the runtime components generally does not have too many
vulnerabilities.

Because the code in runtime is easy to understand, it is highly likely to be
discovered by the previous team. Therefore, if you want to explore something
here, it is very necessary to pay more attention to the newer implementations or
proposals.

Second. It is important to understand and explore the possible attack surface on
some design. Think more about whether there are ways to break the expected
assumptions in v8 code, just like we tried to find possible attacks on
StableMapDependency.

And the last point, don't be afraid to analyze the root cause of the vulnerability
and don't worry about not being able to exploit a particular vulnerability. We just
need to do this with the mentality of challenging difficult problems and learning
knowledge, and we will find a lot of fun.

