
#BHUSA @BlackHatEvents

Not Sealed:
Practical Attacks on Nostr,

a Decentralized Censorship-Resistant Protocol

Speakers: Hayato Kimura
Contributors: Ryoma Ito, Kazuhiko Minematsu, Shogo Shiraki and Takanori Isobe

Keywords: Distributed SNS, signature verification bypass, CBC mode malleability,
cache poisoning, plaintext recovery

(Also, IEEE EuroS&P2025)

#BHUSA @BlackHatEvents

Our Team

2

Ryoma Ito
(NICT)

Kazuhiko Minematsu
(NEC)

Shogo Shiraki
(University of Hyogo)

Takanori Isobe
(The University of Osaka)

Hayato Kimura
• Researcher at NICT, Japan

(National Institute of information and Communications Technology)
• Ph.D. candidate at The University of Osaka
• Research field: Applied Cryptography & Protocol Security

#BHUSA @BlackHatEvents 3

The dawn of the Distributed SNS

#BHUSA @BlackHatEvents

Self-sovereign Federated

Authentication
by a single service provider

Service providers are interconnected
But identity managed like a centralized SNS

Signed Post

Signing Key (identity)

Service providers are independent
User’s identity is managed by user

User auth

Post

Distributed SNS

4

#BHUSA @BlackHatEvents

Self-sovereign Federated

Authentication
by a single service provider

Service providers are interconnected
But identity managed like a centralized SNS

Signed Post

Signing Key (identity)

Service providers are independent
User’s identity is managed by user

User auth

Post

Distributed SNS

5

Quite different architecture from
traditional centralized SNS / messaging

Research Questions
• How to trust public keys?
• New architecture, new attack surface?

#BHUSA @BlackHatEvents

• Open, censorship-resistant social-network

• 1.1 million registration users

• No centralized authority, users must manage Public-key-based identities

• A secp256k1 key pair defines who you are; every post carries a signature

• Zero barriers to participation

• Anyone can run a relay server or client

• Covers most of the attractive features of centralized SNS

• E.g., Post, Profile, Encrypted DMs, Micro payment, Multiple device sign-in

6

What is Nostr?

#BHUSA @BlackHatEvents

• NIP = Nostr implementation possibilities
• 56+ specifications
• 1 mandatory protocol & 55+ optional protocols
• 4 key feature protocols

7

NIP-57:
Micro payment

NIP-01:
Event Structure & Signing

Signed Post

Signing Key (identity)

NIP-04:
Encrypted DM

ECDH + AES-CBC
+ Signing

Cryptography in Nostr Specs

NIP-46:
Delegation (multi-device)

Send Token via
ECDH + AES-CBC
+ Signing

Allow to post

#BHUSA @BlackHatEvents 8

Our Contributions

First Comprehensive Analysis Practical Attacks
& PoCs

Mitigation
& Responsible Disclosure

• Analyze 56 specs
• Analyze 9 implementations
• Find 7 vulnerabilities on

4 key features

• Implement 8 attacks
• Breaking confidentiality,

integrity, availability

• Propose mitigation
• Two years of

persistent disclosure
process

#BHUSA @BlackHatEvents 9

Our findings
• Breaking confidentiality on

Encrypted DMs
• Breaking integrity on

All items
(e.g., Profile, Contact List
Encrypted DMs…)

• Impersonating to another user

• Hijacking micro payment
(subset of impersonating)

These are not theoretical flaws—they enable practical exploitation
The required threat model varies
Some attacks assume a malicious user; others work under a malicious relay server

#BHUSA @BlackHatEvents 10

PoC: Note (Post) forgery (simple)

#BHUSA @BlackHatEvents 11

PoC: Encrypted DMs forgery & URL recovery

#BHUSA @BlackHatEvents 12

PoC: Hijacking micro payment ← Profile forgery (cache) & DMs forgery

#BHUSA @BlackHatEvents 13

Why does it happen?
Cryptographic protocol design flaw + Implementation flaw

• Breaking confidentiality on
Encrypted DMs

• Breaking integrity on
All items

• Impersonating to another user

• Hijacking micro payment
(subset of impersonating)

• Signature verification
Bypass

• Lack of key separation
• Receiver-side preview

generation
• Verification Bypass

#BHUSA @BlackHatEvents 14

Step by step attack tracing

Ciphertext integrity

Breaking…

Ciphertext confidentiality

Remark: mandatory signing specification
(simplified)

NIP-01:
Event Structure & Signing

Signed Post

Signing Key (identity)

Plaintext integrity
(simple / cache poisoning)

Why does it happen?
Cryptographic protocol design flaw + Implementation flaw

#BHUSA @BlackHatEvents 15

Remark: mandatory signing specification
(details depending on specification)

Relay Server

Alice Bob

Event

Signing with
Alice’s private key

Signed Event
Signed Event

Verifying Event with
Alice’s public key

Data Accept Event or Reject it

Profile

Plaintext integrity
(simple)

Breaking…

Data Data

#BHUSA @BlackHatEvents 16

Details depending on many actual implementations

Relay Server

Alice Bob

Event

Signing with
Alice’s private key

Signed Event
Signed Event

Verifying Event with
Alice’s public key

Always Accept Event or Reject it

Profile

Data Data Data

Plaintext integrity
(simple)

Breaking…

#BHUSA @BlackHatEvents

Details depending on many actual implementationsPlaintext integrity
(simple)

Breaking…

17

Relay Server

Alice Bob

Event

Signing with
Alice’s private key

Signed Event
Signed Event

Verifying Event with
Alice’s public key

Always Accept Event or Reject it

Profile

Data Data Data

Event Type Data
Profile Name, Bio,

BTC address
Encrypted DM Encrypted Msg

Post Plaintext Msg

etc…

#BHUSA @BlackHatEvents 18

There is no Verify(Sig) call
in the event handling!

Plaintext integrity
(simple)

Breaking… Details depending on many actual implementations

#BHUSA @BlackHatEvents 19

Case : Alice publishes her Profile & Bob subscribes it

Relay Server

Alice Bob

Event

Signing with
Alice’s private key

Signed Event
Signed Event

Verifying Event with
Alice’s public key

Always Accept Event or Reject it

Profile

• Alice’s display name
• Alice’s bio
• Alice’s Bitcoin(sat) address etc…

Profile Profile Profile

Plaintext integrity
(simple)

Breaking…

#BHUSA @BlackHatEvents 20

Profile Forgery on Plebstr, FreeFrom
Attacker also can publish Alice’s Profile

Relay Server

Attacker Bob

Signed Event
Profile

Always Accept Event or Reject it

Profile

Profile Profile

Copy Alice’s Event and modified it Verifying Event with
Alice’s public key

• Alice’s display name
• Alice’s modified bio
• Attacker’s Bitcoin(sat) address

Plaintext integrity
(simple)

Breaking…

#BHUSA @BlackHatEvents 21

Relay Server

Alice Bob

Event

Signing with
Alice’s private key

Signed Event Signed Event

Verifying Event with
Alice’s public key

Accept Event or Reject it

Profile

Plaintext integrity
(cache poisoning)

Breaking…

Profile Profile Profile

On the Profile validation of Damus (v1.5(8) & v1.6 (29))
Attack on a popular Nostr client

#BHUSA @BlackHatEvents 22

Relay Server

Alice Bob

Event

Signing with
Alice’s private key

Signed Event Signed Event

Verifying Event with
Alice’s public key

Accept Event or Reject it

Profile

Plaintext integrity
(cache poisoning)

Breaking…

Profile Profile Profile

Sig verification in place

On the Profile validation of Damus (v1.5(8) & v1.6 (29))
Attack on a popular Nostr client

#BHUSA @BlackHatEvents 23

Plaintext integrity
(cache poisoning)

Breaking…

Let‘s see stack trace

Secp256k1.
Schnorr.Verify

validate_event

Sig verification in place

On the Profile validation of Damus (v1.5(8) & v1.6 (29))

#BHUSA @BlackHatEvents 24

Plaintext integrity
(cache poisoning)

Breaking…

Let‘s see stack trace

EventCache & reference …?

Secp256k1.
Schnorr.Verify

validate_event

guard_valid_event

?

On the Profile validation of Damus (v1.5(8) & v1.6 (29))

#BHUSA @BlackHatEvents 25

Plaintext integrity
(cache poisoning)

Breaking…

Let‘s see stack trace
EventCache.is_event_valid(ev.id)

Secp256k1.
Schnorr.Verify

validate_event

guard_valid_eventCheck past signature verification result
• Return true if the event is found and the past verification succeeded
• Return false otherwise. ?

On the Profile validation of Damus (v1.5(8) & v1.6 (29))

#BHUSA @BlackHatEvents 26

Plaintext integrity
(cache poisoning)

Breaking…

Let‘s see stack trace

Secp256k1.
Schnorr.Verify

validate_eventguard_valid_event

is_event_validate(ev.id)

get_cache_data(ev.id).
validated

Return as
validation succeeded

succeeded

If past validation

nothing

On the Profile validation of Damus (v1.5(8) & v1.6 (29))

#BHUSA @BlackHatEvents 27

Plaintext integrity
(cache poisoning)

Breaking…

Let‘s see stack trace

Secp256k1.
Schnorr.Verify

validate_eventguard_valid_event

is_event_validate(ev.id)

get_cache_data(ev.id).
validated

If past validation

succeeded
Return as
validation succeeded

How can we control this decision point?

nothing

On the Profile validation of Damus (v1.5(8) & v1.6 (29))

#BHUSA @BlackHatEvents 28

Plaintext integrity
(cache poisoning)

Breaking…

Let‘s see stack trace

Secp256k1.
Schnorr.Verify

validate_eventguard_valid_event

is_event_validate(ev.id)

get_cache_data(ev.id).
validated

If past validation

succeeded
Return as
validation succeeded

How can we control this decision point?

Attacker can control this Event ID

nothing

On the Profile validation of Damus (v1.5(8) & v1.6 (29))

#BHUSA @BlackHatEvents 29

Plaintext integrity
(cache poisoning)

Breaking…

When Bob received an Alice’s Event (id== 0x…ac)

Secp256k1.
Schnorr.Verify

validate_eventguard_valid_event

is_event_validate(0x…ac)

get_cache_data(0x…ac).
validated

If past validation

nothing

succeeded
Return as
validation succeeded

Save result
to cache

On the Profile validation of Damus (v1.5(8) & v1.6 (29))

#BHUSA @BlackHatEvents 30

Plaintext integrity
(cache poisoning)

Breaking…

Attacker sends a fake event with an ID (0x…ac) to Bob

Secp256k1.
Schnorr.Verify

validate_eventguard_valid_event

is_event_validate(0x…ac)

get_cache_data(0x…ac).
validated

If past validation

nothing

succeeded
Return as
validation succeeded

Save result
to cache

On the Profile validation of Damus (v1.5(8) & v1.6 (29))

#BHUSA @BlackHatEvents 31

Plaintext integrity
(cache poisoning)

Breaking…

How to derivate Event ID on Nostr

Event ID : ev.id = SHA-256(“0”||{ev.data})

The ID should be recalculated if {ev.data} is modified.

The event ID is a deterministic value derived from ev.data

Mitigation

Root cause: Refer to the cache using the ID without recalculating it

On the Profile validation of Damus (v1.5(8) & v1.6 (29))

#BHUSA @BlackHatEvents 32

Plaintext integrity
(cache poisoning)

Breaking…

Mitigation: Event ID validation

Patched: Ensure ID validation

Original: No ID validation

On the Profile validation of Damus (v1.5(8) & v1.6 (29))

#BHUSA @BlackHatEvents 33

Takeaway : Plaintext Integrity
Plaintext integrity

Breaking…

Developer should do integrated security test !

CacheValidation

#BHUSA @BlackHatEvents 34

Takeaway : Plaintext Integrity
Plaintext integrity

Breaking…

Developer should do integrated security test !

Authentication
Bypass

#BHUSA @BlackHatEvents 35

Takeaway : Plaintext Integrity (2)
Plaintext integrity

Breaking…

User auth

Post

User auth

Subscribe

Signing Key
Post SubscribeSign

Verifying Key
Verify

Nostr Centralized SNS

• In centralized settings, cryptographic flaws often remain “potential risks”
• In self-sovereign decentralized systems like Nostr, they become immediately exploitable

• Nostr does not have centralized authority
• Nostr does not provide user authentication by default

#BHUSA @BlackHatEvents 36

Step by step attack tracing
Breaking…

Remark: Encrypted Direct Messages
specification (simplified)

NIP-04:
Encrypted DM

ECDH + AES-CBC
+ Signing

Ciphertext integrity

Ciphertext confidentiality

Plaintext integrity
(simple / cache poisoning)

#BHUSA @BlackHatEvents 37

Alice’s Private key
(Signing key)

Alice’s Public key
(Verifying key)

Bob’s Private key
(Signing key)

Bob’s Public key
(Verifying key)

Encrypted DM Spec

Relay servers

#BHUSA @BlackHatEvents 38

Alice’s Private key
(Signing key)

Alice’s Public key
(Verifying key)

Bob’s Private key
(Signing key)

Bob’s Public key
(Verifying key)

Bob’s Public key
(Verifying key)

Alice’s Public key
(Verifying key)

ECDH over secp256k1

Relay servers

Encrypted DM Spec

Shared Encryption Key Shared Encryption Key

#BHUSA @BlackHatEvents 39

Alice’s Private key
(Signing key)

Alice’s Public key
(Verifying key)

Bob’s Private key
(Signing key)

Bob’s Public key
(Verifying key)

Bob’s Public key
(Verifying key)

Alice’s Public key
(Verifying key)

E DMsg Msg

ECDH over secp256k1

Relay servers

Encrypted DM Spec

Shared Key Shared Key

Sign

Encrypt-then-sign
(AES-CBC&Schnorr sign)

Verify

#BHUSA @BlackHatEvents 40

Encrypted DM Forgery

Attacker’s Goal : Change decrypted Msg to attacker’s Msgadv
e.g., "Send me BTC"

ECDH + AES-CBC
+ Signing

“Hi” “Send me BTC”

#BHUSA @BlackHatEvents 41

Encrypted DM Forgery

41

Alice’s Private key
(Signing key)

Alice’s Public key
(Verifying key)

E DRelay servers

Shared Key Shared Key

Sign

Encrypt-then-sign
(AES-CBC&Schnorr sign)

Assumption1: Signature verification is skipped on the implementation
(explained earlier)

“Hi” “Hi”

#BHUSA @BlackHatEvents 42

Encrypted DM Forgery

42

E DRelay servers

Shared Key Shared Key

Simplified encryption specs
(AES-CBC)

& Threat model

Assumption2: Threat model
• Attacker is a user of Nostr
• Attacker cannot read/write to “Shared Key”
• Attacker can freely fetch ciphertext from relay relays

Nostr does not include user authentication on servers by default

“Hi” “Hi”

R/W ciphertext

#BHUSA @BlackHatEvents 43

E D“Hi”
Relay servers

Shared Key (k)

(simplified) Bit flipping on Message Encryption
1 block CBC-mode encryption

Problem : Verification bypass is not enough to achieve practical forgery on DMs
Reason : CBC Allows Bit Flipping – But decryption result blinds for the attacker

Shared Key

Msgdec

Encrypted DM Forgery

X← iv ⨁ “Hi” || pad

Ek C, ivX

#BHUSA @BlackHatEvents 44

E D“Hi”
Relay servers

Shared Key (k) Shared Key

Problem : Verification bypass is not enough to achieve practical forgery on DMs

(simplified) Bit flipping on Message Encryption

Reason : CBC Allows Bit Flipping – But decryption result blinds for the attacker

1 block CBC-mode encryption

iv’ ← iv ⨁ Flip DkC

Msgdec = ?? (unknown)

1 block CBC-mode decryption

Msgdec

X← iv ⨁ “Hi” || pad

Ek C, iv
X ⨁ iv’

X

Encrypted DM Forgery

#BHUSA @BlackHatEvents

What does the attacker need to control the decryption result?
To craft a forged ciphertext, the attacker needs a reference point:
→ a known plaintext/ciphertext (Cref, Msgref) pair with the same shared key (k)

iv’

Random bit-flipping forgery Practical forgery using a known (Cref, Msgref) pair

Msgdec = ?? (unknown)

X ⨁ iv ⨁ Flip

X← iv ⨁ Msg || pad C ← Ek (X), send iv & C,Cf. Encryption:

iv ⨁ “Hi” || pad ⨁ iv ⨁ Flip

Msgdec = “Plz give me BTC”

Xref⨁ ivref ⨁ Msgref || pad ⨁“Plz…BTC”

ivref ⨁ Msgref||pad⨁ ivref⨁ Msgi || pad⨁“Plz…BTC”

DkCref Xref
ivref’DkC X

45

#BHUSA @BlackHatEvents

Move from Bit Flipping Forgery to Controlled Practical Forgery

46

Random bit-flipping forgery

• No decryption knowledge
• Can’t control decrypted message
• Just makes noise

Practical forgery using a known (Cref, Msgref) pair

• Known plaintext/ciphertext block
• XOR trick enables precision
• Delivers chosen message to victim

#BHUSA @BlackHatEvents

Move from Bit Flipping Forgery to Controlled Practical Forgery

47

Random bit-flipping forgery

• No decryption knowledge
• Can’t control decrypted message
• Just makes noise

• Known plaintext/ciphertext block
• XOR trick enables precision
• Delivers chosen message to victim

Practical forgery using a known (Cref, Msgref) pair

Problem:
How can we get it ?

#BHUSA @BlackHatEvents 48

Encrypted DM Forgery via Cross Protocol Attack

Observation:
Delegation (NIP-46) uses same keying & encryption algorithms as DMs (NIP-04)
NIP-46 encrypts known metadata using the same shared key as DMs (NIP-04)

NIP-04:
Encrypted DM

NIP-46:
Delegation (multi-device)

Allow to post

Send Token via
ECDH + AES-CBC
+ SigningECDH + AES-CBC

+ Signing

Solution : Breaking the Barrier via “Cross Protocol” Attack

#BHUSA @BlackHatEvents 49

Observation:
Delegation (NIP-46) uses same keying & encryption algorithms as DMs (NIP-04)
NIP-46 encrypts known metadata using the same shared key as DMs (NIP-04)

NIP-04:
Encrypted DM

NIP-46:
Delegation (multi-device)

Allow to post

Send Token via
ECDH + AES-CBC
+ SigningECDH + AES-CBC

+ Signing

→ makes known plaintext → makes known ciphertext

Solution : Breaking the Barrier via “Cross Protocol” Attack
Encrypted DM Forgery via Cross Protocol Attack

#BHUSA @BlackHatEvents 50

Delegation QR
for NIP-46

1. kapp ← ECDH(PubKeyApp, PrivKeyAlice)

C’ = AES-CBC(meta, kapp)

2. Transmit encrypted known Metadata

PubKeyApp
𝑈𝑅𝐿!"#$%

𝑨𝒑𝒑

Trigger : Alice scans QR.

Normal Delegation initial sequence

Alice

• ECDH with the public key obtained from the QR
• Sends encrypted known metadata to 𝑈𝑅𝐿!"#$%

𝑨𝒑𝒑 from the QR

Encrypted DM Forgery via Cross Protocol Attack

#BHUSA @BlackHatEvents 51

Strategy:
The attacker starts a NIP-46 session with the victim (as a fake delegation app)
The attack puts PubKeyBob to the QR
Result:
The victim sends back encrypted known metadata

Fake Delegation QR
for NIP-46

1. k ← ECDH(PubKeyBob, PrivKeyAlice)

0. Attacker obtains PubKeyBob from Relay

C’ = AES-CBC(meta, k)
Normal DMs session
C = AES-CBC(Msg, k)

2. Transmit encrypted known Metadata
RelayDMs

Bob Alice

PubKeyBob
𝑈𝑅𝐿!"#$%())$*+",

Trigger : Alice scans QR.

Encrypted DM Forgery via Cross Protocol Attack

#BHUSA @BlackHatEvents 52

Takeaway : Ciphertext Integrity

• Should use Authenticated Encryption (AE)

• E.g., AES-GCM, ChaCha20-Poly1305

• Don’t use malleable encryption without MAC

• Should separate key between sub-protocols

• Similar issues also occurred in Threema[PST23], Matrix[ACDJ23]

[PST23] Paterson, Scarlata and Truong, “Three Lessons From Threema: Analysis of a Secure Messenger”, USENIX Security’23
[ACDJ23] Albrecht, Celi, Dowling and Jones, “Practically-exploitable Cryptographic Vulnerabilities in Matrix”, IEEE S&P’23

(Also, Black Hat Europe’22)

#BHUSA @BlackHatEvents 53

Step by step attack tracing
Breaking…

Remark: Encrypted Direct Messages
specification (simplified)

NIP-04:
Encrypted DM

ECDH + AES-CBC
+ Signing

Plaintext integrity
(simple / cache poisoning)

Ciphertext integrity

Ciphertext confidentiality

#BHUSA @BlackHatEvents 54

Link Preview in Messaging
• Automatically retrieves and displays elements from the webpage

E.g., The webpage’s title, part of its content, and images
• Someone must retrieve the page content (a sender, a receiver or a server)

Client-side generation
https://example.net/

example.net
Server-side generation

*Non E2EE msg

https://example.net/

#BHUSA @BlackHatEvents 55

Link Preview generation in Encrypted Messaging

• Generate preview ONLY on the sender-side

Best practice

Many Nostr Clients

Bad practice

• Generate preview on the both sender-side and receiver-side

• Generate preview on the receiver-side
• Known privacy issues (IP leakage): https://mysk.blog/2020/10/25/link-previews/

Is there any chance we can use it?

https://mysk.blog/2020/10/25/link-previews/
https://mysk.blog/2020/10/25/link-previews/
https://mysk.blog/2020/10/25/link-previews/

#BHUSA @BlackHatEvents 56

Thinking about plaintext recovery in the real-world Encrypted Messaging

• Hard to break cryptographic primitive standard
• But what if the recipient helps the attacker reveal an encrypted msg?
• How to win ? → Distinguishes & leaks decryption errors
• Padding Oracle Attacks often appear in toy environments like CTFs

Q. Can we reproduce such an oracle in real-world systems?

#BHUSA @BlackHatEvents 57

Q. Can we reproduce such an oracle in real-world systems?
• Yes, we can! Receiver-side Link Preview generation helps us
• We finally find 3 attacks to break encrypted message confidentiality

#BHUSA @BlackHatEvents 58

URL recovery attack

Attacker’s goal: disclose the authentication token in the URL
E.g., shared URL of cloud storage, web conference tools

𝐸! 𝑀 : 𝑀 = https://{unknown domain}/{unknown part}

Attacker wants to know

Authentication token

#BHUSA @BlackHatEvents 59

URL recovery attack
Disclose domain part

• Attacker can obtain domain part of URL via DNS or TLS SNI field
• Just by opening the message, DNS queries and TLS ClientHello packets are sent

due to the automatic execution of link previews.

The attacker learned that
the domain part is “example.net”

#BHUSA @BlackHatEvents 60

URL recovery attack

𝐸! 𝑀 : 𝑀 = https://example.net/{unknown part}

Disclose authentication token

𝐸! 𝑀′ : 𝑀′ = https://mu.test/net/{unknown part}

1Block (16Byte)

Encrypted DM forgery

• Force the authentication token to be sent to the attacker's server
• Generate a modified ciphertext Ek(M′) where the domain is changed to a malicious one
• When the victim receives Ek(M′), the token is sent to the malicious URL via Link Preview

#BHUSA @BlackHatEvents 61

URL recovery attack
Disclose authentication token

#BHUSA @BlackHatEvents 62

Link Preview Oracle Attack

Attacker recover an encrypted message before the encrypted URL.
It works like a padding oracle attack.

Attack overview

? ? ? h t t p s : / / e x a m p l e . n e t …

Scheme + known domain
(attacker can get them by DNS or TLS SNI packet)

𝐸+ 𝑀 : 𝑀 =

Unknown

? ? ? t t p : / / m . t e s t /

Attackerʼs URL without ʻhʼ

CBC Forgery

1 Block = 16 Byte

𝐸+ 𝑀′ :	𝑀- =
Truncated

Step1. Modify the encrypted via a CBC malleability,
producing a partially attacker-controlled URL

#BHUSA @BlackHatEvents 63

Step2. Seek an IV′ such that the 3rd byte of M′ becomes “h”.
When “h” appears, the client fires a link preview, allowing the attacker
to detect ‘h’ ← IV’[3](0xBE) ⨁𝐸./0 𝑀- 3

𝐼𝑉′ =

? ? h t t p : / / m . t e s t /𝑀- =

𝐸+ 𝑀′ 𝐸!"# ⨁

0xBE

m.test

0xBE ⨁ ‘h’ ⨁ iv[3](original)M[3] =

Link Preview Oracle Attack

#BHUSA @BlackHatEvents 64

Step3. Repeat Step 2 for the second and first bytes

𝐼𝑉′ =

h t t p : / / m . t e s t / a a𝑀- =

𝐸+ 𝑀′ 𝐸!"# ⨁

0xBE

m.test

0xBE⨁ ‘h’ ⨁ iv[3](original)M[3] =

Link Preview Oracle Attack

0xA4

0xEF⨁ ‘h’ ⨁ iv[2](original)M[2] =
0xA4⨁ ‘h’ ⨁ iv[1](original)M[1] =

*Index starts with 1

0xEF

#BHUSA @BlackHatEvents 65

Takeaway : Ciphertext Confidentiality

• Remark: SHOULD use Authenticated Encryption (AE)

• E.g., AES-GCM, ChaCha20-Poly1305

• Don’t use malleable encryption without MAC

• SHOULD generate preview ONLY on the sender-side

#BHUSA @BlackHatEvents 66

3 Takeaways : Whole of this presentation

1. Decentralized Architecture’s Untapped Risks and Rewards

• Removing a central authentication server in Nostr brings new
freedoms but also introduces subtle security pitfalls

• Multi-layered security are lost, and cryptographic weaknesses are

immediately upgraded to practical attacks.

#BHUSA @BlackHatEvents 67

3 Takeaways : Whole of this presentation

2. Hands-On Attacks & Immediate Mitigation
We guided our footsteps, and you learn how to destroy integrity & confidentiality

Identify the root cause and understand mitigation

• Signature verification
Bypass

• Lack of key separation
• Receiver-side preview

generation
• Verification Bypass

#BHUSA @BlackHatEvents 68

3 Takeaways : Whole of this presentation

3. Blueprint for Future-Ready Decentralized Systems

Nostr

Link Preview

Public Key Authenticity

No specs
(Mostly receiver-side generation)

No specs
(NIP-05 Badge is available,

but an authenticity is out of scope)

Signature Signing is mandatory.
But there is no concrete specs for verifying.

Items Blueprint

Signing & verifying
are mandatory

Sender-side generation

• Out-of-band authentication
• Key Transparency

#BHUSA @BlackHatEvents 69

Summary

• First cryptographic deep-dive into Nostr, a distributed SNS.
• Find practical attacks caused by

cryptographic & implementation flaw.

• Client is the trust anchor.

• Mandatory signature checks, key-separation, and AEAD.

• Responsible disclosure, and patches

#BHUSA @BlackHatEvents 70

Our Paper

https://crypto-sec-n.github.io/

