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Abstract

Distributed, Linux Kernel Integrated Security Framework for Real-Time Prevention of
DNS Data Exfiltration

Vedang Parasnis

Chair of the Supervisory Committee:
Dr. Geetha Thamilarasu

Computing & Software Systems

DNS-based data exfiltration remains a critical blind spot in modern infrastructure, espe-

cially for hyperscalers operating AI workloads and handling sensitive data across distributed

Linux environments. In 2024, the average cost of a data breach exceeded $4.8 million, with

DNS emerging as the main exploitation channel. This project develops the first scalable,

kernel-enforced DNS exfiltration prevention framework capable of detecting and disrupting

advanced Command-and-Control channels in real time. It integrates high-performance eBPF

programs for deep packet inspection directly in the Linux kernel, combined with a userspace

neural network for low-latency lexical analysis of advanced data obfuscation in DNS. Ma-

licious queries trigger immediate process termination from within the kernel, cutting off

exfiltration at the source before data loss or lateral movement occurs. The framework intro-

duces rich system level telemetry that stream process-level observability and domain-based

threat intelligence to Kafka, enabling live policy enforcement and domain blacklisting across

nodes without relying on external firewalls or proxies. Experimental results show detection

and response speed as low as 326 µs even against stealthy, obfuscated payloads generated by

industry-grade adversary emulation tools. This significantly reduces attacker dwell time and

provides security teams with actionable visibility into DNS-based threats at the endpoint

level, at hyperscale.
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Chapter 1

INTRODUCTION

1.1 Motivation and Goals

Modern threat actors continuously evolve, employing increasingly sophisticated techniques

and covert communication channels to maintain persistence on compromised systems and ex-

filtrate data before detection or remediation. A common entry point in such attacks involves

the deployment of lightweight implants or command-and-control (C2) clients. These are of-

ten compiled in formats like COFF (Common Object File Format) and delivered to targeted

endpoints through phishing campaigns, social engineering, or other initial access vectors.

Once a system is compromised, these implants use beacon intervals, strong encryption, and

protocol tunneling to remain hidden, effectively bypassing volumetric and time-based de-

tection mechanisms at the firewall. This silent phase of data exfiltration is both stealthy

and resilient, allowing adversaries, such as advanced persistent threats (APTs), to maintain

long-term control, steal undetected sensitive data, and move laterally within the network.

The Domain Name System (DNS) remains one of the most effective channels for attackers

to run covert C2 communication and exfiltrate data. As a core protocol responsible for

domain-to-IP resolution, business operations, and service discovery, DNS is rarely deeply

monitored or filtered at firewalls, making it an ideal backdoor, offering attackers a discreet

pathway for unauthorized data transfer and remote command execution on infected systems.

This exploitation can cause massive damage to enterprises, as demonstrated by some of the

cyber-espionage groups. Hexane, a major threat actor in the Middle East and Asia, used

a custom system called DNSsystem to stealthily exfiltrate data from energy and telecom

sectors through encrypted DNS tunnels, beacon obfuscation, and adaptive payloads. Like-
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wise, MoustachedBouncer leveraged the Nightclub implant to exploit DNS redirection at the

ISP level, using DNS as a resilient covert channel for long-term espionage in eastern Europe

and Central Asia. These campaigns have compromised state institutions and critical infras-

tructure, underscoring the scale and sophistication of DNS-based threats. Existing solutions

primarily rely on passive analysis techniques such as anomaly detection, domain reputation

scoring, and static blacklists. However, these approaches are inherently reactive, slow to re-

spond, and often ineffective against stealthy adaptive APT malware. As a result, they offer

no guarantees of preventing data loss before exfiltration occurs: By time detection triggers,

malicious commands may have already been executed, and significant damage is inflicted. To

address these limitations and the evolving sophistication of DNS exfiltration attack vectors,

this project aims to develop a robust endpoint-centric defense mechanism that enforces DNS

security from within the operating system. The design and implementation are guided by

the following core goals:

• Enforce DNS exfiltration protection from within the Linux kernel to enable in-line,

real-time traffic inspection and eliminate reliance on external security middleware.

• Instantly detect and terminate malicious implants and DNS-based C2 communication,

reducing response time without manual intervention.

• Enable adaptive detection of obfuscated exfiltration techniques by integrating userspace

deep learning with kernel-level enforcement.

• Provide distributed scalable enforcement by streaming threat events across nodes for

dynamic network Layer 3 policy enforcements paired with domain blacklisting for Layer

7 filters.

• Detect and disrupt advanced DNS-based C2 techniques, including Domain Generation

Algorithms (DGAs), remote execution, and process side channeling, to protect against

a broader class of stealthy threat vectors beyond exfiltration.
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Chapter 2

BACKGROUND

This chapter provides a comprehensive overview of the internals of the Linux kernel

network stack, the role of eBPF for dynamic security enforcement within the kernel, the

complexity and types of DNS data exfiltration, and the fundamental limitations of the DNS

protocol that enable various forms of attacks.

2.1 eBPF

The extended Berkeley Packet Filter (eBPF), introduced in Linux kernel 3.15 (2014), is a

general-purpose virtual machine in the kernel evolved from the classic BPF [1]. Unlike kernel

modules, which risk destabilizing the system, eBPF safely injects verified code into the ker-

nel, enabling dynamic programmability without compromising stability or security. eBPF

surpasses other programmable data path technologies such as P4 [2] and DPDK [3], which op-

erate outside the kernel or lack visibility into kernel-level security subsystems. These models

cannot access core primitives such as process identity or Linux’s Mandatory Access Control

(MAC) layers, limiting their ability to enforce deep, context-sensitive security policies. eBPF,

on the contrary, operates directly within the kernel network stack and security layers, allow-

ing high-resolution enforcement and real-time analysis of malicious traffic. eBPF programs

are written in a restricted C subset, compiled via LLVM to a platform-independent bytecode,

and executed by a RISC-like in-kernel VM. The execution model enforces strict safety: a

512-byte stack, bounded loops, 11 64-bit registers, and a cap of one million instructions.

Before loading, the BPF verifier ensures control flow integrity and memory safety. Programs

are Just-In-Time (JIT) compiled for performance and executed within a sandboxed environ-

ment. A core strength of eBPF is its use of BPF maps, persistent, kernel-resident key-value
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stores that support data structures such as LRU caches, stacks, and queues for efficient state

management and data sharing. In addition, eBPF maps support pinning to the BPF filesys-

tem, allowing data to persist beyond the lifecycle of the userspace program that loaded the

eBPF program in kernel. All interactions are mediated through the bpf() syscall, guarded

by CAP BPF or CAP SYS ADMIN for complex programs which are reserved for privilege users.

2.2 eBPF Integration with the Linux Kernel Network Stack

The Linux kernel network stack processes packets through layered ingress and egress paths

using socket kernel buffers (SKBs), enabling efficient parsing, filtering, and forwarding across

RX/TX queues, with eBPF hooks providing runtime programmability at critical stages such

as Netfilter and Traffic Control. Within this stack, the Traffic Control (TC) subsystem plays

a crucial role in enforcing egress security, extending beyond its traditional responsibilities

like flow control and quality of service (QoS). TC provides fine-grained traffic management

through shaping, scheduling, classification, policing, and packet dropping. These functions

are implemented via queueing disciplines (QDISCs), which determine how packets are pri-

oritized and transmitted through the network driver’s transmission queues [4]. Among these

QDISCs, CLSACT (classless QDISC with actions) is particularly valuable for advanced secu-

rity enforcement. It enables classification and action hooks on both ingress and egress paths

without disrupting existing classful (e.g., HTB) or classless (e.g., FQ CODEL, PRIO FAST)

traffic configurations. This backward compatibility makes CLSACT suitable for production

environments, allowing seamless integration of programmable in-kernel logic. eBPF pro-

grams attached to CLSACT filters can chain classification and actions with configurable

priorities, enabling deterministic and layered packet filtering directly within the kernel [5].

Since CLSACT operates before any default QDISC, it is ideal for embedding additional se-

curity logic without affecting existing traffic control behavior. This approach preserves QoS

guarantees while enabling real-time, low-latency filtering. Although CLSACT is commonly

used by Container Network Interface (CNI) plugins in Kubernetes - for overlay routing, IP
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masquerading, and node-to-node communication - its full potential to enforce in-kernel se-

curity policies remains largely untapped. Beyond TC, eBPF programs can attach across

multiple layers of the kernel network stack. These include the high-speed ingress path via

XDP, the link layer via Netfilter, socket-layer hooks (e.g., sockops, sk msg), and even syscall

interfaces and kernel security modules. This broad hook coverage enables eBPF to support

profiling, observability, rate limiting, deep packet inspection (DPI), and threat detection

with minimal overhead and maximum control.

2.3 DNS-based Data Exfiltration

DNS-based data exfiltration is a covert technique employed by adversaries to extract sensi-

tive information from compromised systems using the Domain Name System (DNS) protocol.

Commonly leveraged by memory-resident implants, this method reduces forensic artifacts by

avoiding disk writes and capitalizing on DNS’s widespread use and typically permissive filter-

ing policies. Attackers encode exfiltrated payloads into the subdomain portion of outbound

DNS queries, which are then transmitted to attacker-controlled domains or delegated name-

servers via standard recursive DNS resolution—allowing the traffic to blend in with legitimate

network activity. As shown in Table 2.1 exfiltrated data is obfuscated using base encoding,

compression, and segmentation. Common DNS record types like A, AAAA, MX, and HTTPS are

used for compatibility, while TXT and NULL offer flexible payload capacity making them ideal

for C2 responses. To bypass inspection, adversaries use DGA, randomized query timing,

ephemeral encryption, and even tunnel DNS over arbitrary transport ports using tools like

DNSCat2 encapsulating traffic in ways that evade firewall rules.

DNS Tunneling

DNS tunneling evades perimeter defenses by embedding protocol payloads, usually blocked

on firewalls within DNS query fields. These payloads are disguised to resemble legitimate

DNS traffic, enabling compromised hosts to communicate covertly with remote servers. This

technique not only facilitates data exfiltration but also allows encapsulation of other blocked



6

Table 2.1: DNS Payload Obfuscation Techniques

Encoding Format Exfiltrated Payload Encoded DNS Subdomain
Base64 TopSecret VG9wU2VjcmV0.dns.exfil.com
Mask (XOR 0xAA) TopSecret DE.D5.F2.F9.E9.C7.CF.DE.dns.exfil.com
NetBIOS TopSecret ECPFEDFEFCDCECEEEA.dns.exfil.com
CRC32 (Hex) TopSecret 7F9C2BA4.dns.exfil.com
AES-CBC (Hex + IV) TopSecret IV.A1.B2.C3.D4.E5.F6.07.08.dns.exfil.com
RC4 (Hex) TopSecret 9A.B3.47.E2.8C.4D.11.6F.dns.exfil.com
Raw (Hex) TopSecret 546f70536563726574.dns.exfil.com

protocols inside DNS, effectively rendering traditional firewall rules for those protocols in-

effective. Advanced variants exploit kernel-level encapsulation mechanisms (e.g., TUN/TAP,

VXLAN) using privileged virtual interfaces (CAP NET ADMIN), and dynamically modulate

throughput and timing to bypass static blacklists and anomaly detection systems.

DNS Command and Control (C2)

DNS-based C2 is an advanced form of tunneling used to establish persistent full-duplex covert

channels between implants and attacker-controlled servers. Using a client-server model, im-

plants poll for encoded commands via queries and exfiltrate execution results in responses

- enabling remote control, backdoors, port forwarding, and DNS-based reverse tunnels. To

evade detection, attackers vary beacon timing and rotate domains/IPs using DGA. Multi-

player C2 frameworks coordinate multiple operators that exploit several implants simulta-

neously, overwhelming passive defenses. Static blacklists and rules are ineffective against

such adaptive threats. Real-time in-kernel termination of both the DNS C2 channel and the

implant process is critical, but current solutions are slow and reactive, thereby falling short

before command execution or data loss occurs.

DNS Raw Exfiltration

Raw DNS exfiltration transmits sensitive data, such as credentials or files, directly through

high-volume bursts of DNS queries. Although noisier than tunneling or C2, it can succeed
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before alert thresholds are triggered or policy enforcement takes effect. Since most defenses

are reactive or delayed, prevention at the point of transmission is essential to ensure zero

data loss.

2.4 DNS Protocol Security Enhancements and Limitations

Several standardized enhancements improve DNS integrity and privacy:

• DNSSEC Add cryptographic signatures to DNS records to ensure authenticity and

prevent spoofing or cache poisoning. However, it does not encrypt payloads, leaving

queries visible to intermediaries and vulnerable to covert channels for data exfiltration.

• DNS-over-TLS (DOT): Encrypt DNS queries to prevent surveillance and man-in-

the-middle attacks. While improving privacy, this encryption blinds traditional security

tools, limiting DPI and weakening intrusion detection (IDS) and data loss prevention

(DLP) systems.

Although effective against some attacks, these protocols do not prevent DNS-based data ex-

filtration originating from endpoint implants that exploit protocol-compliant DNS structures

for covert communication.

2.5 Existing Prevention Mechanisms and Limitations

Common DNS exfiltration defenses include:

• DNS Sinkholing: Redirects queries for known malicious domains to controlled end-

points.

• Response Policy Zones (RPZ): Apply static filtering rules on DNS servers based

on enforced domain access control policies.

Although effective against known threats, traditional defenses are reactive, relying on static

blacklists or passive DPI triggered post-alert. This delay allows DNS exfiltration and the C2

commands to be successful. They also fail against DGA-based implants that rapidly rotate

domains, making static rulesets too slow to prevent real-time damage.
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Chapter 3

RELATED WORK

This chapter reviews related work on the use of eBPF for network security, research that

uses machine learning to detect DNS data exfiltration, and current enterprise solutions.

3.1 Network Security using eBPF

eBPF has emerged as a critical technology for modern networking, security, and observ-

ability in Linux. Its ability to inject safe, verifiable code into the kernel makes it ideal for

high-performance, in-kernel programmability without compromising system stability. These

features have led to widespread adoption by cloud providers, particularly in large-scale data

planes and hyperscalers for traffic filtering and enforcement of declarative network policies

across multiple layers of the Linux kernel. Most existing research focuses on the ingress path

using XDP (eXpress Data Path), a high-speed packet processing mechanism integrated into

the network driver, commonly referred to as the high-speed ingress kernel datapath. Initially

proposed by Høiland-Jørgensen et al., XDP was later adopted into the Linux kernel to enable

early packet drops, hardware offload at the NIC level, and improved throughput. It is often

combined with eBPF to support low-latency programmable network processing and security

enforcement for DDoS preventions [6, 7]. Vieira et al. studies provide architectural overviews

and performance analyses of eBPF in networking contexts [8], similarly Bertrone et al. ex-

plains accelerating kernel network firewalls by combining eBPF and iptables [9], yet they

predominantly address inbound traffic. In contrast, the egress path—critical for detecting

and preventing data exfiltration remains relatively underexplored.

Kostopoulos et al. explored DNS-related defenses using eBPF, leveraging XDP to mitigate

DNS water torture DDoS attacks by analyzing queries directly at the network interface of
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authoritative DNS servers [10]. Although effective for volumetric DDoS mitigation, their

approach is limited in scope and does not address low-volume, stealthy data exfiltration.

Similarly, Bertin proposed an XDP-based strategy to mitigate ingress layer DDoS floods,

such as TCP SYN and UDP amplification attacks [11]. However, this technique also fails

to handle sophisticated or covert DNS-based exfiltration threats. Based on the current

literature, Steadman et al. presents the only known eBPF-based system specifically aimed

at preventing DNS exfiltration. Their approach combines eBPF and SDN to enforce static

rules in the data plane while performing flow analysis in the control plane [12, 13]. However,

their design attaches eBPF programs to the XDP layer, which is only suitable for ingress

traffic, which limits its effectiveness against exfiltration. Moreover, reliance on static rules

increases false-positive rates and restricts adaptability to novel attack patterns. The use of P4

switches and packet mirroring to the SDN controller also introduces latency, hindering real-

time enforcement. Moreover, their evaluation was not able to prevent stealthy exfiltration,

leading to data loss with more stealthy traffic mirroring to the control plane. Similarly,

enterprise tools such as Isovalent Cilium support eBPF-based Kubernetes network policies

at layers L3–L7 [14, 15]. Although DNS-aware L7 policies allow domain-level whitelisting,

they lack dynamic blacklisting and are not designed to detect exfiltration behaviors. Open-

source tools such as Microsoft’s Inspector Gadget also rely on static rules defined in the

userspace and do not provide deep kernel-level dynamic enforcement mechanisms. These

limitations highlight the need for a comprehensive eBPF-based solution that operates at the

egress point and supports dynamic security enforcement not only inside the kernel via eBPF

but also in a distributed environment with dynamic domain blacklist to combat DGA.

3.2 Machine Learning for Detecting DNS Data Exfiltration

Advancements in network security have significantly improved DNS exfiltration detection,

often using machine learning to analyze anomalies in traffic volume and rate, as well as for

lexical analysis of exfiltrated DNS queries. Common solutions combine DPI with anomaly
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detection of traffic volume and timing, identifying potential threats using DNS firewalls or

intrusion detection systems. For C2-based exfiltration, Zimba et al. employs behavioral anal-

ysis that integrates PowerShell activity and backdoors with DNS tunneling for APT detection

[16]. Similarly, Das et al. trains ML models on real malware samples from financial insti-

tutions, while Ahmed et al. uses Isolation Forest for real-time detection [17, 18]. However,

these methods focus on detection, not prevention, and struggle against stealthy, persistent

C2 channels.

Bilge et al. and Antonakakis et al. introduced DNS server-side solutions, EXPOSURE

and NOTOS, which rely on passive analysis of large datasets to extract domain features and

flag malicious activity [19, 20]. Although effective in identifying botnet C2 and spamming

domains, these approaches lack real-time enforcement capabilities and cannot block payload

execution. Similarly, the models proposed by Nadler et al. and Mathas et al. use techniques

based on entropy, timing, and anomalies to detect low-throughput DNS tunneling [21, 22].

However, these methods remain inherently reactive, relying on historical traffic patterns and

often failing against slow, stealthy exfiltration tactics.

Aurisch et al. propose mitigation efforts involving mobile agents that introduce latency,

suffer false positives, and lack scalability [23]. Similarly, Haider et al. propose the C2 Eye

framework to detect C2 attacks in supply chains but do not address the damage caused by

C2 in distributed environments [24]. Even promising tools like Process DNS, developed by

Sivakorn et al., correlate DNS traffic with userspace processes to detect C2 activity [25].

However, these tools remain vulnerable to privilege escalation and evasion due to limited

kernel integration and the absence of fine-grained, kernel-enforced mandatory access controls.

Overall, most ML-based DNS security tools are limited by userspace-only architectures.

They lack in-kernel inspection, cross-protocol correlation, and visibility into port layer ob-

fuscation, such as DNS over non-standard ports. These tools operate passively, disconnected

from real-time enforcement, and do not offer a preemptive response to emerging threats. Al-

though lexical payload analysis may help classify anomalies quickly, behavioral models still

lag behind, detecting threats only after execution or data exfiltration has occurred. Hence,
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existing researched solutions fundamentally fail to prevent advanced C2 behavior such as

remote code execution, port forwarding, or shell access. They rarely address real-world

adversary emulation or modern C2 vectors and remain ineffective against multiplayer C2 op-

erations, botnet-based attacks, or DGA. Despite incremental progress, no existing solution

offers real-time DNS exfiltration prevention with implant termination, dynamic in-kernel

security policy enforcement, negligible or zero data loss, adaptive domain blacklisting, and

cloud-native scalability. Userspace-only systems lack the ability to inspect low-level system

state—especially near the NIC—and instead rely on passive traffic analysis from centralized

locations. This limits their ability to enforce fine-grained controls needed for modern threat

defense. Real-time kernel-level defenses are essential to ensure data sovereignty and integrity

with the speed and precision-based response to combat emerging threats.

3.3 Enterprise Solutions to Prevent DNS Data Exfiltration

Akamai’s ibHH algorithm detects DNS exfiltration in real time by identifying information-

heavy hitters—quantifying unique data transmitted from subdomains to their parent do-

mains using a fixed-size cache for efficient tracking [26]. While DNS firewalls like Akamai

and AWS Route 53 can flag tunneling and DGA activity through volume thresholds and

anomaly rules, they lack direct endpoint enforcement, which is critical for minimizing data

loss and dwell time [27]. These systems are ineffective against APT malware that utilize

low and slow C2 patterns or dynamic domain generation. AWS Route 53 also lacks deep

observability and cross-protocol correlation, limiting its ability to enforce Layer 3 filtering

through AWS Network Firewall. Likewise, Cloudflare, Akamai, and AWS proprietary DNS

firewalls prioritize DDoS mitigation, but fail to protect against stealthy exfiltration or in-

sider DNS-based C2 threats. Infoblox adds hybrid agent-based enforcement and centralized

threat intelligence, and Broadcom’s Carbon Black blocks endpoint processes, but both rely

on userspace analysis [28]. In contrast, kernel-enforced endpoint security for DNS offers fine-

grained, real-time visibility and significantly stronger defenses compared to current solutions.
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Chapter 4

PROPOSED APPROACH

This chapter explains the complete architecture of the proposed security framework and

its individual components, first highlighting the overall framework, followed by a detailed

breakdown of each component.

4.1 DNS Data Exfiltration Prevention Framework Overview

The implemented dsitributed DNS exfiltration prevention framework uses an endpoint-

centric architecture to defend against DNS-based C2 and tunneling attacks in real time.

It embeds DNS exfiltration defenses directly into the operating system using eBPF, enabling

in-line mitigation and malicious process containment. Network policies are dynamically en-

forced within the kernel network stack to block C2 communication, while malicious processes

are terminated through integration with kernel syscall layer all coordinated by a lightweight

userspace eBPF agent. To ensure scalability, the framework streams threat events asyn-

chronously, enabling cross-node security enforcement across all nodes in the data plane. It

also supports dynamic domain blacklisting on the DNS server to proactively disrupt DGA-

based threats. The following subsections describe the core components of the framework in

detail. Appendix B provides additional information on DGA.

4.1.1 Data Plane

The data plane consists of distributed nodes running lightweight eBPF agents, implemented

entirely in Golang for high performance, optimal concurrency, and minimal memory foot-

print. Operating in userspace, each agent dynamically injects eBPF programs into the

kernel’s TC layer at the egress hook of physical network interfaces, enabling in-kernel DPI to
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detect and block exfiltrated DNS traffic over UDP. In addition to TC filters, agents deploy

auxiliary eBPF programs at various kernel hook points: kprobes to monitor the creation of

new network devices, raw tracepoints to track process termination, and cgroup socket hooks

to retrieve internal kernel process structures (task struct), especially on kernels below ver-

sion 5.2 where TC lacks direct access. Integration with Linux Security Modules (LSM)

ensures the integrity of all injected eBPF programs, safeguarding the kernel from tampered

malicious eBPF bytecode. Each agent supports two configurable prevention modes, managed

via a dedicated eBPF map injected into the kernel. These modes can be toggled at runtime

from userspace and are enabled by default to provide comprehensive protection against DNS

exfiltration attack vectors. Appendix A provides details of eBPF integration with LSM.

• Strict Enforcement Active Mode: DNS packets over standard ports (DNS: 53,

mDNS: 5353, and LLMNR: 5355) are scanned in-kernel using eBPF at the TC egress

hook. Malicious packets are immediately dropped. If classification exceeds eBPF

instruction limits, the packet is redirected to userspace for further inspection. The

eBPF agent sniffs redirected traffic and either checks it against a domain blacklist cache

or performs inference using deep learning model to detect data obfuscation inside DNS.

Benign packets are retransmitted using high-speed socket options such as AF PACKET

or AF XDP bypassing kernel network stack, while malicious ones are dropped and their

domains added to the blacklist cache in userspace.

• Passive Malicious Process Threat Hunting Mode: This mode prevents DNS

exfiltration when DNS is layered over non-standard UDP ports. Suspicious DNS-

overlaid packets are cloned to userspace for analysis while the original packet is allowed

to proceed. If the packet is deemed malicious, the originating process is flagged in the

eBPF maps, and all subsequent DNS packets from that process are dropped in the

kernel. This effectively disrupts communication between the C2 implants and remote

servers. The mode is particularly effective against stealth techniques that rely on port

obfuscation.
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In addition to performing deep packet inspection, the eBPF agents manage network names-

paces and virtual bridges using the Linux virtual ethernet bridge driver. The topology shown

in Figure 4.1 combines Linux network namespaces with multiple pairs, acting as Layer 2 and

Layer 3 bridges. Agents also maintain file descriptors to their eBPF maps, enabling efficient

kernel-userspace communication and advanced runtime state analysis. The lifecycle of each

eBPF program is tightly managed by the agent, which operates with elevated privileges to

control the kernel network stack, syscalls, and the relevant kernel subsystems. Some of the

kernel capabilities and kernel injection hooks for are detailed in Table 4.1, Table 4.2. Both

prevention modes support real-time enforcement, including the termination of processes re-

sponsible for repeated exfiltration beyond configurable thresholds. On the userspace side,

the agent performs low-latency inference using quantized ONNX models, exports teleme-

try to observability backends, and streams threat events to a centralized message broker for

controller-side processing. These agents also manage domain caches to improve performance,

relying on a cache read-through policy. All agent components, including eBPF maps in the

kernel and userspace caches, are dynamically reprogrammable at runtime via the control

plane, enabling flexible and real-time reconfiguration of agents in the data plane. To com-

plement egress filtering, agents also inspect ingress traffic to detect C2 response patterns,

leveraging the same inference engine and LRU cache used for egress analysis.

Table 4.1: Linux Kernel Capabilities Required for eBPF Agent at Endpoint

Kernel Capability Description
CAP BPF Load eBPF, manage maps
CAP SYS ADMIN Attach BPF, mount BPF FS
CAP SYS PTRACE Support tracepoint attachment to kernel tracepoints

specifically to kernel process scheduler
CAP NET ADMIN Manage netdev creation and tc/xdp/cgroup filters at-

tachment
CAP NET RAW Send/receive raw packets from netdev tap RX queues

particularly via AF PACKET sockets
CAP IPC LOCK Lock BPF memory
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Table 4.2: eBPF Agent: Injected eBPF programs inside Linux Kernel

eBPF Pro-
gram Type

Agent Mode Injection
Point

Description

SCHED ACT Active, Passive Physical NICs Performs in-kernel DNS DPI at TC egress. Interacts
with maps and redirects packets to userspace or tracks
process info based on mode.

SCHED ACT Active veth bridges Verifies packet integrity using skb hash for redirected
DNS traffic over namespaces.

KPROBE Active Tun/Tap
driver kernel
functions

Detects virtual device creation to attach DNS filters dy-
namically.

CGROUP SKB Active, Passive Sockets
cgroups

Get the process info for current UDP packet, update
information to pinned map shared with core egress TC
program.

TRACEPOINT Passive process exit Cleans up eBPF maps when flagged processes exit before
agent-enforced termination.

LSM Active, Passive BPF PROG LOAD Intercepts eBPF program loading syscalls. Verifies in-
tegrity via kernel keyring to block malicious eBPF code
injection.

Figure 4.1: eBPF Agent: Network Topology at Endpoint
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4.1.2 Distributed Infrastructure

In addition to the data plane nodes, the framework includes an open-source PowerDNS setup

consisting of a recursor for upstream resolution and an authoritative server configured with a

Postgres backend. Although actual internal domains are not served, the authoritative server

is used to carry out DNS C2 and tunneling attacks by generating malicious domains using

DGA. This design replicates the behavior of the real-world DNS server commonly deployed

by enterprises. All data plane nodes resolve DNS through the PowerDNS Recursor, which

is equipped with interceptors that inspect queries before forwarding. These interceptors

run ONNX-based deep learning inference to detect threats, specifically on TCP-based DNS

traffic offloaded from eBPF agents. Kafka acts as the message broker for streaming threat

events. Additionally, the recursor integrates with dynamic RPZ stored in Postgres, allowing

the controller to blacklist second-level domains (SLD) linked to malicious activity, as detailed

in the next section.

4.1.3 Control Plane

The control plane consists of a centralized analysis server that consumes threat events from

Kafka topics, streamed and updated by eBPF agents running in the data plane. Based

on these consumed event payloads, the control plane dynamically blacklists malicious SLD

on the DNS server, thereby safeguarding all endpoints in the data plane that utilize the

DNS server. Additionally, the system supports full data plane reprogramming by publishing

Kafka topics consumed by eBPF agents, allowing them to rehydrate their local blacklist

domain caches and immediately enforce updated policies. This design drastically reduces

DNS resolution hops from data plane nodes to the DNS server by enforcing blacklists locally.

4.2 Data Plane

The implementation of the eBPF agent deployed on each node in the data plane is organized

into six core components. First, Section 4.2.1 introduces the strict enforcement mode, in
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which suspicious DNS traffic is redirected to userspace and dropped in real time if classi-

fied as malicious. Second, Section 4.2.2 presents an passive process threat-hunting strategy

that correlates DNS exfiltration with the originating malicious userspace process. Third,

Section 4.2.3 addresses DNS exfiltration hidden within kernel-encapsulated traffic, which is

currently prevented only in active mode. Fourth, Section 4.2.4 outlines the features ex-

tracted in the kernel for filtering, and in userspace for deep learning–based inference. Fifth,

Section 4.2.5 details the datasets used to train and evaluate the detection models. Finally,

Sections 4.2.6 and 4.2.7 describe model architecture, including serialization and quantization,

as well as streaming pipeline for threat events from the agent to centralized message brokers

and observability backends.

4.2.1 Strict Enforcement Active Mode

In this mode, eBPF programs are injected and attached as direct action filters to the TC

egress hook (CLSACT QDISC) on all physical network interfaces at the endpoint. These

eBPF programs are triggered as soon as a packet is queued by the kernel to the CLSACT

QDISC for the specific netdev by invoking the (dev queue xmit) helper in kernel network

stack. At this point, the SKB is fully constructed and ready for the TX queue, having already

passed through the upper layers of the networking stack. The eBPF programs run in parallel

across multiple CPU cores, with all eBPF maps declared global. This mode implementation

includes several key components. Section 4.2.1.1 describes the structure and purpose of the

eBPF LRU hash maps (see Figure 4.2). These maps track the per-packet security state

and current policy status, enforced by both the kernel eBPF programs and userspace eBPF

agent. Next, Section 4.2.1.2 describes the classification of outgoing packets at the TC egress

filter using SKB metadata, along with the corresponding TC actions applied to malicious

and benign DNS packets. Section 4.2.1.3 presents the zero-copy processing of sniffed packets

for efficient analysis. Finally, Section 4.2.1.4 outline the safe access and update mechanisms

for shared eBPF maps between eBPF programs inside kernel and user space agent threads.
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Figure 4.2: eBPF Maps structure for Agent in active phase

4.2.1.1 eBPF Maps in Active mode

1. DNS Exfiltration Feature Map:

Key: Feature identifier used for DNS traffic analysis.

Value: Filtering or classification parameter applied by the eBPF TC egress program.

2. Packet Redirection Tracking Map:

Key: DNS query ID

Value: Kernel monotonic timestamp (in nanoseconds). Used to track suspicious packets

redirected across interfaces using non-maskable interrupts (NMI) safe timekeeping.

3. Timing Attach Prevention Map:

Key: Monotonic timestamp (in nanoseconds)

Value: Scanned flag (true/false). Utilized by userspace eBPF agent to mark pack-

ets as scanned, and by the kernel eBPF program to verify packet integrity prior to

retransmission.
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4.2.1.2 Kernel eBPF filter packet processing in Active mode

When a DNS packet is transmitted over a UDP socket, it traverses the kernel’s network stack,

progressing through the TCP/IP layers (corresponding to Layers 2–4 of the OSI model). At

the traffic control (TC) layer, the packet is intercepted via the CLSACT QDISC, where

an eBPF program is attached as a direct action filter. This program parses the link (L2),

network (L3), and transport (L4) headers using native kernel structures to extract metadata

for further analysis. Since DNS operates at the application layer and is not natively parsed

by the kernel, the eBPF program manually inspects the payload beyond Layer 4. It interprets

the raw SKB data using custom C structures aligned with RFC 1035, extracting fields such

as the query ID, opcode, flags, and entries in the DNS question section for deep inspection.

The complete inspection logic is shown in Algorithm 1. If the query ID is new and the

DNS question section is valid, the program evaluates several protocol-level features—such

as multiple questions or anomalous answer counts commonly indicative of covert channels.

These features are cross-checked against the kernel-defined security feature set (Table 4.3).

Based on the result, the program enforces one of the following actions: TC ACT SHOT to drop

the packet, TC ACT OK or TC ACT UNSPECT to forward or delegate to upstream QDISC for

further filtering, or bpf redirect to redirect the packet for deeper analysis.

For suspicious packets, the DNS query ID and current monotonic kernel timestamp

(bpf ktime get ns) are stored in dns packet redirection map to prevent timing and brute-

force-based evasion. Before redirection, the eBPF program retrieves metadata such as the

bridge’s L3 address and if index from shared maps initialized by the userspace agent. Redi-

rection counters are updated for observability. Depending on the IP version, the program

applies DNAT and recalculates checksums before redirecting the packet to a bridge interface

under agent control. For IPv6, static checksum values are used. The packet is then live-

redirected to the RX queue of a virtual interface sniffed by eBPF agent for further deeper

inspection.

Following inspection, the userspace agent reemits the packet via an AF PACKET socket,
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which retriggers the TC-layer eBPF program. To avoid redirection loops or forged reinjec-

tion, the eBPF filter verifies the DNS query ID against dns redirect ts verify map, using

stored timestamps and verification flags. Only packets resent from authorized userspace

paths are allowed to proceed; all others are dropped to prevent evasion. This verification

mechanism ensures tight synchronization between userspace and kernel, relying on mono-

tonic timestamps and a minimal trust model. The flow described previously is formalized in

Algorithm 2.

4.2.1.3 Userspace Agent Packet Processing in Active Mode

eBPF agent leverages kernel BPF bindings, primarily through libbpf, to abstract raw BPF

syscalls. It spawns dedicated threads to continuously sniff traffic from a separate network

namespace configured to handle redirected suspicious DNS traffic in active mode. Using

AF PACKET sockets, the agent reads packets directly from tap interfaces or RX queues in zero-

copy mode, eliminating additional buffer allocations and significantly improving performance.

With access to all eBPF maps via file descriptors, the agent parses application-layer DNS

payloads redirected from the kernel. The extracted features, described in Table 4.4, are used

for detection and policy enforcement. The agent maintains two LRU caches in userspace: one

for benign SLDs, sourced from Cisco’s top one million domains, and another for previously

identified malicious domains.

If a parsed SLDmatches an entry in the benign cache, the packet is forwarded immediately

without inference, as DNS semantics make redirection of malicious traffic through high-

reputation zones impractical. Packets are forwarded via either AF PACKET or AF XDP sockets.

With AF XDP, packets are injected directly into the TX queue of the device driver, bypassing

the kernel TC egress filters, and the associated entry in dns packet redirection map is

cleared. In contrast, AF PACKET retriggers the kernel eBPF TC program. To authorize

forwarding, the agent queries the redirection timestamp using the DNS query ID, updates

dns redirect ts verify map, and marks the packet as scanned, allowing the eBPF program

in kernel to verify and forward it.
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If there is a cache miss, the agent performs live inference using the deep learning model.

Malicious packets are dropped, garbage collected in userspace, blacklisted in the malicious

cache, and reported via Kafka. Benign packets follow the same forwarding flow as cache hits.

Additionally, the agent exports detection events, system metrics, and kernel tracing data

from eBPF ring buffers to Prometheus and monitors processes generating malicious traffic,

and if a threshold is exceeded, it terminates the respective malicious process. The complete

userspace packet handling logic, as previously described, is detailed in Algorithm 3.

4.2.1.4 Maps concurrency handling in Active Mode

In this mode, eBPF programs use global kernel-space maps instead of isolated per-CPU

maps. Since packet processing runs in parallel across multiple CPU cores, each executing the

same eBPF program, concurrent access to these maps is coordinated using per-CPU kernel

spinlocks. On userspace side, multiple threads spawned by the eBPF agent concurrently

read and write to these shared maps. Access is synchronized using a read-write mutex,

restricted to userspace, to ensure thread safety. Syscalls from userspace that update the

maps may be blocked and handled internally by the kernel synchronization mechanisms, as

discussed earlier. This combination of kernel spinlocks and userspace locks ensures consistent

and parallel packet processing across CPUs. Two primary maps are shared between kernel

and userspace: dns redirect ts verify map and dns packet redirection map. Each uses

unique keys, monotonic timestamps, and DNS query IDs to ensure atomicity and prevent

stale reads, race conditions, and inconsistent updates. This ensures that no malicious DNS

packets are leaked due to concurrency issues. All kernel-side updates to these maps use built-

in LLVM concurrency helpers, which provide atomic operations and memory synchronization

guarantees across CPUs. This enforces strict consistency and reliable control over the state

of the shared map. The complete ordered pipeline for packet processing in this operational

mode, encompassing both userspace and kernel components, is illustrated in Figure 4.3.
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Algorithm 1: Egress TC-Based DNS Raw SKB Inspection in Active Mode

Input : Socket buffer (skb); eBPF LRU hash maps: dns limits,
dns packet redirection map, node agent config

Output : Packet action: TC ACT SHOT, TC ACT OK;
eBPF map updates: bpf map updates

// Parse skb layers; ensure skb->data ptr remains memory safe
1 Parse Layer 2 (Ethernet) from skb;
2 if VLAN (802.1Q or 802.1AD) is present then
3 if skb->data ptr exceeds skb->data end then
4 return TC ACT SHOT;

5 Extract inner encapsulated protocol (h proto);

6 Parse Layer 3 (Network) from skb;
7 if skb->data ptr exceeds skb->data end then
8 return TC ACT SHOT;

9 Parse Layer 4 (Transport) from skb;
10 if skb->data ptr exceeds skb->data end then
11 return TC ACT SHOT;

12 if skb->protocol == IPPROTO TCP then
13 return TC ACT OK;

14 if udp->dest ̸= 53 and ̸= 5353 and ̸= 5355 then
/* Not standard DNS/MDNS/LLMNR */

15 return TC ACT OK;

/* Parse DNS Header */
16 Parse Layer 7 DNS (Application) from skb;
17 if skb->data ptr exceeds skb->data end then
18 return TC ACT SHOT;

19 Extract qd count, ans count, auth count, add count;
/* DNS Header Anomaly Check */

20 if qd count > 1 or auth count > 1 or add count > 1 then
21 Perform bpf map updates;
22 return TC ACT SHOT;

/* Parse Question Record and Fetch Limits */
23 Parse first question record from skb;
24 Fetch n lbls, dom len, subdom len, dom len no tld, q class, q type from dns limits;

/* Label Count Check */
25 if n lbls ≤ 2 then
26 return TC ACT OK;

/* Deep Inspection Based on Limits */
27 if dom len > dns limits.dom threshold or subdom len >

dns limits.subdom threshold then
28 Perform bpf map updates;
29 return TC ACT SHOT;

30 return TC ACT OK;

Algorithm 2 outlines active-mode eBPF map handling in kernel.
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Algorithm 2: eBPF Map Handling within Kernel for Active Mode of Agent

Input : skb (socket buffer),
eBPF LRU hash maps:
netlink links config,
dns packet redirection map,
dns redirect ts verify map,
redirect count map,
skb netflow integrity verify map

Output : bpf redirect to bridge if index, TC ACT SHOT, TC ACT OK
/* Extract DNS Layer and query ID */

1 Extract DNS Layer from the packet application data;
2 Get DNS Query ID (tx id) from parsed L7 payload in skb;

/* h proto belong to (ETH P IPV4 / ETH P IPV6) */
3 Determine if packet is IPv4 or IPv6 using nexthdr Ethernet frame in SKB
4 Extract if index from skb;

/* Fetch virtual bridge info and skb mark */
5 Fetch dst ip and skb mark from netlink links config with key if index;
6 Fetch dns kernel redirect val from dns packet redirection map with key tx id;
7 if not dns kernel redirect val then

/* Packet intercepted first time by TC eBPF filter */
8 Modify skb destination IP to dst ip;
9 if ETH P IPV4 then

10 Recompute Layer 3 checksum and update in skb;
11 Set l3 checksum = computed checksum;

12 else
13 Set l3 checksum = 0xFFFFF;

14 if not skb mark then
15 Set skb mark = bpf get prandom u32;
16 Update skb netflow integrity verify map with key=0xFFEF, value=skb mark;

17 Mark skb->mark = skb mark;
18 Update dns packet redirection map with key=tx id, value=l3 checksum,

kernel time ns;
/* Global packet redirect count metric for each associated netdev */

19 Increment and update redirect count map with key=if idx,
value=new packet redirect count;

20 Perform bpf redirect(bridge if index, BPF F INGRESS);

21 else
/* Userspace deep-scanned packet re-arrived; verify it is not forged */

22 Extract kernel time ns from dns kernel redirect val;
23 Fetch and delete redirect ts verify val from dns redirect ts verify map with

key= kernel time ns;
24 if not redirect ts verify val then

/* Timing attack: userspace agent did not emit packet */
25 return TC ACT SHOT;

26 else
/* Packet rescanned from authorized sender, clean required map

entries */
27 Delete redirect ts verify val from dns redirect ts verify map with

key=kernel time ns;
28 return TC ACT OK;
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Algorithm 3 outlines the core logic of the eBPF agent in userspace and intersection with

the kernel eBPF programs, maps, deep learning model and agent caching layer.

Algorithm 3: Userspace eBPF Agent Packet Processing in Active Mode

Input : Sniffed DNS packets from suspicious Linux namespaces (via zero-copy pcap),
Extracted DNS features,
All relevant kernel eBPF LRU hash maps

Output : Packet either garbage collected (if malicious) or retransmitted (if benign)
1 Sniff traffic over veth pair interfaces in Linux namespace;
2 Extract DNS features from sniffed packets;
3 Export monitoring metrics (e.g., redirection count, loop time) from kernel maps;
4 Fetch isSLDBenign from userspace LRU map of top 1M SLDs;
5 if isSLDBenign then
6 Set shouldRetransmit ← true;
7 else
8 Fetch isBlacklistedSLDFound from malicious SLD map;
9 if isBlacklistedSLDFound then

10 return ; /* Drop packet immediately */

11 Pass DNS features to ONNX model for inference;
12 if inference result is MALICIOUS then
13 Emit event to message brokers with packet details;
14 Blacklist SLD in malicious map;
15 Garbage collect packet data;
16 return

17 else if inference result is BENIGN then
18 Set shouldRetransmit ← true;

19 if shouldRetransmit then
20 Fetch dns kernel redirect val = {l3 checksum, kernel time ns} from

dns packet redirection map by tx id;
21 Extract kernel time ns from dns kernel redirect val;
22 if AF PACKET then
23 Update dns redirect ts verify map with key kernel time ns, value true;
24 Replace packet’s l3 checksum;
25 Serialize packet payload to raw bytes;
26 Write packet via syscall.write(AF PACKET, SOCK RAW, 0);

27 if AF XDP then
28 Delete kernel time ns from dns redirect map;
29 Serialize packet payload to raw bytes;
30 Write packet via syscall.write(AF XDP, SOCK RAW, 0);

4.2.2 Passive Malicious Process Threat Hunting Mode

Passive mode reuses the same eBPF program attached to the egress CLSACT TC filter, as

introduced in Section 4.2.1. This mode extends the design by layering additional security
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Figure 4.3: eBPF Agent: DNS Exfiltration Prevention Flow for active phase
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and process-aware security enforcement to prevent DNS-overlaid port obfuscation threats.

The passive mode architecture is broken down as follows. Section 4.2.2.1 introduces the key

eBPF structures used in this mode, their types, and their roles, as visualized in Figure 4.4.

Section 4.2.2.2 details the eBPF programs in the kernel to identify and drop malicious DNS

exfiltration attempts while tracking the responsible userspace processes. It also leverages

kernel tracepoints attached to kernel process scheduler for efficient garbage collection of

malicious process tracking. The next section, Section 4.2.2.3, describes the eBPF agent that

parses and classifies traffic to identify potentially malicious processes involved in exfiltration.

Finally, Section 4.2.2.4 explains the kernel and userspace components maintain a consistent

eBPF map state under concurrent CPU access.

Figure 4.4: eBPF Maps and structure for Agent in passive phase

4.2.2.1 eBPF Maps in Passive mode

1. Suspicious Process Redirect Count Map:

Key: Process metadata extracted from the kernel task struct.

Value: Count of DNS packet redirection per process, specifically for suspicious traffic

over non-standard UDP DNS ports.

2. Suspicious Packet Source Port–Process Map:

Key: Source port of a potentially layered DNS packet sent over a random UDP port.
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Value: Process metadata extracted from the kernel task struct.

3. Malicious Process Tracking Map:

Key: Process ID extracted from the kernel task struct.

Value: Boolean flag indicating whether the process has been identified as malicious.

4.2.2.2 Kernel eBPF filter packet processing in Passive mode

In passive mode, the agent targets DNS exfiltration attempts over arbitrary UDP ports that

may evade active mode protections. Like in active mode, the eBPF program parses packets

up to Layer 4 using SKB metadata. However, it deliberately avoids redirecting all suspicious

UDP packets, reducing unnecessary congestion and preserving latency for legitimate Layer

7 protocols using non-standard ports.

Because the kernel eBPF program cannot reliably determine whether application data

over arbitrary UDP ports contains DNS, it uses skb clone redirect to create a full copy

of packets that heuristically resemble DNS. These clones are redirected to a netdev interface

managed by the eBPF agent. To minimize memory overhead, redirection is only performed

if the payload structure heuristically aligns with DNS protocol fields. The eBPF program

performs raw parsing within SKB bounds (skb->data end) and validates structure against

constraints defined in RFC 1035. If the payload passes these checks, clone redirection is

triggered. The DNS protocol parsing as explained previously from application data of other

protocols in SKB is explained in Algorithm 4.

Before redirection, the TC eBPF program uses bpf get current pid tgid to fetch the

current task struct, identifying the process and thread responsible for sending the packet.

It then checks the malicious process map to verify whether the process has been flagged as

malicious by the userspace eBPF agent due to prior suspicious transfers. If flagged, the kernel

drops subsequent packets while still cloning and redirecting packets. This design enables

dynamic, process-level enforcement, allowing the userspace agent to observe retry behavior,

gather telemetry, and ultimately terminate stealthy implants that beacon intermittently and

exceed the configured threshold.
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If the process is not yet flagged, the eBPF program extracts the source UDP port and

updates src port task struct map with the port as the key and the process/thread ID as

the value. It also increments a counter in task struct redirect ct map, keyed by the same

PID/TID composite, to track suspicious activity. These updates are detailed in Algorithm 5.

This continuous feedback mechanism for threat hunting of malicious processes in the ker-

nel, aided by userspace detection from the eBPF agent, continues until the malicious process

stops sending DNS traffic or is explicitly terminated by eBPF agent in userspace. If the pro-

cess exits before being flagged, a cleanup step is triggered by an eBPF program attached to

the raw tracepoint tracepoint/sched/sched process exit, which is invoked by the kernel

process scheduler when a process terminates. This tracepoint eBPF program removes the

exited process and corresponding stale entries from both task struct redirect ct map and

malicious process map.

4.2.2.3 Userspace Agent Packet Processing in Passive Mode

The parallel packet sniffing procedure from the respective network namespace mirrors the

approach described earlier in the active phase. As in active mode, clone-redirected packets

are received in zero-copy userspace, preserving both application payloads and lower-layer

headers. The agent parses each packet to identify embedded DNS structures. If no valid

DNS layer is found, the source port is removed from src port task struct map to prevent

stale state tracking. When DNS is detected, the agent applies the same logic as in active

mode: checking a local LRU memory cache for known blacklisted domains and, if absent, per-

forming feature extraction and deep learning inference. If a packet is classified as malicious,

the agent updates the blacklist and streams a threat event to the observability backend. Be-

cause these are clone-redirected packets, they are not reinjected. Instead, the agent uses the

source port to retrieve the process and thread ID from task struct redirect ct map, flags

the process in malicious process map, and enables the kernel to drop future packets from

it. The agent also checks how many packets have been redirected for that process and are

malicious. If the count exceeds a configurable threshold and the process is marked malicious,
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the agent terminates the respective process. This process-aware passive mode enables adap-

tive detection and response for exfiltration over non-standard ports. The passive processing

logic of the userspace eBPF agent, as previously explained, is detailed in Algorithm 6.

4.2.2.4 Maps concurrency handling in Passive Mode

This mode mirrors the concurrency principles of active mode by using per-CPU kernel spin

locks on shared eBPF maps and mutex in userspace. For src port task struct map, atom-

icity is achieved through unique src port keys, allowing the kernel to write and userspace

to read without race conditions. Userspace updates to malicious process map use the

BPF ANY flag and are synchronized with a userspace mutex. Since kernel programs only

perform reads on this map, the design benefits from the RCU (Read-Copy-Update) model,

allowing non-blocking reads for improved performance. In task struct redirect ct map,

both kernel writes and userspace reads occur. Here, spin locks protect kernel writers, while

a separate userspace mutex guards readers to prevent race conditions. Figure 4.5 illustrates

the complete packet processing pipeline for the passive mode, including all relevant TC and

userspace components.

Algorithm 4: Egress TC-Based DNS Raw SKB Inspection in Passive Mode

Input : skb (socket buffer),
eBPF LRU hash maps: netlink links config

Output : Packet actions (TC ACT OK),
eBPF map updates (bpf map updates)

1 Parse lower layer headers from skb;
2 Parse DNS header from skb;
3 Extract DNS header counts: qd count, ans count, auth count, add count;
/* Verify DNS count fields are within valid range */

4 if qd count ≥ 256 or ans count ≥ 256 or auth count ≥ 256 or add count ≥ 256 then
5 return TC ACT OK

6 Extract DNS flags: raw dns flags from DNS header;
/* Validate opcode and rcode per RFC 1035 */

7 if opcode ≥ 6 then
8 return TC ACT OK

9 if rcode ≥ 24 then
10 return TC ACT OK

11 Perform necessary bpf map updates;
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Algorithm 5 outlines the core logic of passive-mode eBPF maps operations inside kernel

egress TC filter.

Algorithm 5: eBPF Map Handling within Kernel for Passive Mode of Agent

Input : skb (socket buffer),
eBPF LRU hash maps:
malicious process map,
src port task struct map,
task struct redirect ct map,
dns packet clone redirection ct map

Output : bpf clone redirect action to bridge if index
1 Parse DNS header from skb;
2 Extract DNS query ID (tx id) from DNS header;
/* if index is netdev link index in kernel */

3 Fetch dst ip and bridge if index from netlink links config with key= if index
4 Fetch skb mark from netlink links config with key=if index;
5 Fetch process task struct and process info using bpf get current pid tgid;
6 Fetch is malicious flag from malicious process map using process id;
7 if not is malicious or is malicious is null then

/* Track src port for the packet and corresponding process transmitting
it */

8 Update src port task struct map with key=process id, value=task struct;
9 Fetch current suspicious ct from task struct redirect ct map with

key=task struct;
/* Suspicious packet redirect count per process */

10 Update task struct redirect ct map with key=task struct,
value=current suspicious ct + 1;

/* Global packet clone redirect count metric per netdev */
11 Update dns packet clone redirection ct map with key=if index,

value=new clone redirect count;
12 if is malicious is null then

/* First DNS packet sent by process; mark initially the process as
benign */

13 Update malicious process map with key=process id, value=false;

14 Perform bpf clone redirect(skb, bridge if index, BPF F INGRESS);

15 else
16 Update task struct redirect ct map with key=task struct,

value=current suspicious ct + 1;
/* Drop packet since malicious process attempted exfiltration; continue

clone redirecting clones for monitoring malicious behavior */
17 Perform bpf clone redirect(skb, bridge if index, BPF F INGRESS);
18 return TC ACT SHOT
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Algorithm 6 outlines the core logic of eBPF agent in userspace and intersection with kernel

eBPF programs, maps, deep learning model, and agent caching layer.

Algorithm 6: Userspace eBPF Agent Packet Processing in Passive Mode
Input : Sniffed DNS packets from suspicious Linux namespaces via pcap;

all kernel eBPF maps;
eBPF LRU hash maps: malicious process map, src port task struct map,

task struct redirect ct map
Output : Updates to malicious process map

1 Sniff traffic over veth interfaces in isolated namespaces;
2 if DNS layer not present in skb->data then
3 return ; /* Ignore non-DNS traffic */

4 Extract L4 transport ports: src port, dest port;
5 Extract DNS userspace features: tx id, qd count, ans count, query class, query type;
6 Fetch task struct from src port task struct map with key=src port;
7 Extract process id and thread group id from task struct;
8 Fetch isBlacklistedSLDFound from userspace LRU hash;
9 if isBlacklistedSLDFound then

/* Mark the process as malicious */
10 Update malicious process map with key=process id, value=true;
11 Fetch current suspicious ct from task struct redirect ct map with

key=task struct;
12 if current suspicious ct > MAX MALICIOUS THRESHOLD then

/* Terminate malicious process and clean maps */
13 Send SIGKILL to process id;
14 Delete key=process id from malicious process map;

15 return;

16 Pass extracted features to ONNX model for inference;
17 if inference result == MALICIOUS then
18 Emit malicious threat events to message broker;
19 Blacklist SLD for related DNS records in userspace LRU malicious cache;

/* Mark the process as malicious */
20 Update malicious process map with key=process id, value=true;
21 Fetch current suspicious ct from task struct redirect ct map with

key=task struct;
22 if current suspicious ct > MAX MALICIOUS THRESHOLD then

/* Terminate malicious process and clean maps */
23 Send SIGKILL to process id;
24 Delete key=process id from malicious process map;

25 return;

26 else if inference result == BENIGN then
27 Garbage collect sniffed cloned packet data;

/* No immediate action; track future packets */
28 return;
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Figure 4.5: eBPF Agent: DNS Exfiltration Prevention Flow for passive phase
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4.2.3 DNS Exfiltration via Encapsulated Traffic

In Linux kernel networking stack, encapsulated traffic is managed through virtualization

drivers that extend netdev with associated RX and TX queues. These drivers support en-

capsulation across the L2, L3, and L4 layers. The current eBPF agent focuses on L2-level

encapsulation over software network devices. It does not target tunnels using kernel cryp-

tographic subsystems through the kernel keyring and eXtensible framework (xfrm), such

as OpenVPN, IPsec, or WireGuard. This design decision reflects real-world DNS usage:

DNS resolution rarely occurs within cryptographic tunnels. In practice, DNS exfiltration

over encapsulated traffic is most commonly seen with VLAN-tagged traffic and TUN/TAP

virtual interfaces. VLAN encapsulation is handled during SKB parsing by the TC eBPF

program in the active phase, as explained earlier in Algorithm 1. Here, L2 headers such as

802.1Q and 802.1AD are stripped to expose the inner packet for deep inspection. TUN/-

TAP interfaces, on the other hand, are virtual software devices exposed to userspace via

file descriptors. Malicious processes can write raw DNS-tunneled packets directly to these

interfaces, bypassing conventional filtering. The kernel applies L3 encapsulation on transmit

and L2 de-encapsulation on receive (via TAP), before forwarding to a physical NIC. These

interfaces are usually created via iproute2 or netlink. To address DNS tunneling over TUN/-

TAP, the agent injects kprobes into the tun chr open kernel driver. When a new TUN/TAP

interface is created, the agent receives a kernel event via a ring buffer. It responds by at-

taching the same DPI eBPF logic (from the active phase) to the TC egress hook of the new

interface as illustrated in Figure 4.6. This ensures consistent filtering across dynamically

spawned tunnels. The ring buffer event includes rich telemetry about the creating process,

which aids both monitoring and threat attribution.
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Figure 4.6: eBPF Agent: Prevention flow over Tun/Tap Driver kernel function

4.2.4 Feature Analysis in Data Plane

Features used by the eBPF agent in the data plane are derived from the real-world DNS

exfiltration traffic. Selection was guided by known patterns in DNS tunneling, C2 channels,

and encoding behaviors observed in open source and proprietary DNS exfiltration tools and

real-world attack logs. The goal is to enable real-time filtering of malicious queries with

minimal overhead while adhering to DNS protocol constraints defined in RFC 1035. DNS

packets over UDP are limited to 512 bytes, with domain names capped at 255 characters.

Individual labels must conform to structural limits (typically 63 characters), and payload-

bearing query types such as TXT and NULL can embed encoded data. Although extensions

like EDNS and TCP-based DNS allow larger payloads, most abuse still occurs over standard

UDP. To handle this, feature selection is divided into two stages: Section 4.2.4.1 enforced by

kernel eBPF programs for inline filtering and classification; and Section 4.2.4.2, analyzed by

a deep learning model to detect stealthy or obfuscated payloads.
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4.2.4.1 Kernel eBPF TC program classification and filtering features

Due to the instruction count and complexity limits enforced by the eBPF verifier, DPI is

restricted to parsing only the first DNS question record. This aligns with modern DNS

usage, where queries typically contain a single question; multiple questions are treated as

an anomaly. Numeric features such as domain length and label count are checked against

the thresholds configured during initialization. Suspicious query types like ‘NULL‘ and

‘TXT‘—which may carry arbitrary payloads - are flagged, as are query classes outside ’In-

ternet’ (IN), according to RFC 1035. These features are recorded in a kernel feature map

and used to classify packets in real time. Packets that exceed thresholds are dropped; those

deemed suspicious are redirected or clone-redirected depending on agent mode; all others

are marked benign. This logic is applied consistently across both active and passive modes,

including encapsulated traffic, where tunnel headers are removed before inspection. The

definitions of kernel-level features are shown in Table 4.3.

4.2.4.2 Userspace deep learning model features

The deep learning model is trained on eight lexical features detailed in These features were

selected through an in-depth analysis of DNS exfiltration behavior, based on real-world at-

tack samples, open-source C2 toolkits, and proprietary DNS tunneling frameworks. The

focus is on detecting encoded payloads embedded in DNS queries by analyzing structural

and statistical anomalies in the query format. Specifically, malicious queries often exhibit

either an unusually high number of labels (subdomains) or fewer labels with unusually long

lengths, both reaching the peak of the limits, as explained in RFC 1035. Moreover, encoding

algorithms as explained before often introduce high entropy and randomness in the pay-

load. These characteristics, derived from protocol-aware inspection and empirical adversary

behavior, form the input to the model. Table 4.4 summarizes the complete set of features.

sec:feature-userspace#userspace features..
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4.2.5 Datasets

The deep learning model is trained on a synthetically generated dataset constructed by

combining three distinct sources, resulting in a total of 3.8 million domain samples evenly

split between benign and malicious.

1. Benign SLDs from Cisco: The top 1 million SLDs from Cisco are not used for

training, but are loaded into an in-memory LRU cache by the eBPF agent. This avoids

unnecessary inference on common and trusted domains and improves performance. The

cache is fully reprogrammable from the control plane.

2. ISP-Captured Dataset: The core training data set is sourced from Ziza et al.,

consisting of live-sniffed DNS traffic from an ISP, with approximately 50 million samples

that span both benign and malicious traffic [29].

3. Synthetic Exfiltration Dataset: To address class imbalance, a custom data set

was created using open source tools such as DET, DNSExfiltrator, DNSCat2, Sliver,

Iodine, and internal DNS exfiltration scripts. These samples include a wide range of

obfuscation techniques (see Table 2.1) across various file types—text (e.g., .txt, .md),

image (e.g., .jpg, .jpeg, .png), and video (e.g., .mp4)

Table 4.3: DNS Features in Kernel

Feature Description
subdomain length per label Length of the subdomain per DNS label.

number of periods Number of dots (periods) in the hostname.
total length Total length of the domain, including periods/dots.
total labels Total number of labels in the domain.
query class DNS question class (e.g., IN).
query type DNS question type (e.g., A, AAAA, TXT).
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Table 4.4: DNS Features in Userspace

Feature Description
total dots Total number of dots (periods) in DNS query.
total chars Total number of characters in DNS query, excluding periods.

total chars subdomain Number of characters in the subdomain portion only.
number Count of numeric digits in DNS query.
upper Count of uppercase letters in DNS query.

max label length Maximum label (segment) length in DNS query.
labels average Average label length across the request.

entropy Shannon entropy of the DNS query, indicating randomness.

4.2.6 Deep Learning Model Architecture

The deep learning model operates in userspace to enhance the detection accuracy of the eBPF

agent, especially for identifying obfuscated DNS payloads—capabilities that are infeasible to

implement directly in kernel space due to eBPF verifier constraints. Built with TensorFlow,

the model is a sequential dense neural network using eight lexical input features (as described

earlier). It comprises three hidden layers with 16 neurons each, followed by a sigmoid-

activated output neuron for binary classification. ReLU is used between layers, and the model

is optimized using Adam with a learning rate of 0.001 and binary cross-entropy loss. Training

is carried out over 25 epochs on a dataset of approximately 3.8 million entries, balancing

convergence and overfitting prevention. To optimize training performance, TensorFlow’s

shuffler and prefetch mechanisms are used, and the process is parallelized across multiple

GPUs using MirroredStrategy. Once trained, the model is exported to the ONNX format

(Open Neural Network Exchange) for efficient inference. The ONNX model is integrated into

the eBPF agent as a submodule through Unix domain sockets (IPC), using ONNX Runtime.

Although this design introduces slight inference latency, it is mitigated by a caching layer

inside the agent, consisting of an LRU-based blacklist and a domain-level cache. ONNX was

selected for its runtime efficiency and broad interoperability, despite its limited tooling in the

Golang ecosystem. The model is dynamically quantized (e.g., float32→ int8), which reduces
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memory usage and inference time. Compared to formats such as HDF5 or Pickle, ONNX

provides a compact, performant graph representation, ensuring that the agent maintains

a minimal footprint even under peak load. Figure 4.7 shows the quantized ONNX graph

representation of the dense neural network architecture.

Figure 4.7: Deep Learning Model Architecture (ONNX) for DNS Obfuscation Detection

4.2.7 Thread Events Streaming and Metrics Exporters

When an eBPF agent flags a DNS packet as malicious in the data plane and contains an

exfiltrated payload, the agent streams a threat event using Kafka producers. These produc-

ers are embedded in the compiled eBPF userspace binary and configured to send data to

a remote Kafka broker. Each eBPF agent also includes Kafka consumers. Each agent is

assigned a unique application ID derived from the local node’s IP address, combined with

a randomly generated ID to form the Kafka consumer group ID. This design ensures strong

decoupling between agents, enabling massive horizontal scalability. Data plane nodes can

scale independently without relying on a shared consumer group. Kafka producers operate

asynchronously, allowing the agent to emit threat events while concurrently consuming con-

trol plane topics streamed by the inference controller. These topics carry resolved malicious

domains, enabling each data plane node to update its local blacklist even if the exfiltration
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was detected on a different node, allowing cross-node security enforcement in the data plane.

Additionally, consumed events allow eBPF agents across nodes to apply dynamic Layer 3

filters in the kernel, supporting cross-protocol correlation. While threat events focus on

detected exfiltration attempts, kernel-space eBPF programs also export deep system-level

metrics. These metrics are exposed via Prometheus, allowing the controller to scrape and

monitor them across all nodes in real time. This centralized observability supports both the

analysis of blocked threats and continuous system behavior tracking. Table- 4.5 explains the

details of kafka topics and their significance in the security framework. Appendix A provides

additional details on the metrics exported by the eBPF agent.

Table 4.5: Kafka Topics utilized by the eBPF Agent

Kafka Topic Name Description

exfil-sec Kafka topic used by the eBPF agents in data plane to
stream prevented DNS threat events.

exfil-sec-infer-controller Topic used by the controller to publish dynamic domain
blacklists to DNS servers for data plane eBPF agent
update userspace caches.

4.3 Control Plane

As illustrated in the overview of the component components of the control plane, the con-

troller is designed to be entirely stateless, relying on the GPSQL backend used by PowerDNS

for DNS state management and RPZ zones to track malicious domains. The control plane

currently consists of a single Tomcat web server, with Spring Kafka consumer integrated to

consume malicious threat events from the exfil-sec Kafka topic. These events are emitted by

all endpoints in the data plane and contain blacklisted domain metadata and node-level con-

text that identify where the threat was detected. Upon consuming these events, the control

plane dynamically updates the RPZ backend with the (SLDs) associated with malicious do-

mains in threat events. This update enforces DNS-level security enforcement, which causes

the DNS server to start dropping any queries to these domains. To optimize performance and
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prevent malicious DNS queries from ever reaching the DNS server again once blacklisted, the

control plane also writes to another Kafka topic (exfil-sec-infer-controller). This topic is con-

sumed by all data plane nodes to rehydrate their local malicious userspace caches, effectively

reprogramming the eBPF agents at each endpoint to drop related packets immediately at

the endpoint, reducing network hops. For enhanced security, the control plane additionally

performs DNS resolution on the malicious domains to extract their corresponding Layer 3

addresses. These addresses, which represent active C2 or tunneling servers on the public

internet, are also streamed in exfil-sec-infer-controller Kafka topic used to dynamically en-

force layer 3 network policies inside the kernel post consumed by the eBPF agents deployed

across the data plane for cross protocol correlation. With fully asynchronous, bidirectional

communication between the control plane and the data plane via Kafka, the architecture

enables continuous re-programmability of data plane nodes to enforce dynamic kernel-level

security policies. It also supports the horizontal scalability of individual components cru-

cial for production-grade cloud environments. This design directly targets and stops DGA,

providing robust protection against mutation in both Layer 3 and Layer 7.

4.4 Distributed Infrastructure

As described earlier in the security framework overview, the distributed infrastructure con-

sists mainly of a PowerDNS authoritative server, a PowerDNS recursor, a PostgreSQL-based

GPSQL backend, Kafka brokers, and Prometheus scrapers. These scrapers collect metrics

exposed by eBPF agents deployed in the data plane. Notably, eBPF agents do not handle

malicious DNS exfiltration over TCP due to the complexity of the TCP state machine and

congestion control within the kernel. To address this, TCP-based DNS exfiltration attempts

are intercepted in userspace by PowerDNS recursor query interceptors acting as middleware.

Because the PowerDNS recursor supports only Lua-based interceptors, a custom Lua mod-

ule was developed. This interceptor extracts features from DNS queries received over TCP

and performs inference using a serialized ONNX deep learning model. Leveraging Lua’s



41

lightweight, high-performance nature, the interceptor accesses the GPSQL backend’s RPZ

table, which contains known malicious domains. This enables returning NXDOMAIN responses

for blacklisted queries, skipping inference to improve throughput. Furthermore, the intercep-

tor employs PowerDNS internal domainsets - fast, in-memory trie-based caches of malicious

domains detected over TCP. These caches enable rapid filtering of repeated exfiltration

attempts. To maintain accuracy without inference overhead, the domainsets periodically

synchronize with the RPZ, ensuring up-to-date enforcement. Appendix B explains the Lua

interceptor filtering DNS exfiltration over TCP.
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Chapter 5

IMPLEMENTATION & RESULTS

This chapter evaluates the effectiveness of the implemented DNS exfiltration prevention

security framework in a distributed setting with comprehensive evaluation results and anal-

ysis.

5.1 Environment Setup

The security framework developed was deployed on eight CSSVLAB nodes (CSSVLAB01–08),

each running Ubuntu 24.02 with Linux kernel 6.12 on Intel Xeon Gold 6130. Each node

had 8GB RAM and 24GB storage. The systems ran under the netvsc hypervisor network

driver, with 100 Gbits/sec network bandwidth and 8 TX/RX hardware queues aligned to

CPU cores to enable optimal packet steering and parallel processing for high-throughput

netflow handling. In addition, all eight CPU cores and memory resided on a single NUMA

node, eliminating memory lookup overhead during kernel benchmarking. The test bench

launches a custom PowerDNS authoritative and recursor server on CSSVLAB08. The con-

troller and a Kafka single broker instance run on CSSVLAB01. Nodes CSSVLAB02–07,

excluding CSSVLAB06, act as the data plane, each running the eBPF agent and using

the custom PowerDNS server as the default resolver via systemd-resolved. CSSVLAB06 is

used to simulate DNS exfiltration attacks against data plane nodes, tunneling DNS queries

through the same PowerDNS instance. The complete deployment is illustrated in Figure 5.1

5.2 Evaluations Results

The evaluation of this security framework is presented for each individual architecture sub-

component in the following sections.
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Figure 5.1: Security Framework Deployed Architecture over CSSVLAB Nodes

5.2.1 Data Plane

The effectiveness of the eBPF agent at the endpoint of the data plane is evaluated through

quantized deep learning model metrics, comparison of DNS request throughput in both oper-

ational phases (active and passive), and measurement of bandwidth and resource utilization,

including CPU and memory usage, as well as throughput of kernel events processing. Finally,

the agent’s resilience coverage against advanced adversary emulation frameworks including

agent’s response time for these attacks is evaluated. Agent’s performance evaluation is per-

formed on a single node within the data plane running the eBPF agent at the endpoint.
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5.2.1.1 Deep Learning Model Evaluation

The trained deep learning model was evaluated on a dataset of 3.8 million domains, divided

into 70% for training and 15% each for validation and testing. After training, the model

achieved a validation precision of 99.7%, with the loss steadily decreasing throughout the

25 training epochs and reaching 0.98% at the end, as shown in Figure 5.3. Given the DNS

data exfiltration use case, the model performance was assessed with a primary emphasis on

minimizing false positives. A high false-positive rate would not only cause the eBPF agent

to drop benign DNS packets and generate false threat events, but could also result in the

termination of legitimate processes, thereby introducing operational risks. In contrast, false

negatives were considered less critical, as the agent would allow malicious traffic to pass

through without taking privilege-level actions. Therefore, precision was prioritized over

recall. These metrics are formally defined as:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
.

Based on these considerations, and using a data set engineered to capture a wide range of

data obfuscation techniques, the model achieved a precision of 99.59% and a recall of 99.87%

when evaluated on the test dataset, as shown in Figure 5.1, with the corresponding confusion

matrix presented in Figure 5.2. For runtime inference using ONNX within the eBPF agent, a

binary classification threshold of 0.85 was selected. This value was determined by analyzing

F1 score performance across varying classification thresholds, as illustrated in Figure 5.4,

with particular attention to the trade-off between precision and recall. Since minimizing false

positives was the top priority, the selected threshold maximized precision while maintaining

a relatively high recall. This high-precision, low false-positive outcome was enabled by the

chosen feature set, which included Shannon entropy across multiple encoding and encryption

schemes, allowing the model to effectively learn obfuscation patterns.
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Table 5.1: Model Evaluation Metrics

Metric Train Test

Accuracy 0.9973 0.9997

AUC 0.9997 0.9997

Loss 0.0099 0.0091

Precision 0.9959 0.9959

Recall 0.9987 0.9988 Figure 5.2: Confusion Matrix

Figure 5.3: Model Precision
Figure 5.4: Precision, Recall, and F1 Score
vs. Threshold

5.2.1.2 eBPF Agent Request Throughput and Latency Metrics in Active Mode

The performance of the system was evaluated in active mode by measuring the impact on

benign DNS traffic during standard end-to-end resolution, from a userspace process sending

DNS requests, through kernel redirection through eBPF programs, to the network device

monitored by the agent. For cache hits, the request is matched against the global SLD
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cache; for cache misses, live ONNX inference is performed. The kernel feature thresholds in

the eBPF map were intentionally kept stringent, causing most DNS packets to be flagged as

suspicious to stress-test the throughput. Throughput was measured using DNSPerf, which

quantifies both request throughput and DNS response success rates. The test locked DNSPerf

to send 10,000 DNS requests per second over 20 seconds, monitoring packet loss. The recursor

server was assumed to be healthy with no additional impact on DNS throughput testing. The

testing node uses the hypervisor-supported netvsc virtual driver with 8 combined RX/TX

queues, but lacks the discrete ring buffers required for AF XDP, making direct packet injection

into TX queues unsupported. Consequently, the egress path relies on AF PACKET. In the

cache-hit scenario (100% benign global SLD matches), throughput ranged from 8,100 to

9,820 DNS requests/sec with zero packet loss, as shown in Figure 5.5. The X-axis represents

the benchmark duration, while the Y-axis shows both packet throughput and loss. Latency

remained low, ranging from near 0 ms to 250 ms per 10k sample (Figure 5.7, with X-axis

as duration and Y-axis as latency). In contrast, in the cache-miss path that requires live

inference, the throughput was reduced to 430-520 requests / sec (Figure 5.6) and showed

peak latencies of up to 750 ms (Figure 5.8), using the same axis conventions. Despite this,

no packet loss was observed, which ensures reliability. The latency spike is attributed to

the overhead of UNIX domain socket communication with the ONNX inference server and

Python’s global interpreter lock (GIL), which limits concurrency. In contrast, the eBPF

agent being compiled binary support true concurrency and parallelism, offering significantly

better performance. It was observed that throughput becomes unstable beyond 5,000 DNS

requests/sec, though such traffic volumes typically indicate malicious behavior and can be

rate-limited in kernel eBPF programs. Overall, for stress testing over a prolonged period of

time, the agent successfully processed a maximum throughput of 67.3 million DNS requests

per hour with no packet loss, while performing deep parsing across both kernel and userspace.
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Figure 5.5: eBPF Agent: DNS Throughput
for GSLD LRU Hit (10k req/s)

Figure 5.6: eBPF Agent: DNS Through-
put, GSLD LRU Miss, ONNX (10k req/s)

Figure 5.7: eBPF Agent: DNS Latency for
GSLD LRU Hit (10k req/s)

Figure 5.8: eBPF Agent: DNS Latency,
GSLD LRU Miss, ONNX (10k req/s)

5.2.1.3 eBPF Agent Request Throughput and Latency Metrics in Passive Mode

The primary evaluation metric in passive mode is the volume of DNS-based data exfiltration

successfully prevented before terminating malicious processes. In this mode, the agent em-

ploys a clone-and-redirect mechanism, allowing original DNS packets to pass through while

kernel programs inspect traffic for signs of malicious activity. Upon detection, the kernel

notifies the eBPF agent to kill the responsible process. Traditional throughput and latency
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are not emphasized; instead, performance is measured by how effectively the system detects

and stops beaconing implants that transmit data over DNS, often across random UDP ports.

Figure 5.9 illustrates the total volume of exfiltrated data prevented by the eBPF agent be-

fore process termination. The horizontal axis represents different process kill thresholds,

while the vertical axis shows the amount of data loss prevented. DNSCat2 was used for the

benchmark configured with a 20-second beaconing interval and exfiltrating through various

types of DNS records (MX, TXT, CNAME, HTTP, SRV, etc.), demonstrating the security

strength in delaying termination just enough to observe beacon patterns, allowing network

administrators to tune termination thresholds for maximum insight.

Figure 5.9: eBPF Agent: Volume of DNS Exfiltrated Data Prevented vs. Process Kill
Thresholds

5.2.1.4 eBPF agent Resource Usage

The performance of the eBPF agent was closely monitored while running at the endpoint in

the data plane, and the utilization of resources was measured in terms of memory and CPU

utilization. During a 10-second DNSPerf benchmark at 10,000 DNS req/sec, with the agent

in active mode redirecting all packets to userspace, the agent consumed approximately 310
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MB of memory for the main process. This includes heap memory, as all LRU maps loaded

by agent’s process for fast lookups. At a higher throughput of 100,000 DNS requests/sec,

memory usage remained nearly the same, peaking at 350 MB. Figure 5.10 and Figure 5.11

illustrate the memory usage corresponding to the previously discussed DNS request through-

put benchmarks. The horizontal axis represents the benchmark duration in seconds, while

the vertical axis shows memory usage over time. Throughout the benchmark, the agent

process consistently consumed only 8–10% CPU at peak load and remained below 2% when

the system was idle. Memory usage during idle conditions stabilized around 120 MB. These

results demonstrate that the agent is highly lightweight, with minimal CPU and memory

footprints and no observable impact on other processes running on the endpoint. Consid-

ering that the CPU usage for the injected eBPF programs in the kernel peaked at 1.2% at

peak load, while for the idle system it remained below 0.2%. In addition, the agent binary

compiled size with all the explained features is around 22 MB on ARM and 24 MB on x86 64

architectures, ensuring there is minimal storage impact on the endpoint caused by the eBPF

agent. Appendix A provides additional profiling details for eBPF agent in kernel.

Figure 5.10: eBPF Agent: Process Memory
Usage for 10K DNS Req/Sec

Figure 5.11: eBPF Agent: Process Memory
Usage for 100k DNS req/sec
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5.2.1.5 Effectiveness of eBPF Agent Against DNS Exfiltration Frameworks

The eBPF agent was evaluated across all data plane endpoints against widely used DNS-

based C2 frameworks commonly employed by red teams. Tests focused on disrupting C2 and

exfiltration activity tunneled through DNS, with CSSVLAB06 serving as the attacker node.

The BishopFox Sliver framework was tested in agent’s active mode for both basic exfiltration

and advanced operations, including remote shell access, code execution, file transfers, port

forwarding, and persistence, entirely over DNS. The agent intercepted the initial C2 packet at

the kernel level, immediately disrupting communication, triggering retries, and terminating

implants for both beacon-based and session-based channels. Since Sliver lacks randomized

UDP port support, transport obfuscation was assessed using dnscat2. In both active and

passive modes, the agent enforced mitigation policies, leading to full-session termination and

zero data exfiltration. The average response time for each measured exfiltration attempt was

316.233 microseconds, as shown in Figure 5.12. For raw exfiltration, tools such as DET were

immediately blocked. Furthermore, iodine, which tunnels through TUN/TAP interfaces,

was effectively mitigated. All other bulk exfiltration tools were similarly thwarted. Table 5.2

summarizes the tools tested and the associated attack vectors prevented.

Figure 5.12: eBPF Agent: Response Time for Each DNS Exfiltration Attempt
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Table 5.2: Framework Coverage Against Real-World DNS C2 and Exfiltration Tools

5.2.2 Control Plane

The evaluation of the stateless controller server focuses on its effectiveness in accurately

consuming threat events transmitted from data plane nodes to a Kafka topic, blacklisting

domains in RPZ, and redistributing those events to data plane nodes to rehydrate their

malicious domain caches. Figure 5.13 illustrates the structure of threat events streamed

from eBPF agents in the data plane, serialized as JSON, and published to a Kafka topic.

These events are consumed by the controller and used to blacklist domains in the RPZ zone

of the DNS server. Figure 5.14 shows the published threat event structure published by the

controller on the Kafka topic (exfil-sec-infer-controller) for the data plane nodes to consume.

As explained previously, the controller’s published events also include Layer 3 (IPv4/IPv6)
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addresses of remote C2 nodes. This enables agents in the data plane to enforce cross-protocol

correlation by dynamically injecting L3 filtering rules into the kernel. This design not only

blocks DNS-based DGA communication, but also halts all protocol-level traffic to malicious

IPs, offering strong protection from distributed threats and elevating system-level security

enforcement directly inside the kernel.

Figure 5.13: Controller consumed Threat
Event

Figure 5.14: Controller streamed Threat
Event

5.2.3 Distributed Infrastructure

Performance evaluation focuses on the DNS server, assessing the throughput impact of the

Lua-based interceptor in the PowerDNS Recursor. As shown in Figure 5.15, which plots

the benchmark duration on the horizontal axis, with throughput and packet loss on the two

vertical axes, the server experienced a drop to 490 DNS requests per second under a load of

10,000 requests / sec. This degradation stems from reusing the same inference server design

as the data plane, reliance on UNIX sockets, and Python’s concurrency limits. Latency

results in Figure 5.16 show the benchmark duration on the X-axis for a period of 20 seconds

and associated latency on the Y-axis, peaking at 750 ms with a mean deviation of 380

ms. All TCP traffic benchmarks used TCP FAST OPEN, allowing data transmission with the

initial SYN packet and reducing handshake overhead for accurate DNS-over-TCP latency
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measurements. Figure 5.17 displays the blacklisted domains listed in the DNS RPZ table on

the server.

Figure 5.15: DNS Server Throughput for 10k
DNS req/sec over TCP

Figure 5.16: DNS Server Latency for 10k
DNS req/sec over TCP

Figure 5.17: Blacklisted Domains in RPZ Zone on DNS Server
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Chapter 6

CONCLUSION

This chapter concludes the project by summarizing its contents and outlining future

directions.

6.1 Summary

This security framework significantly advances the state-of-the-art by introducing a novel

architecture that prevents DNS-based data exfiltration while preserving horizontal scala-

bility required in production cloud environments, directly addressing critical gaps left by

traditional approaches. Existing approaches to DNS exfiltration prevention remain largely

stagnant, relying on centralized detection, userspace anomaly systems, or proxy-based DPI,

all inherently inadequate against sophisticated, real-world DNS-based attacks, particularly

those that take advantage of advanced C2 vectors. In contrast, this framework introduces a

new paradigm: kernel-enforced endpoint security. It acts as a privileged layer beneath ex-

isting endpoint security solutions, enabling strict enforcement inside the operating system.

Using eBPF to reprogram the core kernel subsystems, paired with enhanced deep learn-

ing–based inference, this system-wide enforcement demonstrates comprehensive defensive

strength: capable of detecting, stopping and killing the most advanced DNS C2 implants in

real time, even against sophisticated attack vectors modeled by top-tier adversary emulation

frameworks. Furthermore, by combining a layered approach with system security embed-

ded with an endpoint-centric design, this architecture elevates endpoint defense beyond the

limitations of userspace alone, providing detailed visibility into malicious activity, and rapid

response to malicious implants. The following points summarize the strengths of the security

framework.
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• Instant DNS C2 Disruption – Immediately blocks DNS-based command-and-control

channels upon initiation, stopping covert communication at the source.

• Active Implant Process Detection & Termination – Detects malicious processes

that use DNS for exfiltration and terminates them in real time.

• Tunnel and Encapsulation-Aware Defense – Eliminates DNS tunnels, protocol-

agnostic payload encapsulation, encapsulated traffic in the kernel, including DNS over-

lay over random UDP ports.

• Prevents Sophisticated C2 over DNS – Effectively stops advanced C2 command

attacks - including, but not limited to, remote code execution, reverse tunnels, protocol

tunneling, port forwarding, remote file compromise, remote process side channeling,

and C2 multiplayer modes.

• DGA Mitigation with dynamic L3 kernel Network Policies – Dynamically

blacklists domains, reprogram agents in data plane, and enforces layer 3 network poli-

cies for cross-protocol coordination.

• Rich metrics and system observability – Exports rich metrics to Prometheus,

enabling visibility across scaled data planes and providing robust system-level observ-

ability at each endpoint.

6.2 Limitations

• Increased Latency for Active mode of AgentWhile Active Mode introduces some

latency due to live redirection of DNS over UDP traffic from the kernel’s TC eBPF

program to userspace for deep scanning, this overhead is still significantly lower than

remote proxy-based DPI solutions. If latency is cocnern at endpoint kernel feature

values can be eased for kernel eBPF programs to perform less aggressive DPI.

• Potential Security Bypass for Passive mode of Agent In passive mode, since

the eBPF agent hunts for malicious activity tied to a process and kills post exceeding

threshold, malicious process can bypass security by forking child processes to prevent
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it the agent must track malicious activity to parent process from kernel task struct

rather over process id.

• High Accuracy and Latency in Deep Learning Model Training and

Inference: Although the model achieved high precision with few false positives, its

performance could be further improved by incorporating more diverse poisoned samples

to address unseen payload obfuscation techniques. Furthermore, the use of UNIX

socket-based IPC, combined with Python’s limitations in true concurrency, reduced

inference throughput and increased latency.

• Absence of Encrypted Exfiltration Prevention: The framework does not support

the prevention of exfiltration through encrypted DNS channels such as DoT or DoH.

• Absence of Encrypted Encapsulated Tunnels: The framework does not sup-

port prevention of exfiltration over encrypted tunnels relying on kernel xfrm such as

Wireguard, OpenVPN, IPSec.

6.3 Future Work

• Extend Support for DNS-over-TCP and Encrypted Tunnels: Implement detec-

tion and blocking for exfiltration of DNS over TCP in kernel eBPF programs replicating

TCP state machine coupled with envoy as an L7 userspace proxy for analysis

• Migration away from Python inference server: Migrate the Python ONNX in-

ference to Rust, with a wasm (web assembly) module for faster inferencing compared

to interpreted languages.

• Add In-Kernel TLS Fingerprinting: Integrate TLS fingerprinting (e.g. JA3 /

JA4) using eBPF to detect encrypted DNS exfiltration over TLS or WireGuard tun-

nels, supporting userspace deep learning models with detailed system-level metrics for

dynamic security policy enforcement by kernel eBPF programs.

• Rate-Limiting Based on Volume and Throughput: Integrate egress DNS rate

limit for mass volume breaches using EDT BPF and HTB QDISC.
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Chapter 7

APPENDICES

This chapter outlines additional security mechanisms designed to protect the Linux kernel

from malicious eBPF programs, as well as enhanced observability features employed by the

eBPF agents in the data plane. It also describes the DGA used to simulate the generation

of large-scale malicious domains for DNS exfiltration attack testing. The complete security

framework codebase—including all configuration files and documentation—is publicly avail-

able at GitHub. It is currently licensed under AGPLv3 license. The repository contains all

components of the system, covering both kernel and userspace implementations of the eBPF

agents in the data and controller servers in control planes. It also provides Docker deploy-

ment manifests for setting up Kafka brokers and scripts to deploy PowerDNS. These scripts

configure all nodes on a distributed testbed to use PowerDNS as their default resolver. Al-

ternatively, the entire infrastructure—including PowerDNS and Kafka—can be deployed on

any cloud provider, depending on operational requirements. Detailed setup instructions for

each component of the security framework are provided in the accompanying docs directory.

7.1 Appendix A

This section focuses on providing additional security details implemented within the kernel

to protect the kernel from malicious eBPF agents and system profiling of agents in data

plane.

7.1.1 Kernel eBPF programs and userspace agent profiling

Given the intensive DNS parsing and enforcement logic implemented in the kernel TC layer,

a comprehensive benchmarking was performed to evaluate its impact on the performance of

https://github.com/Synarcs/DNSObelisk
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benign traffic. The documented source code can be found in the kernel/ directory, which

includes logic to classify DNS payloads at line rate. Performance evaluation leveraged in-

kernel perf instrumentation and system profiling tools. The eBPF program was executed

concurrently across multiple CPU cores and was monitored using Netflix’s bpftop tool. Under

a high-throughput workload of approximately 100,000 DNS requests per second, kernel CPU

usage peaked at 4% across eight cores, with a minimum of 2%. The program consistently

maintained processing rates of up to 17,063 events per second - excluding hardware interrupt

and soft IRQ overhead - demonstrating the efficiency of the eBPF logic attached to the TC

kernel. Figure 7.2 illustrates the profiling results. In addition to kernel-level profiling, the

eBPF userspace agent responsible for traffic handling was analyzed using Golang runtime

profiler. CPU flame graph analysis revealed that approximately 25% of the agent’s runtime

was spent on BPF-related syscalls, primarily for monitoring and interacting with kernel-

managed eBPF maps and ring buffers. These operations are performed using asynchronous

I/O via epoll, significantly reducing the overhead compared to busy polling for metrics from

userspace. This distribution reflects the agent’s dependency on frequent kernel interactions

for accessing and updating eBPF map state. Figure 7.1 illustrates the resulting flame graph.

Figure 7.1: eBPF Agent: Flame Graph
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Figure 7.2: Kernel eBPF Programs Profiling

7.1.2 eBPF Agent exported metrics

Table 7.1 describes all the metrics exported by each eBPF agent at the endpoint in data

plane, with Figure 7.3, Figure 7.4, Figure 7.5 detailing some of the enhanced system-level

metrics exported by the eBPF agent to Prometheus from the eBPF map and ring buffers to

Grafana, a visualization tool to scrape Prometheus metrics.

Table 7.1: eBPF agent exported metrics in both active and passive modes

Metric Description

DNSFeatures Metadata of detected DNS exfiltration packets, includ-

ing extracted features.

Tunnel Interface

Process Info

Tracks kernel netlink events for virtual network device

creation, linked to the process that created them (UID,

GID, PID).



65

DPI Redirect Count Packet redirection count by kernel DPI logic in active

mode.

DPI Clone Count Count of cloned packets redirected for inspection in pas-

sive mode.

DPI Drop Count Total packets dropped by kernel DPI logic.

MaliciousProcTime Start time and duration the malicious process was alive

before termination.

CPU Usage CPU utilization of the eBPF agent in userspace.

Memory Usage RAM usage in MB or percentage of total memory used

by the eBPF agent.

DNS Redirect and

Processing Time

In active mode, tracks time from kernel redirection to

userspace sniffing, model inference or cache lookup, then

resend if benign or block if malicious.

(a) Exfiltration Attempts Prevented per Pro-
cess (b) Process Alive Time Before Termination

Figure 7.3: DNS Exfiltration Prevention Metrics: Malicious Process Alive Activity



66

(a) Tunnel Interface Exfiltration Metric (b) Latency in Active Redirect Mode

Figure 7.4: DNS Exfiltration Prevention Metrics: kernel network encapsulation and Latency

Figure 7.5: Metrics of Prevented DNS Exfiltrated Packets

7.1.3 Protecting Linux Kernel from malicious eBPF programs

In the data plane, ensuring security beyond kernel-enforced capability checks, such as those

near CAP SYS ADMIN requires guaranteeing the integrity of injected eBPF programs. This

prevents tampering or injection of malicious code within the compiled ELF sections of the

eBPF bytecode. Without such integrity guarantees, a compromised eBPF agent could load

manipulated programs, bypassing exfiltration prevention logic, and causing a critical secu-

rity breach. To mitigate this risk, additional eBPF programs are loaded into the kernel

and attached to LSM hooks that intercept BPF syscalls, including BPF PROG LOAD. These

LSM programs verify digital signatures on the incoming eBPF bytecode, following a process
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analogous to the verification of loadable modules by the kernel. Each data plane node’s

agent bootstraps a local certificate authority (CA) that generates ephemeral elliptic curve

certificates and private keys. The agent signs the raw eBPF bytecode prior to injection,

establishing an initial trust layer. After JIT compilation, the optimized bytecode is signed

again, along with the original raw bytecode signature, creating a two-stage chain of trust.

Certificates and keys are securely stored in the kernel session keyring, tied to the user’s login

session on the endpoint. When the BPF PROG LOAD syscall occurs, the LSM hook verifies both

raw and compiled bytecode signatures against the asymmetric keys in the keyring. These

signatures are also maintained within the eBPF maps to support verification logic. This

dual-signature approach ensures that neither raw nor compiled bytecode can be tampered

with before kernel injection. Furthermore, the core security layer integrates with a centralized

control plane connected to the cloud Public Key Infrastructure (PKI), enabling a scalable

layered trust model - from cloud PKI to kernel-level mandatory access control. While the

keyring currently stores sensitive keys in kernel-guarded memory pages, the kernel restricts

access to unprivileged userspace processes. In addition, these security primitives support

integration with Trusted Platform Modules (TPMs) or Hardware Security Modules (HSMs)

- commonly available in cloud environments - allowing the keyring and cryptographic keys

to be offloaded to hardware-backed firmware, thereby enhancing security guarantees. The

core implementation for the kernel resident LSM-integrated eBPF verification program is

detailed below.

Listing 7.1: Kernel BPF LSM Hook for PKCS7 Signature Verification

BPF_PROG(bpf , int cmd , union bpf_attr *attr , unsigned int size) {

if (cmd != BPF_PROG_LOAD)

return 0;

// Look up eBPF program , its original signature , and the modified

signature

mod_sig = bpf_map_lookup_elem (& modified_signature , &zero);

orig_data = bpf_map_lookup_elem (& original_program , &zero);

combined_buf = bpf_map_lookup_elem (& combined_data_map , &zero);
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// Copy eBPF program and original signature into a combined buffer

insn_len = attr ->insn_cnt * sizeof(struct bpf_insn);

bpf_copy_from_user(combined_buf ->data , insn_len , attr ->insns);

bpf_probe_read_kernel(combined_buf ->data + insn_len , orig_data ->

sig_len , orig_data ->sig);

// Create dynptrs for PKCS7 verification

// dynptrs work similar to kptr but allowing to point to buffer

location storing large amount of data as in case of eBPF signed

paylods to satisfy eBPF verifier requirements.

bpf_dynptr_from_mem(combined_buf ->data , total_size , 0, &

combined_data_ptr);

bpf_dynptr_from_mem(mod_sig ->sig , mod_sig_size , 0, &sig_ptr);

bpf_dynptr_from_mem(orig_data ->data , orig_data ->data_len , 0, &

orig_data_ptr);

bpf_dynptr_from_mem(orig_data ->sig , orig_data ->sig_len , 0, &

orig_sig_ptr);

// Load asymmetric keys from session kernel keyring and verify

signatures

// all the kernel keyring access in bpf code is done via bpf_key a

wrapper over kernel core key structure

trusted_key = load_keyring ();

bpf_verify_pkcs7_signature (& orig_data_ptr , &orig_sig_ptr , trusted_key)

;

bpf_verify_pkcs7_signature (& combined_data_ptr , &sig_ptr , trusted_key);

}

7.1.4 Protecting SKB Netflow introspection and eavesdropping

In active mode, the agent enforces advanced security directly in the kernel using a TC-

attached eBPF program bound to the veth bridge that manages all network namespaces

created by the agent. To prevent malicious processes from analyzing live traffic redirec-

tion patterns, an additional eBPF map, skb netflow integrity verify map, is used as

explained in Algorithm 2. The core eBPF program assigns a unique SKB mark to each redi-
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rected netflow packet, enabling integrity verification at the receiving bridge interface. This

bridge, monitored by the eBPF agent in userspace, receives the redirected traffic for further

analysis of suspicious behavior. An additional ingress TC eBPF program is attached to the

bridge interface. Inspect incoming SKB to verify that the expected SKB mark is present,

confirming that the packet was redirected from the core TC program on a physical netdev

and not injected from any untrusted source. This enhanced security design ensures strong

SKB integrity and prevents malicious sniffing or brute-force inference of live redirection pat-

terns, effectively enforcing traffic validation across both kernel and userspace components.

Algorithm 7 explains the algorithm integrity verification check on the SKB attached to the

TC ingress on the bridge.

Algorithm 7: SKB Integrity Verification and Secure Redirection in Active Mode

Input : skb (socket buffer)
eBPF map: skb netflow integrity verify map

Output : TC ACT OK — packet allowed
TC ACT SHOT — drop tampered packet

; /* Unique mark used in core TC program on each physical netdev */
1 Fetch skb mark integrity mark from skb netflow integrity verify map with:

Key: 0xFFEF
2 if skb mark integrity mark ̸= skb->mark then

/* Tampered or spoofed redirection; reject packet */
3 return TC ACT SHOT;

4 return TC ACT OK ; /* Packet is legitimate */

7.2 Appendix B

This section provides additional internal details about Lua interceptor to filter malicious

DNS over TCP on DNS server and DGA used to generate domains in malicious C2 and

tunneling activities.

7.2.1 PowerDNS TCP Lua interceptor

Algorithm 8 details the algorithm implemented in PowerDNS Recursor as a DNS query

interceptor.
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Algorithm 8: PowerDNS Malicious DNS over TCP Filtering Query Interceptor

1 qname← dq.qname.toString();
2 if dq.isTcp then
3 result← extractFeaturesAndGetRemoteInference(qname);
4 if result["threat type"] then
5 insertMaliciousDomains(qname);
6 dq.rcode← NXDOMAIN;
7 return true ; /* Block malicious DNS over TCP */

8 if sf blacklist.check(getSLD(qname)) then
9 dq.rcode← NXDOMAIN;

10 return true ; /* Block known SLD from local blacklist */

11 return false ; /* Allow query if not malicious */

7.2.2 Malicious domain generation

To carry out advanced DNS C2 attacks or tunneling with open-source C2 tools, a DNS

server configured with custom DNS zones (SOA) is required. These zones must include NS,

A, AAAA, and glue records pointing to the malicious C2 server’s IP. In this framework,

PowerDNS serves as the DNS infrastructure that supports such attacks. A custom script

simulates a sample DGA by generating random SLDs, selecting random top-level domains

(TLDs), and adding a third label identifying the C2 tool. The script also generates Pow-

erDNS recursor forwarder configurations to redirect specific queries to a custom authoritative

PowerDNS server and creates the necessary zone files using pdnsutil. By DNS design, each

label requires a dedicated zone file with an NS record delegating the next label, enabling hi-

erarchical resolution through glue records. Currently, the DGA only mutates domain names

and does not implement IP (L3) address mutations, such as multiple A/AAAA records for

DNS-based load balancing across C2 nodes. This extension is possible with additional in-

frastructure. Despite the lack of L3 mutation, the framework controller remains effective

by enforcing dynamic domain blacklists and applying in-kernel network policies for cross-

protocol correlation, blocking data exfiltration to dynamically generated domains and IPs.

In particular, most real-world advanced C2 and multiplayer frameworks do not rely on for-

warding DNS queries through separate DNS servers. Instead, implants communicate directly

with C2 servers that run their own DNS service on standard or random UDP ports. For
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example, Sliver forces DNS servers to forward all queries directly to the C2 DNS server,

eliminating intermediate DNS hops. The DGA implementation details are explained below.

Listing 7.2: Domain Generation Algorithm

# generate number of malicious C2 server domains and add create zones ,

child zones NS links inside DNS server

# all the attacker tools to use

# this attacker tool also generate the third label of C2 domain

exfil_tools: List[str] = [’dnscat ’, ’sliver ’, ’iodine ’, ’det’]

# get the random TLD

def gen_randomTLD () -> str:

return random.choice ([’live’,’com’,’de’,’io’,’se’,’bld’, ’val’, ’def’,

’head’])

def DGA_MASS_DOMAINS_GEN(args):

r = RandomWord ()

dga = gen_c2_exfil_domains(tldDomains =[ base64.b64encode(r.word()).

lower() + "." + gen_randomTLD ()

for _ in range(1 << int(args.count)

)],

c2_tool_domains=exfil_tools)

ff = open(DGA_FILE , ’w’, encoding=’utf -8’)

ff.write(’\n’.join(dga))

append_zone_data_in_zoneFiles(dga) # create zone and child zones

for PowerDNS Authoritative zone

gen_exil_forward_zones_file(dga) # generate the forward zone file

for PowerDNS Recursor
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