@\ | ; :
S S &

=\ \ &/

<X
2
3
~ >
~ N
o

blackhat -
USA 2024

AUGUST 7-8, 2024

BRIEFINGS

From HAL to HALT: Thwarting
Skynet's Siblings in the GenAl
Coding Era

Chris Wysopal

Co-founder & CTO, Veracode VE RACO])E

BBBBBBBBBBBBBBBBBBBB

One of the 15t vulnerability researchers, member

of hacker think tank, LOpht in 1990s

ww'.’ 3] |

Unites States Senate testimony - 19 May 1998

Using Good Hackers to
Battle Bad Hackers

you could become a dot-com millionaire,

I FYOU HAVEAMURKY PASTAND DOUBT
think again. Last week a scraggly band of

hackers known as “LOpht Heavy Industries”
joined with some straitlaced tech execs to
form @Stake, an Internet-security consult-
ing firm.

Into the light: Once shadowy computer code
warriors like Kingpin are going legit

Newsweek, January 17, 2000

Improve the
Security of
Your Product
by Breaking
Into It

s 1 o strategies in computers an

E They don’t bui
products; t
tear them apart
et | Lomrdihell and that's why
= maois Lo s they have become
"‘.’?s:: the unofficial van

ol UNNEEROUND
JENG LL__S-, Sish

Founded
@stake security
research team
and then
Veracode to

build security
into SDLC

State of Software
Security 2024

Addressing the
Threat of Security, Dept

new flaws introduced by application age

50% the "honeymoon phase" of applications where fewer
flaws are introduced

40% /

30%

pA

10%

0%

1 2 3 4 5

age of application in (years)

organizations are
drowning in security debt

70.8% 45%

of orgonizotions of orgonizotions

have security have critical
debt security debt

2 out of 10

applications show an
average monthly fix rate
that exceeds

ten percent of all security
flaws.

why software 9
security is hard

e

" security knowledge gaps
= increased application complexity
= incomplete view of risk

= evolving threat landscape

Let’s add the
exciting
potential of
large language
models that
can write code!

Developer GenAl use
right now

Generating code

Understanding code/Code review
Remediating defects

Translating programming languages
Creating and maintaining unit tests

Writing documentation

Emerging dev
uses for GenAl

Learning about the code base

Searching for answers to avoid
reinventing the wheel

Reading log files to find a root
cause

Creating and running
functional & non-functional

tests

Remediating security
vulnerabilities

Large Language Models

Training
Data Set
' " 41%
Yo \ it 0
/_'-‘_\ I P q . ' '
: ublic GitHub | | i
Code : Repositories S/ 41% gf COpLI()_t T(mduced
(E code contaln Known
Gens iy I > < I I security vulnerabilities.
AR I Open-Source I I (\
: - '
p : Projects I) 'S La rge
I I I
I User Prompt }% ChatGPT : > < : >|~9 Language %(User Result I
- I Documentation I | I
| nenta) Mode
I I I
C t \
: L omments) : :) /
\9 Bard ' ' :
P 4 N | '
: Thirds Party Code : :
—— I (License Risk) ﬁl-) I
I 1k
I ! !
’ ! !

Large corpus of data
that includes open
web content.

VERACODE

Security Implications of LLMs

Wuhan University Study New York University Study Stanford University Study Purdue University
on Al Code Generators on GitHub Copilot on Al Code Generators on ChatGPT accuracy

6% 4 1 % Developers using LLMs were 5 2 %

more likely to write insecure

Out of the 435 Copilot generated Of 1689 generated programs 41% of code. 52% of ChatGPTs answers were

code snippets found in repos Copilot produced programs _ _ incorre
36% contain security contained vulnerabilities They were more confident their

weaknesses, across 6 code was secure.
programming languages.

Developers preferred them 35%
of the time yet 77% of those
answers were wrong

Security Weaknesses of Copilot Generated Code in GitHub ‘Who Answers It Better? An In-Depth Analysis of ChatGPT and

9 Acsecsi i i ?
Asleep at the Keyboard? Assessing the Do Users Write More Insecure Code with Al Assistants? Stack Overflow Answers to Software Engineering Questions

Security of GitHub Copilot’s Code Contributions Neil Perry’ Megha Srivastava Deepak Kumar Dan Boneh,

‘eng Lia
School of Computer Science Schoolof ComputerScence
Waban University

Wahan, China

Stanford Usiversity it Stanford University /UC Stanford Uiy ‘Samia Kabir Dutid N, Udo meh
i D e i O

st Lafayete et
Sabiromiueodn andomhomieeds

yolia_fu@whueduen

Hammond Pearce Baleegh Ahmad Benjamin Tan _ Brendan Dolan-Gavit .
Depurtment o ECE of ECE Departnent of CSE om.m,,.m. e ABSTRACT ik of AL ssistants I th context of b develoers choos

atahir@maseyacaz ol BCE - Deputnent Depurment o SE Dptimntof O et ot o o s T e
Usa NY, U Broo SR Doty NY. US4 s .;L;!im‘f..‘h

onyucda berjamin anl Gueigayca breandi@nycda am@nyueda S et A el e

Conen o ok age o . 1o s o et i devsopers s

Zengyang Li ojtaba Shahi Jiaxin Yu
ol of Computer Science. puting Technologies School of Computer Science
Conral China Norma Uiersity R Wahan University
Jhan, China urne, Austali ‘Waban, China
o O o @ jiaxinyu@whu cducn

onan Kou Tianyi Zhang

Purdue University Purdue University

3

West Lafayette USA West Lafayete,
Koub@purdue.du tianyi@purduc.du
ABSTRACT 1 INTRODUCTION
-« Plredscrualricin St deroprs o s 0 s
n k5. A eing n,g,...,.; com
o of cod or conceps . 55,57, 6] A
i i mm e mgnmmmrwm
50) (5

93

tersct with Al code s - teracto
Overall, we fnd that s, o
et e 1y et

021
0:

ABSTRACT suggested cod.I s shows that prsciioners should cultivate
Modern code generation tols use Al o o poning ey s nd el
s (LM
CCS CONCEPTS
Softvar o cgincring — Sftvaredevclopment -
niques; Security and privacy — Software security engineer-
ing.

oo ks saning e it sogmming
s 4). Ourstdy i divn by thre

=

ere o
e o g o o e e

Inbe meremien oty v e o To bt

nformthe desi of futuze AL i

dec

R Do e s e o e g
o Al rogrurmning ssisace?

« R Do et it AL st o wie s

+ RO How do sers Langusgesnd bebavio ien teracting

with Al ssstat affc the degre of seurity ulnerabile

o e i o gonion o v,

16T

Y ssemasaly parimen i ol v e n..-m,
o e que
compce

i)
tobuldon

R] 18 Dec 2

e e of L g ks (1140 o e
il oo

KEYWORDS
Code Generaton, Security Wesknesses, CWES,Gihub Copilt

o ces concEpTS
v many ope aucsion shout the e

eertedcoi et imegton ey e sty

s el e e e i o ——
contcedan e sty b i ity we o ,.k,MM..W .mm_w”.muu» n

cuity and privacy — Human and societal spects of se- .
skness Enumeraions (CWES), from their 2021 CWE ity and privacy | Pt it s o Al ot e s
Top 25 Most Dangerous \u(lw‘r:\ et w tist. This ot o ol o vl et Al s o
the. it KEYWORDS o of oue n,,wm?.mm.» sk, W modeled users” ecur
evie seippes pmerand by r.mm..w m. fhirmered
e

v3

oveon ik connling for g pror
s ‘=’-‘= e e | s ity s, prev sramming e o nd

o o Coplot o comple, The AT's docu . cuty St St o T s i s am Al tint
O s, . found pproimetey el e e i e TnmA«mm»n
s wer p s

2

preimisn ity
INTRODUCTION recarity, Artfical Inteligence (A1), code

e e K, i
sencration, Common Weakness Enumerations (CWES)

oy ..,m,m.m,m. L) i eeding of e

N N ok,

oty Code generaton tools im to automatcally gene
S e e ok e, which ol e gt o
o e code (uch s nction e presions. arible
red codesppescotain CWES,and hose e v pead 1ame). or combiion o et and o] A wriing
e iy ey a0 intial code o comment, developes can ey o code gene
md et o den CWEx i CWET 05 Command 4100 b compet b emming e Th sprsch cn e
I, CWE 3 U gty o
Chuck o adingf m,umn i
2 CWEs e 1 of
g 022
nding o thsdeveaprs o b
code generated by Coplt (and s

< CCS CONCEPTS
TSR

ot deripns oV Sy cup,yuh i oo e i
widerable i toel diy for generating code that
3

are and ts engineers referencs

Soft
Empirica stdies

o
7a)
Q
N

e A.px.‘,m s wihon s , b
e iy

inerst i ol o KEYWORDS
low, g8, e angunge model.chatgpt Limliil b
ACM Reference Format Gongleyor widey wed G
S i Doy U, e Ko, Ty Zhang ‘Despie hencrasing popaiyof Chal P, concers urround
e e A e A T M..‘.;.,.“w_ i
oS ngetig Qo ik

arXiv:2211.0362:

e
et e e s
W s CoQL

o e e e 1o
broad overview of the types
ol sty Copln s mumm. o evrne, o
e el % ,v,.mr,.,-u T o s g et i ot N,
iing e o th pte o T e e o o
At o e s el iy o Co s s
cobo grerind by angngs s . 2 i Tl estaion s 1«

p ke Al code assistuats oy
initeanily bariera mmmmuxvm —
s deee e mlm.u iy, ey iy provide imesperienced
e fl By eleain o cxperimentdata
o s ot e bope o ot e ds s s o] b ot oy
LB D et sy 1y "nmw =n¢ i ‘-w(.,m o < o - ¥ et s e et e
v # MBI 101205 K. K Fwronct it y e 3 7 tant models bt also the variety of ways users may
when it is s lss frequenly seen

revslnceofmisinformaton, whic can sy il
e to opors s unca okingsoowes

on came with the emer
(LLMS). LM e decp leuming
Tanguage

SALLM Framework For measuring LLM vulnerability
generation - Notre Dame

VULNERABILITIES FOUND IN THE CHATGPT-GENERATED PYTHON

Vulnerable@k metric
best to worst:

StarCoder

GPT-4:

GPT-3.5..
CodeGen-2.5-7B:
CodeGen-2B:

CODES

CWE Name

CWE-312 Cleartext Storage of Sensitive Information
CWE-798 Use of Hard-coded Credentials

CWE-208 Observable Timing Discrepancy
CWE-215 Insertion of Sensitive Information Into

Debugging Code
CWE-338 Use of Cryptographically Weak Random
Generator

CWE-79 Cross-site Scripting

CWE-209 Generation of Error Message Containing
Sensitive Information

CWE-287 Improper Authentication

CWE-295 Improper Certificate Validation
CWE-918 Server-Side Request Forgery

CWE # Vuln.
Top-25 Rank Samples

14
5

Generate and Pray: Using SALLM to Evaluate the
Security of LLM Generated Code

Mohammed Latif Siddig, Joanna C. S. Santos, Sajith Devareddy and Anna Muller
Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN USA 46556

Abstract—With the growing populariy of Large Language Mod- Although LLM-based code gencration techniques may pro-

LMs)Insoftware engineer” dally practce, i is important ducefunctionally corrct code, prior works showed that

re that the code gencrated by nly oy o erabilites 2nd e
Tunctionally correct but also free of vulnerabilifies, Although !hc{“:ansz\lw F l;\cmlc code d“"lhhvulr;]mbl‘limc. and .d:ny'l‘ly
LLMs can help developers to be more productive, prior empirical STClls [SH-(8]. A prior study has also demonstrated that
studics have shown that LLMs can generate insecure code. There _{raining sets commonly used 0 train and/or fine-tune LLMs
are two tnnulbu“ll: hclnrs . the inseq n. contain harmful coding patterns, which leak to the generated
Fi luate LLMs do not adequatel code [9]. Moreover, a recent study [6] with 47 participants
represent gmmne oftware endnemn:lnh sensitive to security. (o4 hat individuals who used the codex-davinci-002
Tnstcad,they ar oftn based on compettive programming chal. 3y IH0IdUALS W he codexdavinci 00:
lenges or classroom-type coding tasks. In real-world IDD“(MIam‘ wrote code that was less secure compared to those who
the code produced is !nl:grnmi into larger u)ds-bn*.\.i lmd did not use it. Even worse, participants who used the LLM
ing potential secus risks. cond, existing. were more likely to believe that their code was secure, unlike
their peers who did not use the LLM to write code.

2024

E] 3 Jun

Thereare two major acors conbiing (0 this wsa code
bl o generae seur code ystemataly This tamevok cperyio, i, code LLM e evaluted using benchmars

Python prompts, configurable asscssment techniques fo cvaluate Which do not include constructs (o evaluate the security of
the generated code, and novel metrics to evaluate the model he generated code [10], [11]. Second, ising evaluation
performance from the perspective of secure code generation. metrics (e.g.. pass@k [12], CodeBLEU [13], efc.) assess models”
performance with respeet 1o their abilty to pmd\m: function.
Inds Terms—scurty coton, e lngug ks pr ally correct code while ignoring security concerns. Therefore,
trained transformer model, m the performance reported for these models overly focuses on
improving the precision of the generated code with respect to
passing the functional test cases of these benchmarks without
1. INTRODUCTION evaluating the security of the produced code.

s.S

[c

N
2

11.00889v

A code LLM is a Large Language Model (LLM) that has been With the widespread adoption of LLM-based code assistants,
trained on a large dataset consisting of both fext and code [1]. the need for secure code generation is vital. Generated code
As aresult, code LLMs can generate code written in a specific containing vulnerabilities may get unknowingly accepted by
programming language from a given prompt. These prompts developers, affecting the software system’s reliability. Thus, to
provide a high-level specification of a developer's intent [2] fulfill this need, this paper describes a framework o perform
and can include single/muli-line code comments, code ex- Sccurity Assessement of LLMs (SALLM). Our framework
pressions (.., a function definition), text, or a combination includes a () a manually curated data

of these. efc. Given a prompt as input, an LLM generates a variety of sources that represent ty

tokens, one by one, until it reaches a stop sequence (i€, a @ an automated approach that relies on static and dynamic
pre-configured sequence of tokens) or the maximum number analysis to automatically evaluate the sccurity of LLM gen-
of tokens is reached. erated Python code; and () two novel metrics (securi tyék
and vulnerability@k) that measure to what extent an LL}
is capable of generating secure code.

:23

LLM-based source code generation tools are. increasingly
being used by developers in order to reduce

velopment efforts [3]. A recent survey with 00 US-based The contributions of this paper arc

developers who work for large-sized companies showed that

2% of them are using LLMs to generate code for work and - A novel framework 10 systematically and automatically
personal use [4]. Part of this fast widespread adoption is due evaluate the security of LLM generated code;

to the increased productivity perceived by developers; LLMs - A publicly available dataset of Python prompts';

help them to automate repetitive tasks so that they can focus

on higher-level challenging tasks [3]. ¥The dataset will be made public on GiHub upon acccptance

https://arxiv.org/abs/2311.00889

Implications of LLM
code generation

Code reuse goes down
Code velocity goes up

Vulnerability density
similar

Increased Vulnerability
Velocity

How can we apply Al to the problem of
insecure code, but in a more accurate
and trustworthy manner?

19

We need a faster test and fix workflow

Ticket

Manual Fix ()

Recommend Fix

| Training data set: Java XSS

public void doGet(HttpServletRequest req, HttpServletResponse resp) {
String name = [reqg.getParameter('"name");
String[] array = new Stringfloj;
array[0] = name;
PrintWriter writer = resp.getWriter();

writer.println(“Hello “ + array[0]); < Cross-site scripting (CWE 80)

public void doGet(HttpServletReaquest req, HttpServletResponse resp) {
String name = reg.getParameter('"name");
String[] array = new String[10];
array[0] = name;
PrintWriter writer = resp.getWriter();
writer.println(“Hello “ + StringEscapeUtils.escapeHtml4(array[0]));

Fix Approach

| Curated Dataset | Code Provenance | Coverage all that
Assurance matter

Training Data Set

/ \ Proprietary A

' Data \ / \

User Prompt H Fix LLM >—) Fix — [User Result J

- L Suggestions

.
- o -

VERACODE

Recommendations for Al and code security

Consider the implementation details before leveraging Al for developing
and/or securing code

* What does the ML model use for training data?

Is that training data trustworthy/vetted?

Are there licensing issues with generated code?

Is any of my intellectual property being leaked?

How accurate are the generated fixes?

Be aware of human biases that trick us into feeling overly confident
about the correctness of Al-generated content

Data Poisoning

Recursive Learning

Propagation of
Deprecated Practices

~~~~~
~~~~~~
s ~
»

Other
Risks to
GenAl
Code

IP Infringement

Bias & Fairness

Hallucinated &
Squatted Packages

VERACODE

GenAl in dev is a powerful tool that
requires the same level of security
scrutiny and best practices as any
other aspect of software
development

Include security considerations in
GenAl prompts

Automate as much of security
process as possible, including
automated fixing

Chris Wysopal
Co-founder & CTO Veracode
@weldpond

