

AUGUST 7-8, 2024

BRIEFINGS

From HAL to HALT: Thwarting Skynet's Siblings in the GenAl Coding Era

Chris Wysopal

Co-founder & CTO, Veracode

One of the 1st vulnerability researchers, member of hacker think tank, L0pht in 1990s

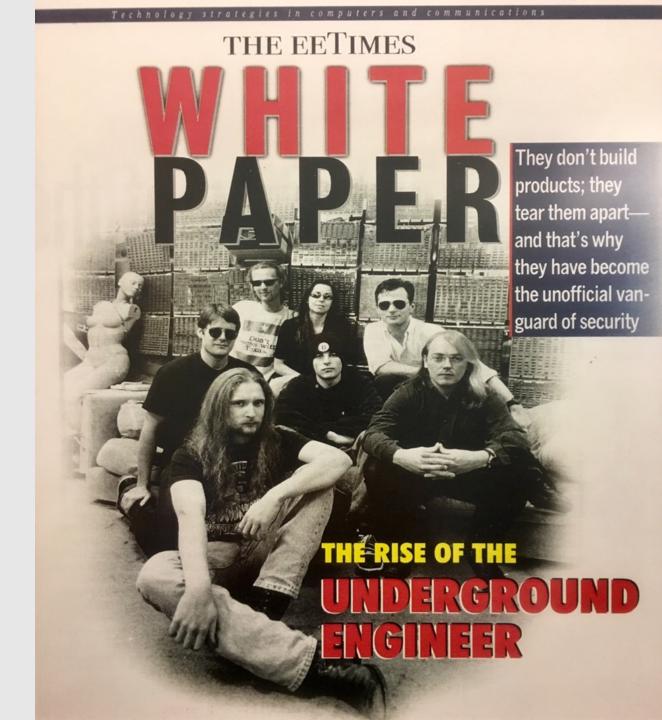
Unites States Senate testimony - 19 May 1998

Into the light: Once shadowy computer code warriors like Kingpin are going legit

Using Good Hackers to Battle Bad Hackers

you could become a dot-com millionaire, think again. Last week a scraggly band of hackers known as "LOpht Heavy Industries" joined with some straitlaced tech execs to form @Stake, an Internet-security consulting firm.

Improve the Security of Your Product by Breaking Into It

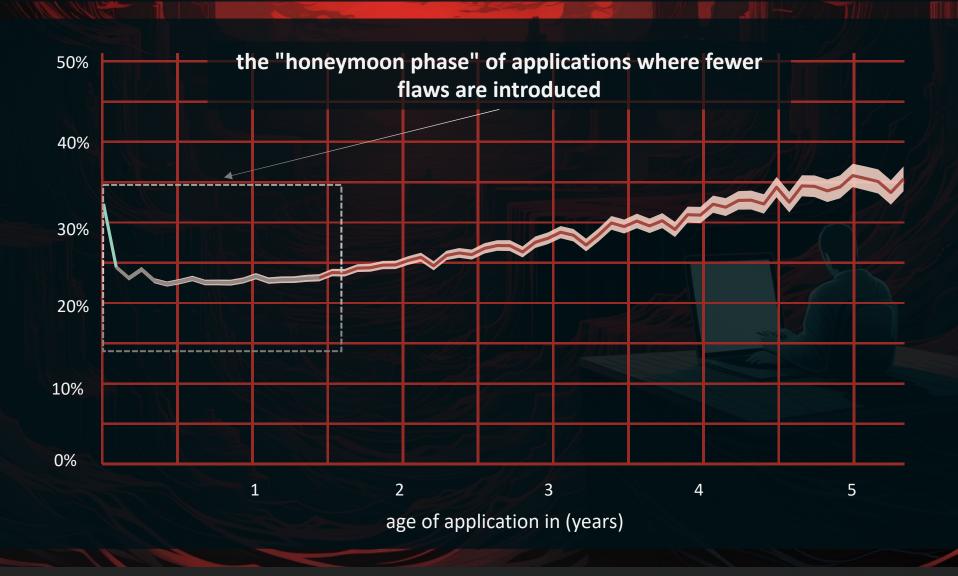


Founded @stake security research team and then Veracode to build security into SDLC

State of Software Security 2024

Addressing the Threat of Security Debt

new flaws introduced by application age



organizations are drowning in security debt

70.8%

of organizations have security debt 45%

of organizations have critical security debt

- security knowledge gaps
- increased application complexity
- incomplete view of risk
- evolving threat landscape

Let's add the exciting potential of large language models that can write code!

Developer GenAl use right now

Generating code

Understanding code/Code review

Remediating defects

Translating programming languages

Creating and maintaining unit tests

Writing documentation

Emerging dev uses for GenAl

Learning about the code base

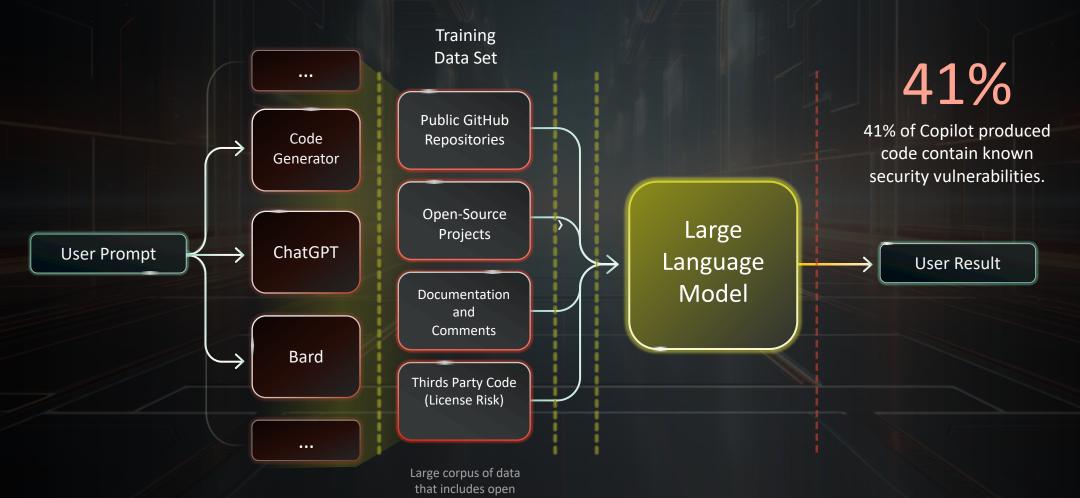
Searching for answers to avoid reinventing the wheel

Reading log files to find a root cause

Creating and running functional & non-functional tests

Remediating security vulnerabilities

Large Language Models



web content.

VERACODE

Security Implications of LLMs

Wuhan University Study on Al Code Generators

36%

Out of the 435 Copilot generated code snippets found in repos 36% contain security weaknesses, across 6 programming languages.

New York University Study on GitHub Copilot

41%

Of 1689 generated programs 41% of Copilot produced programs contained vulnerabilities

Stanford University Study on Al Code Generators

Developers using LLMs were more likely to write insecure code.

They were more confident their code was secure.

Purdue University on ChatGPT accuracy

52%

52% of ChatGPTs answers were incorrect.

Developers preferred them 35% of the time yet 77% of those answers were wrong

Asleep at the Keyboard? Assessing the Security of GitHub Copilot's Code Contributions

Do Users Write More Insecure Code with Al Assistants?

Who Answers It Better? An In-Depth Analysis of ChatGPT and

SALLM Framework For measuring LLM vulnerability generation - Notre Dame

VULNERABILITIES FOUND IN THE CHATGPT-GENERATED PYTHON CODES

Vulnerable@k metric best to worst:

StarCoder GPT-4: GPT-3.5:. CodeGen-2.5-7B:

CodeGen-2B:

CWE Name	CWE Top-25 Rank	# Vuln. Samples
CWE-312 Cleartext Storage of Sensitive Information	1125	14
CWE-798 Use of Hard-coded Credentials	18	5
CWE-208 Observable Timing Discrepancy	-	3
CWE-215 Insertion of Sensitive Information Into	_	3
Debugging Code		
CWE-338 Use of Cryptographically Weak Random	-	3
Generator		
CWE-79 Cross-site Scripting	2	2
CWE-209 Generation of Error Message Containing	-	2
Sensitive Information		
CWE-287 Improper Authentication	13	1
CWE-295 Improper Certificate Validation	-	1
CWE-918 Server-Side Request Forgery	19	1

Generate and Pray: Using SALLM to Evaluate the Security of LLM Generated Code

Mohammed Latif Siddiq, Joanna C. S. Santos, Sajith Devareddy and Anna Muller Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN USA 46556

Abstract—With the growing popularity of Large Language Medic (LLMs) is suffrauer engineers' daily practices, it is important to ensure that the code generated by these tools in out of such causer that the code generated by these tools in the control of the code generated by these tools in our day to the control of the code generated by these tools in our day to the control of the code generated by these tools in our day to the control of the code generated by the control of the code generated that the code generated in the code generated that the code generated that the code generated code generated that the code generated code generated that the code generated code generated g

A code LLM is a Large Language Model (LLM) that has been With the widespread adoption of LLM-based code assistants A cost LLO is a Lingt Language Model (LLA) in that also effects the second of the Meast Cook substance and the second consistency of both rar and coeff |
As a result, code LMs can generate code winters in a specific programming language from a given prof. These prompts provide a high-level specification of a developer's intent [2] falfill this need, this paper describes a framework to perform and can include single/multi-line code comments, tode **
Security Assessment of LLMS (SaLIA). Our framework is the security assessment of LLMS (SaLIA) assessment of LLMS (SaLIA) as the security assess pressions (e.g., a function definition), text, or a combination includes a (1) a manually curated dataset of prompts from of these. etc. Given a prompt as input, an LLM generates a variety of sources that represent typical engineers' intent; tokens, one by one, until it exchess a stop sequence (i.e., a (2) an automated approach that relies on static and dynamics).

analysis to attonutatile valuate the security of LLM gra-temaned.

LLM-based source code generation tools are increasingle being used by developen: in order to reduce software developence efforts, 10.3 recent survey with 500 US-based of generating secure code.

29.5 of them are using LLMs to generate code for work and recent and the security of generate code for work and recent and the security of the security developers who work for large-sized comparies forword had personal use [4]. Part of this fast widespread adoption is due to the increased productivity perceived by developers; LLMs — A powel framework to systematically and auton personal use [4]. Part of this fast widespread adoption is due to the increased productivity perceived by developers; LLMs — A policy available dataset of Python prompts'; help them to automate repetitive tasks so that they can focus

the generated code [10], [11]. Second, existing evaluation metrics (e.g., pass@k [12], CodeBLEU [13], etc.) assess models performance with respect to their ability to produce function ally correct code while ignoring security concerns. Therefore the performance reported for these models overly focuses on improving the precision of the generated code with respect to passing the functional test cases of these benchmarks without evaluating the security of the produced code.

https://arxiv.org/abs/2311.00889

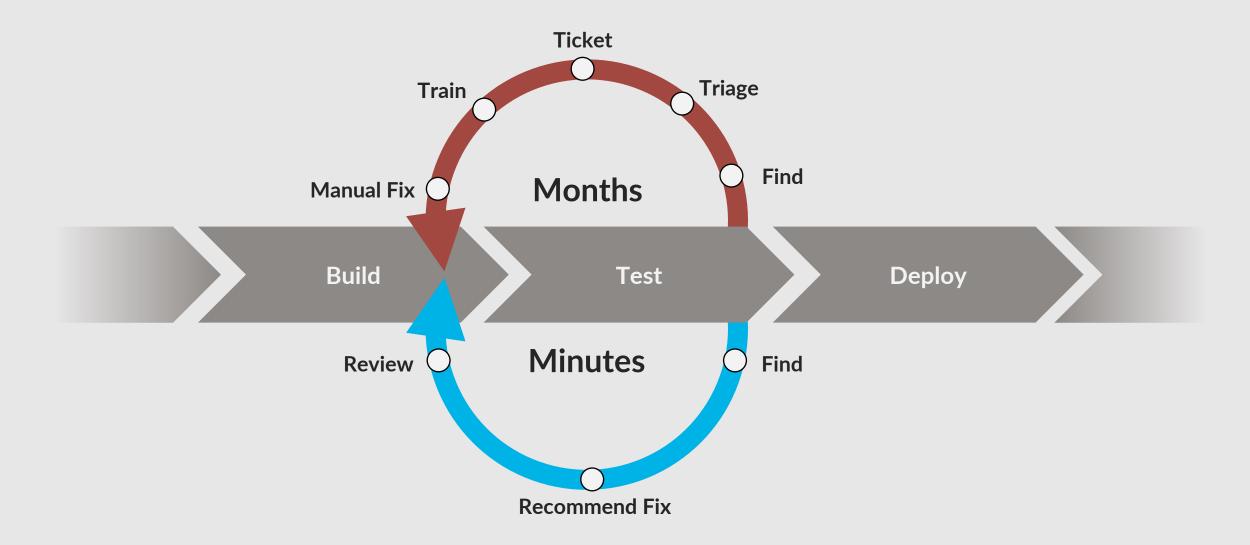
Implications of LLM code generation

Code reuse goes down
Code velocity goes up
Vulnerability density
similar

Increased Vulnerability Velocity

How can we apply AI to the problem of insecure code, but in a more accurate and trustworthy manner?

We need a faster test and fix workflow



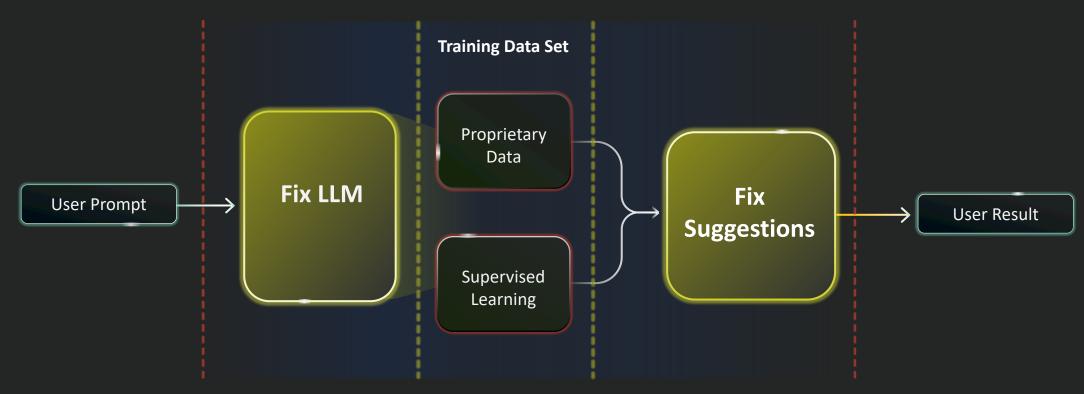
Training data set: Java XSS

```
public void doGet(HttpServletRequest req, HttpServletResponse resp) {
    String name = req.getParameter("name");
    String[] array = new String[10];
    array[0] = name;
    PrintWriter writer = resp.getWriter();
   writer.println("Hello " + array[0]); 			 Cross-site scripting (CWE 80)
public void doGet(HttpServletRequest req, HttpServletResponse resp) {
    String name = req.getParameter("name");
    String[] array = new String[10];
    array[0] = name;
    PrintWriter writer = resp.getWriter();
    writer.println("Hello " + StringEscapeUtils.escapeHtml4(array[0]));
```

Fix Approach

Curated Dataset

Code Provenance Assurance Coverage all that matter

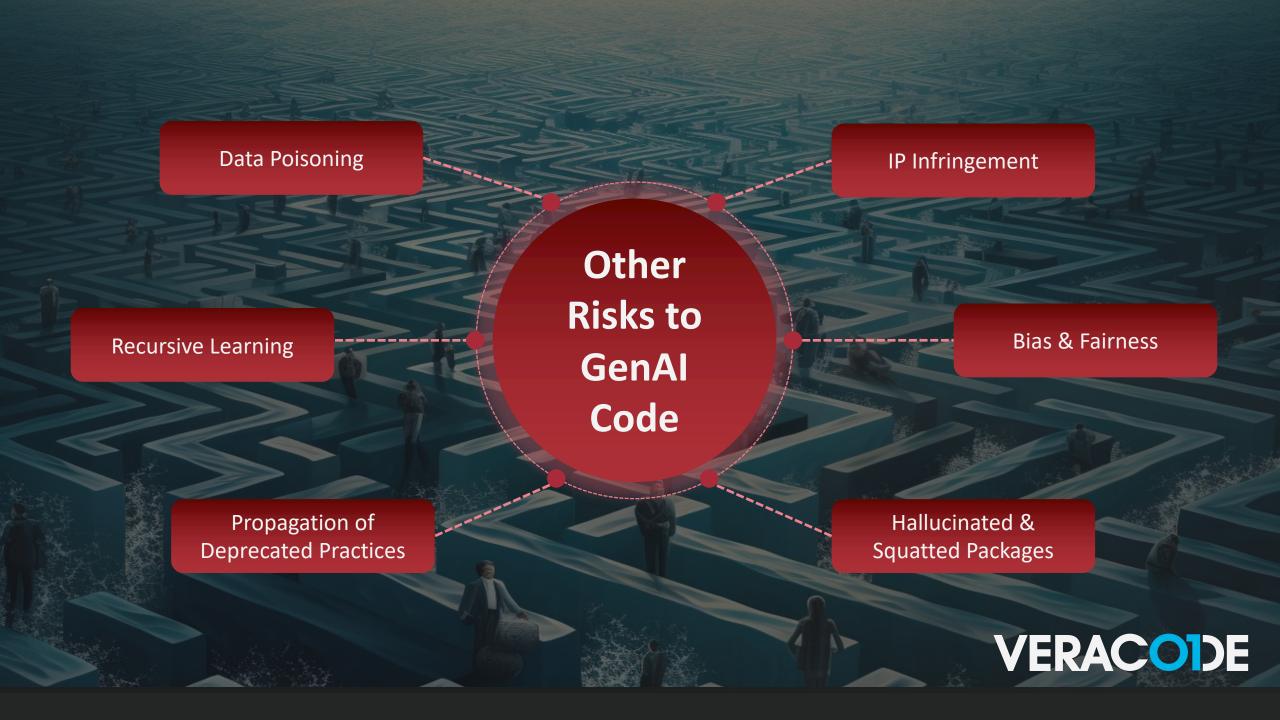


Recommendations for AI and code security

Consider the implementation details before leveraging AI for developing and/or securing code

- What does the ML model use for training data?
- Is that training data trustworthy/vetted?
- Are there licensing issues with generated code?
- Is any of my intellectual property being leaked?
- How accurate are the generated fixes?

Be aware of human biases that trick us into feeling overly confident about the correctness of Al-generated content



GenAl in dev is a powerful tool that requires the same level of security scrutiny and best practices as any other aspect of software development

Include security considerations in GenAl prompts

Automate as much of security process as possible, including automated fixing

Chris Wysopal
Co-founder & CTO Veracode
@weldpond

