
XUnprotect: Reverse
Engineering macOS XProtect

Remediator
Koh M. Nakagawa (@tsunek0h)

FFRI Security, Inc.

NSUserFullName()

• Koh M. Nakagawa (@tsunek0h)

• Security researcher at FFRI Security, Inc.

• Mainly focusing on Apple product security

• Gave talks at Black Hat and CODE BLUE

About This Presentation

• This presentation covers:

oTechnical deep dive into XProtect Remediator (XPR)

▪ How XPR’s detection logic works

▪ Malware removed (or ‘remediated’) by each scanner

▪ Provenance Sandbox (which XPR utilizes for identifying the source of files being remediated)

• This presentation does not cover:

oEvaluation of XPR

▪ Such as effectiveness as a macOS security product

oTraditional XProtect

▪ For this topic, see Stuart Ashenbrenner's excellent talk at MDOYVR23

▪ https://youtu.be/43BIK-e7FBE

https://youtu.be/43BIK-e7FBE?si=KKq7DuFoLOhwUv_h
https://youtu.be/43BIK-e7FBE?si=KKq7DuFoLOhwUv_h
https://youtu.be/43BIK-e7FBE?si=KKq7DuFoLOhwUv_h
https://youtu.be/43BIK-e7FBE?si=KKq7DuFoLOhwUv_h

What You’ll Gain from This Talk?

For Red Teamers:

Learn TCC & Provenance Sandbox bypass

For Blue Teamers:

Learn XPR’s detection/remediation

capabilities & Apple-exclusive threat intel

Deep understanding of XPR

Defensive Offensive

Outline

1. Introduction

2. Tooling

3. RE results

4. Vulnerability Research

5. Conclusion

What Is XPR?

https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

Three layers of defense
Malware defenses are structured in three layers:

1. Prevent launch or execution of malware: App Store, or Gatekeeper combined with Notarization

2. Block malware from running on customer systems: Gatekeeper, Notarization, and XProtect

3. Remediate malware that has executed: XProtect[Remediator]

…

XProtect[Remediator] acts to remediate malware that has managed to successfully execute.

- “Apple Platform Security” by Apple

https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

What Is XPR?

• Introduced in macOS Monterey as a replacement for the MRT

• Built-in mechanisms and updated once or twice per month

• Contains 20+ scanners, each targeting a specific malware family

https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/

Each scanner targets a specific malware family

(e.g., XProtectRemediatorAdload is a scanner

for well-known Adload adware)

https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/

Why Is Remediation Needed?

• Some malware samples bypass the first and second layers of defense:

oThrough supply chain attacks (such as the 3CX supply chain attack)

oBy tricking users into disabling Gatekeeper through social engineering

• Apple needs a way to remove malware that slips through these defenses

https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-
chain-attack-analysis-of-the-macos-payloads?slide=28 https://www.kandji.io/blog/amos-macos-stealer-analysis

https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis

Research Motivation

• From offensive security perspective

oXPR scanners are attractive exploitation targets due to their powerful entitlements

oTCC bypass:

▪ Some scanners have FDA entitlement (kTCCServiceSystemPolicyAllFiles)

▪ Gergely Kalman’s CVE-2024-40842 (TCC info leak)

oUser-to-root privilege escalation:

▪ XPR scanners run with both root and user privileges

Research Motivation

• From defensive security perspective

oSeveral malware families targeted by XPR remain unknown

▪ Howard Oakley, Alden Schmidt, and Phil Stokes have identified several targets

▪ However, several remain unknown due to limited reverse engineering efforts

oXPR's remediation logic is unclear

▪ Is XPR's remediation simply scanning files with YARA and deleting any that match?

CardboardCutout remains unidentified.

…

FloppyFlipper remains unidentified.

…

RoachFlight remains unidentified.

- “Why XProtect Remediator scans now take longer” by Howard Oakley

https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/

https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/

Research Target

• /Library/Apple/System/Library/CoreServices/XProtect.app

oContents/MacOS/XProtectRemediator*

oContents/MacOS/XProtect

oContents/XPCServices/XProtectPluginService.xpc

• These XPR related binaries are written in Swift

Swift-specific

sections

Related Work

https://eclecticlight.co

https://alden.io/posts/secrets-of-xprotect/

https://github.com/SentineLabs/XProtect-Malware-Families

https://eclecticlight.co/
https://alden.io/posts/secrets-of-xprotect/
https://alden.io/posts/secrets-of-xprotect/
https://alden.io/posts/secrets-of-xprotect/
https://alden.io/posts/secrets-of-xprotect/
https://alden.io/posts/secrets-of-xprotect/
https://github.com/SentineLabs/XProtect-Malware-Families
https://github.com/SentineLabs/XProtect-Malware-Families
https://github.com/SentineLabs/XProtect-Malware-Families
https://github.com/SentineLabs/XProtect-Malware-Families
https://github.com/SentineLabs/XProtect-Malware-Families

Outline

1. Introduction

2. Tooling

3. RE results

4. Vulnerability Research

5. Conclusion

Static Analysis

• Binary Ninja

• Stripped Swift Mach-O binaries

• Symbols are stripped, but some symbols can be recovered

o BinDiff reveals many shared functions between XPR scanners and libXProtectPayloads.dylib

oWe can import symbols exported by libXProtectPayloads.dylib into XPR scanners

Challenges in RE of Stripped Swift Binaries

• Some key missing information of stripped Swift binaries

oType metadata accessor

oType metadata

oProtocol Witness Table (PWT)

• Reversing Swift binaries without this information is quite difficult…

Symbols of type metadata

are missing…

Swift Metadata

• Swift binaries contain extensive internal metadata for reflection

• This metadata includes type metadata accessor, type metadata, PWT

o __TEXT.__swift5_protos, __TEXT.__swift5_types, __TEXT.__swift5_fieldmd, and more

o “DisARMing Code” by Jonathan Levin (https://newdebuggingbook.com)

• With ipsw swift-dump, this metadata can be extracted as Swift code

ohttps://github.com/blacktop/ipsw

oBut no tools to import this metadata into a disassembler…

https://newdebuggingbook.com/
https://github.com/blacktop/ipsw
https://github.com/blacktop/ipsw

binja-swift-analyzer

• Custom Swift analysis plugin for Binary Ninja

oBased on ipsw swift-dump

oAvailable on GitHub (https://github.com/FFRI/binja-swift-analyzer)

• Key features

oType metadata accessor and type metadata parsing

oPWT analysis for structs and classes

oClass method identification

oSwift string analysis (immortal and large strings)

oVisual representation of protocol conformance and class inheritance

https://github.com/FFRI/binja-swift-analyzer
https://github.com/FFRI/binja-swift-analyzer
https://github.com/FFRI/binja-swift-analyzer
https://github.com/FFRI/binja-swift-analyzer
https://github.com/FFRI/binja-swift-analyzer

Type Metadata Accessor Identification

Type Metadata Identification

Dynamic Analysis – LLDB Scripting Bridge

• LLDB Python Scripting Bridge

oBranch tracing script (https://github.com/kohnakagawa/LLDB)

▪ Swift binaries contain many indirect branches, such as function calls via VTable and PWT

▪ Manually identifying branch targets in LLDB is time-consuming

▪ This script automatically captures target addresses

▪ Trace data is exported as JSON for import via my binja-missinglink plugin

▪ http://github.com/FFRI/binja-missing-link

https://github.com/kohnakagawa/LLDB
http://github.com/FFRI/binja-missing-link
http://github.com/FFRI/binja-missing-link
http://github.com/FFRI/binja-missing-link
http://github.com/FFRI/binja-missing-link
http://github.com/FFRI/binja-missing-link
http://github.com/FFRI/binja-missing-link

Branch Tracing & Imported into Binja

PWT information is also added

for function calls via PWT

Resolved symbol information is

also added

Dynamic Analysis – Custom LLDB Commands

• Custom commands for dumping Swift Objects

oStandard expr -O -l Swift -- <address> command does not work for complex Swift

objects like existential containers and Swift arrays…

oCreated enhanced commands for dumping Swift objects utilizing Swift reflection

Outline

1. Introduction

2. Tooling

3. RE results

1. Overview

2. Initialization

3. RemediationBuilder

4. Remediation Logic

5. Provenance Sandbox

4. Vulnerability Research

5. Conclusion

Flow of “Remediation”

Contents/MacOS/XProtect XProtectPluginService.xpc

XPR scannersSwift Mach-O

Provenance Sandbox

Remediation/Detection

Adload

BadGacha

BlueTop WaterNet

Trovi

daemon.scan.startup.plist

daemon.scan.plist

agent.scan.startup.plist

agent.scan.plist

…

evil.app

DAS-CTS

DAS-CTS

XPC

GCD & NSTask

Remediates threats

2nd stage payload3rd stage payload

Send remediated

threat info

plist

Collect remediated

threat info

These files have the same

provenance attribute

Initialization

XPPluginAPI

mod_init_func …

RemediationBuilder

…

Vnode Rapid Aging

Outline

1. Introduction

2. Tooling

3. RE results

1. Overview

2. Initialization

3. RemediationBuilder

4. Remediation Logic

5. Provenance Sandbox

4. Vulnerability Research

5. Conclusion

mod_init_func_0

• mod_init_func_0 (function with constructor attr, executed before _start)

oSensitive strings (YARA, file paths, etc.) for remediation are encrypted with XOR cipher

oThese strings are decrypted before _start

oPointers to decrypted strings are stored in __DATA.__common

Simple XOR cipher

Decrypting XPR Sensitive Strings

• Alden’s nice Binja script can decrypt these encrypted strings

oHowever, some strings cannot be decrypted

• My custom LLDB SB script decrypt all these strings

ohttps://github.com/FFRI/binja-xpr-analyzer/tree/main/dump_secret_config

The output isn’t perfect, there is some occasional junk.

- “The Secrets of XProtectRemediator” by Alden Schmidt

https://github.com/FFRI/binja-xpr-analyzer/tree/main/dump_secret_config
https://github.com/FFRI/binja-xpr-analyzer/tree/main/dump_secret_config
https://github.com/FFRI/binja-xpr-analyzer/tree/main/dump_secret_config
https://github.com/FFRI/binja-xpr-analyzer/tree/main/dump_secret_config
https://github.com/FFRI/binja-xpr-analyzer/tree/main/dump_secret_config
https://github.com/FFRI/binja-xpr-analyzer/tree/main/dump_secret_config

Decryption Results

Program Entry Point

• A plugin class is instantiated

oEach XPR scanner typically defines one plugin class (such as AdloadPlugin)

• XPAPIHelpers is instantiated and passed to the plugin main function

oThe plugin entry point is XProtectPluginProtocol.main(api:

XPPluginAPI.XPAPIHelpersProtocol)

XPAPIHelpers is instantiated and

passed to the plugin main

Plugin class is instantiated

XPAPIHelpers

XPAPIHelpers: Interesting Property

• var lazy alertGUI: XPAlertGUIProtocol

oContains methods that display an alert dialog to users using NSAlert

oCurrent XPR silently remediates threats without notifying users

o I have not seen any XPR scanners using this property during my research

oXPR may introduce user notifications for remediation events in the future?

XPR Plugin Main

• XProtectPluginProtocol.main(api: XPPluginAPI.XPAPIHelpersProtocol) ->

XProtecPluginCompletionStatus

o Instantiating XPLogger class

oRecording performance data using os_signpost

oUnsetting the MAGIC environment variable (fix for CVE-2024-40842)

oVerifying XProtectPluginService by checking its

com.apple.private.xprotect.trustedpluginservice entitlement

oEnabling Vnode Rapid Aging

• After enabling Vnode Rapid Aging, the remediation begins

Vnode Rapid Aging

• Vnode Rapid Aging is a feature that suppresses atime updates

oUpdates are suppressed on a per-process basis

oCan be enabled via sysctl (no entitlement required)

oAppears to be intended for performance improvement and preservation for

forensic investigation

oDisabled after remediation

According to the Kernel sources, there’s

something called “rapid aging” that might be

relevant. Documentation is sparse so I don’t

know its intended use, but it looks like

something you can set per-process that will
prevent access times from being set.

- “WrMeta” by darwin-dev@googlegroups.com

https://groups.google.com/g/darwin-dev/c/7F6uth1rhKw/m/SJQ3zWxeIgEJ

https://groups.google.com/g/darwin-dev/c/7F6uth1rhKw/m/SJQ3zWxeIgEJ
https://groups.google.com/g/darwin-dev/c/7F6uth1rhKw/m/SJQ3zWxeIgEJ
https://groups.google.com/g/darwin-dev/c/7F6uth1rhKw/m/SJQ3zWxeIgEJ

Outline

1. Introduction

2. Tooling

3. RE results

1. Overview

2. Initialization

3. RemediationBuilder

4. Remediation Logic

5. Provenance Sandbox

4. Vulnerability Research

5. Conclusion

How to Describe Remediation Logic

• Consider remediation under the following conditions:

• Files under ~/Library/Application Support (search depth up to 5)

• The file size is 2 MiB or less

• The file format is Mach-O

• Not notarized

• Matches the YARA rule

• When running as root, add /Library/Application Support to the search targets and

match with a different YARA

Naive Implementation

File size is 2 MiB or less

For each file under ~/Library/Application Support

File format is Mach-O

Not notarized

Matches YARA rule

Naive Implementation

File size is 2 MiB or less

For each file under ~/Library/Application Support

File format is Mach-O

Not notarized

Matches YARA rule

Naive Implementation

File size is 2 MiB or less

For each file under ~/Library/Application Support

File format is Mach-O

Not notarized

Matches YARA rule

Naive Implementation

File size is 2 MiB or less

For each file under ~/Library/Application Support

File format is Mach-O

Not notarized

Matches YARA rule

Naive Implementation

File size is 2 MiB or less

For each file under ~/Library/Application Support

File format is Mach-O

Not notarized

Matches YARA rule

Naive Implementation

File size is 2 MiB or less

For each file under ~/Library/Application Support

File format is Mach-O

Not notarized

Matches YARA rule

Implementation for root

Issues When Implementing Remediation Logic

• Remediation logic is understandable, but…

oReadability and maintainability decrease as conditions increase

▪ If you want to add additional conditions, you need to append more if clauses…

oHow can we improve readability and maintainability?

Apple has achieved readability and maintainability

by using Swift result builders

What Are Result Builders?

• Swift result builders are a feature introduced in Swift 5.4

oAllows us to create Domain Specific Languages (DSLs) within Swift code

oUsed in SwiftUI to describe user interfaces declaratively

• Useful for code that collects multiple elements to produce a single result

oE.g., generating structural data (e.g., HTML, JSON)

o In XPR, combining remediation conditions to produce the final remediation decision

https://github.com/swiftlang/swift-evolution/blob/main/proposals/0289-result-builders.md

https://developer.apple.com/videos/play/wwdc2021/10253/

A result builder type is a type that can be used

as a result builder, which is to say, as an

embedded DSL for collecting partial results

from the expression-statements of a function

and combining them into a return value.

- “Swift Evolution: Result builders”

https://github.com/swiftlang/swift-evolution/blob/main/proposals/0289-result-builders.md
https://github.com/swiftlang/swift-evolution/blob/main/proposals/0289-result-builders.md
https://github.com/swiftlang/swift-evolution/blob/main/proposals/0289-result-builders.md
https://github.com/swiftlang/swift-evolution/blob/main/proposals/0289-result-builders.md
https://github.com/swiftlang/swift-evolution/blob/main/proposals/0289-result-builders.md
https://github.com/swiftlang/swift-evolution/blob/main/proposals/0289-result-builders.md
https://github.com/swiftlang/swift-evolution/blob/main/proposals/0289-result-builders.md
https://developer.apple.com/jp/videos/play/wwdc2021/10253/

Example: Generating HTML

Without Swift result builders

[spellOutChapter: True, useChapterTitles: True]

It’s not clear what the final HTML structure will look like

Redundant variables

This element is added when

useChapterTitles is set to True

Example: Generating HTML

[spellOutChapter: True, useChapterTitles: True]

Power of Result Builders

Power of Result Builders

Power of Result Builders

File size is 2 MiB or less

For each file under ~/Library/Application Support

File format is Mach-O

Not notarized

Matches YARA rule

Power of Result Builders

Enabled when

running as root

RemediationBuilder DSL

Which Scanner Uses RemediationBuilder?

• RemediationBuilder is used in the following XPR scanners:

• Adload, BadGacha, CardboardCutout, ColdSnap, Eicar, KeySteal, Pirrit, RankStank,

RedPine, RoachFlight, SheepSwap, SnowDrift, WaterNet, Dolittle, Bundlore

• The remaining scanners rely on XPPluginAPI for their implementation

• Some XPR scanners describe remediation logic both declaratively and imperatively

Specification of RemediationBuilder DSL

https://github.com/FFRI/RemediationBuilderDSLSpec

https://ffri.github.io/RemediationBuilderDSLSpec/documentation/remediationbuilder

https://github.com/FFRI/RemediationBuilderDSLSpec
https://ffri.github.io/RemediationBuilderDSLSpec/documentation/remediationbuilder

FileRemediationBuilder Example

File is 68 bytes or

more

Match EICAR YARA

rule
File path is /tmp/eicar

ProcessRemediationBuilder Example

Backing file path is

/tmp/, .mitmproxy, …

Backing file matches

Adload YARA rule

Process is NOT

notarized

OpenRemediationBuilder

• Open-source reimplementation of RemediationBuilder

• A minimal implementation that reproduces XPR Eicar's functionality

• https://github.com/FFRI/OpenRemediationBuilder

https://github.com/FFRI/OpenRemediationBuilder
https://github.com/FFRI/OpenRemediationBuilder

Outline

1. Introduction

2. Tooling

3. RE results

1. Overview

2. Initialization

3. RemediationBuilder

4. Remediation Logic

5. Provenance Sandbox

4. Vulnerability Research

5. Conclusion

XPR RoachFlight

• Added in XPR version 96 on 27 April 2023

oAdded at the same time as XPR RankStank

oXPR RankStank removes payloads used in the 3CX supply chain attack

• The decrypted strings are the two hash values

Remediation Logic of XPR RoachFlight

Decrypted CDHashes

Processes that have specific

CDHashes are remediated

What Are These Two CDHashes?

• 04e23817983f1c0e9290ce7f90e6c9e75bf45190 is known

oThe CDHash of the 2nd stage payload used in the 3CX supply chain attack

oThis sample is commonly referred to as UpdateAgent

oThe sample was analyzed by Patrick Wardle and presented at BHUSA 2023

https://x.com/patrickwardle/status/1641690082854989827

https://x.com/patrickwardle/status/1641690082854989827

What Are These Two CDHashes?

• 99c31f166d1f1654a1b7dd1a6bec3b935022a020 is unknown

oCould it potentially be UpdateAgent variant?

oPatrick Wardle suggested the possibility of other UpdateAgent samples

https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46

Transmits data to C2,

and then, does nothing

(known CDHash)

UpdateAgent variant

performs more actions?

(unknown CDHash)

Sample analyzed by

Patrick Wardle

https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46

XPR BadGacha

• Added in XPR version 91 on 2 March 2023

• The decrypted strings appear unrelated to any

remediation functionalities

• What are these texts used for?

XPR BadGacha: Decrypted Strings

• Hint: background image of AMOS DMG contains similar strings

https://www.kandji.io/blog/amos-macos-stealer-analysis

https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis

OCR-based Gatekeeper Bypass Detection

• XPR BadGacha contains detection logic for Gatekeeper bypass

oEnumerates mounted DMG files using FileManager.mountedVolumeURLs

oRetrieves text strings in background images of mounted volumes using OCR

oSearches for Gatekeeper bypass-related strings

• If it find strings, it reports the threat including the DMG file information

oOnly reporting is performed, without deleting or unmounting the DMG

Which Malware Family Does XPR BadGacha Detect?

• Appears to be a generic detection module?

o In fact, the detection logic has triggered on several different malware families

▪ E.g., Empire Transfer and ChromeLoader

oApple may have designed XPR BadGacha as a threat hunting scanner

https://9to5mac.com/2024/02/29/security-bite-self-destructing-
macos-malware-strain-disguised-as-legitimate-mac-app/

https://www.crowdstrike.com/en-us/blog/how-crowdstrike-
uncovered-a-new-macos-browser-hijacking-campaign/

https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/

Other BadGacha Detection

• A mechanism to detect processes without their backing files was

previously implemented (removed in XPR version 135)

oThe detection was likely removed due to frequent false positive detections

oThis logic also appears not be designed to target a specific malware family

https://developer.apple.com/forums/thread/742828

After installing the latest stable

version of Chromium, I have been

getting the following warnings when

running an XProtect Remediator scan.

I'm not sure if this is a bad issue, but I

think it is something Apple should look

at. Thanks.

- “Apple Developer Forums”

False positive alert

reported by a user

https://developer.apple.com/forums/thread/742828

XPR RedPine

• Added in version 114 on October 12, 2023, and retired in 2024

• Decrypted strings are a YARA rule and four file paths

oThe YARA rule detects the TriangleDB iOS implant

• Kaspersky researchers noted the possibility of TriangleDB macOS implant

oRedPine appears to be TriangleDB macOS implant

oNo details about TriangleDB macOS implant have been made public

While analyzing TriangleDB, we found that the class CRConfig (used to store the implant’s

configuration) has a method named populateWithFieldsMacOSOnly. … its existence means that

macOS devices can also be targeted with a similar implant;

- “Dissecting TriangleDB, a Triangulation spyware implant” by Georgy Kucherin, Leonid Bezvershenko, and Igor Kuznetsov
https://securelist.com/triangledb-triangulation-implant/110050/

https://securelist.com/triangledb-triangulation-implant/110050/
https://securelist.com/triangledb-triangulation-implant/110050/
https://securelist.com/triangledb-triangulation-implant/110050/
https://securelist.com/triangledb-triangulation-implant/110050/
https://securelist.com/triangledb-triangulation-implant/110050/

XPR RedPine: Two Scans

• XPR RedPine has the com.apple.system-task-ports.read entitlement

oAllows to obtain task ports and read memory of other processes

• When XPR RedPine is executed as root, it performs two scans

oScans the main executable file in memory

oScans loaded libraries (called LoadedLibrary Scanner)

Scanning the Main Executable in Memory

• XPProcessMemoryAPI is used for in-memory scanning

oOnly __TEXT segment is scanned and matches it against the YARA rule

oExcludes platform processes from scan targets

Why Does XPR RedPine Perform In-Memory Scanning?

• Perhaps macOS implant was also deployed only in memory without

leaving any payload on disk?

The implant, which we dubbed TriangleDB, is deployed after the attackers obtain

root privileges on the target iOS device by exploiting a kernel vulnerability. It is

deployed in memory, meaning that all traces of the implant are lost when the device

gets rebooted.

- “Dissecting TriangleDB, a Triangulation spyware implant” by Georgy Kucherin, Leonid Bezvershenko, and Igor Kuznetsov

https://securelist.com/triangledb-triangulation-implant/110050/

Note: YARA scan described with ProcessRemediationBuilder is

performed on the backing file (not on process memory)

https://securelist.com/triangledb-triangulation-implant/110050/
https://securelist.com/triangledb-triangulation-implant/110050/
https://securelist.com/triangledb-triangulation-implant/110050/
https://securelist.com/triangledb-triangulation-implant/110050/
https://securelist.com/triangledb-triangulation-implant/110050/

LoadedLibrary Scanner

• A scanner that examines loaded libraries

Are these really dylib paths?

Peculiar Logic

• Except for /usr/lib/libsqlite3.dylib, no actual file paths are specified!

oCoreLocation and AVFoundation are symlinks

▪ When these are loaded as libraries, their symlinks are resolved

oFMCore.framework is a directory

▪ Of course, it’s impossible to load a directory as a dylib…

Mystery of the LoadedLibrary Scanner

• Hypothesis 1: XPR’s Bug

oDid Apple incorrectly specify the LoadedLibrary paths?

• Hypothesis 2: SIP & SSV bypass

oDid the attacker replace the directory and the symlinks with attacker’s dylibs?

o It is unlikely because macOS becomes unstable…

Hypothesis 3: Stealthier Reflective Loader

• TriangleDB iOS implant uses reflective loading for its modules

omacOS implant maybe implemented it, too

• Patrick’s research showed reflectively loaded dylibs has empty backing files

oServes as one of the key indicators of reflective loading

https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40

No backing file!

Can we specify a backing

file to hide indicators of

reflective loader?

https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40

Stealthier Reflective Loader

• I developed a new reflective loader that can specify a backing file

oAchieved by modifying dyld’s all_imges_info

• macOS implant might load dylibs reflectively while specifying backing files?

o To hide indicators of reflective loader

Directory path is specified

as the backing file

Output of vmmap

Remaining Mysteries

• It’s more natural to specify an unused system library path as a backing file

oWhy specify a directory or symlink?

• Why doesn’t XPR RedPine remediate threat?

oBecause reportOnly property is set to True

o If remediation wasn't the goal, what was the purpose of deploying it?

Does not remediate threat

XPRTestSuite

• Contains RE results of 15 XPR scanners

• Contains scripts to reproduce XPR remediation

• Useful for XPR research and testing purposes

• https://github.com/FFRI/XPRTestSuite

https://github.com/FFRI/XPRTestSuite
https://github.com/FFRI/XPRTestSuite

Outline

1. Introduction

2. Tooling

3. RE results

1. Overview

2. Initialization

3. RemediationBuilder

4. Remediation Logic

5. Provenance Sandbox

4. Vulnerability Research

5. Conclusion

Which App Created Remediated Files?

2nd stage payload

Persisted thru LaunchAgents

3rd stage payload

XPR

Which app created these files?

Cannot get it from the

remediated files only

Cracked infected app

Solution: Provenance Sandbox

2nd stage payload

Persisted thru LaunchAgents

3rd stage payload

XPR

com.apple.provenance:
0102000A0B0C0D0E0F1011

com.apple.provenance:
0102000A0B0C0D0E0F1011

com.apple.provenance:
0102000A0B0C0D0E0F1011

0A0B0C0D0E0F1011,
/Volume/Installer/ChromeInst
aller.app

Registers app

information &

provenance data

ExecPolicy

Cracked infected app

com.apple.provenance:
0102000A0B0C0D0E0F1011

XPR can retrieve which app dropped these

remediated files based on the provenance attribute

Also fetches

provenance attribute

Which app has this

provenance attr?

Provenance Sandbox

ChromeInstaller.app

Provenance Sandbox

• Enables identification of processes that create and modify files

oFor App Sandbox, files that are dropped have a quarantine attribute attached

o You can think of Provenance Sandbox as being replaced by the provenance attribute

oLike App Sandbox, it also applies to child processes

• When a process is running in Provenance Sandbox, a provenance

attribute is attached to files during the following operations:

o create, rename, setacl, setattrlist, setextattr, setflags, setmode, setowner, setutimes, truncate,

deleteextattr, swap, open (called with O_RDWR or O_TRUNC flags), link

com.apple.provenance

• An 11-byte integer value

o01 02 00 E9 AC 02 3A 98 15 DF 25

▪ The use of the first 3 bytes is unknown

▪ The following 8 bytes are random numbers (generated by arc4random)

Why XPR Collects Provenance Attribute?
• Provenance attribute helps to discover malware variants

o In case that there are other samples that drop the same 2nd stage payload

2nd stage

payload

Persisted thru

LaunchAgents

3rd stage

payload

Cracked

infected app

XPR

Other previously unknown

cracked apps drop the same

2nd stage payload

Sends analytics to Apple

Updates YARA

rules, CRL,

Notarization

status, …

How to Utilize Provenance Attribute

• Identifying applications that achieved persistence

...

$HOME/Library/LaunchAgents

Running other processes…

Google Chrome.app
com.apple.provenance:

0102009A947F71827A32E5
com.apple.provenance:

0102009A947F71827A32E5

Same provenance attribute

ExecPolicy

Contains registered application

information (signing info, …)

Tools to Utilize Provenance Attribute

• ShowProvenanceInfo

oThis app retrieves provenance attribute, then enumerates which apps created

and modified files

ohttps://github.com/FFRI/ShowProvenanceInfo

• Aftermath plugin collecting provenance attribute is also implemented

oPlanning to submit a Pull Request after this talk

https://github.com/jamf/aftermath

https://github.com/FFRI/ShowProvenanceInfo
https://github.com/FFRI/ShowProvenanceInfo
https://github.com/jamf/aftermath

Outline

1. Introduction

2. Tooling

3. RE results

1. Overview

2. Initialization

3. RemediationBuilder

4. Remediation Logic

5. Provenance Sandbox

4. Vulnerability Research

5. Conclusion

Arbitrary File Deletion (TCC Bypass)

• Arbitrary file deletion vulnerability

o Inspired by “Aikido Wiper” by Or Yair

oVulnerabilities allow to delete arbitrary files by exploiting TOCTOU in EDR and AV

oHis research is focused on Windows platform

oOn macOS, achieving arbitrary file deletion requires TCC bypass

https://www.safebreach.com/blog/safebreach-labs-researcher-discovers-multiple-zero-day-vulnerabilities/

https://www.safebreach.com/blog/safebreach-labs-researcher-discovers-multiple-zero-day-vulnerabilities/
https://www.safebreach.com/blog/safebreach-labs-researcher-discovers-multiple-zero-day-vulnerabilities/
https://www.safebreach.com/blog/safebreach-labs-researcher-discovers-multiple-zero-day-vulnerabilities/
https://www.safebreach.com/blog/safebreach-labs-researcher-discovers-multiple-zero-day-vulnerabilities/
https://www.safebreach.com/blog/safebreach-labs-researcher-discovers-multiple-zero-day-vulnerabilities/
https://www.safebreach.com/blog/safebreach-labs-researcher-discovers-multiple-zero-day-vulnerabilities/
https://www.safebreach.com/blog/safebreach-labs-researcher-discovers-multiple-zero-day-vulnerabilities/
https://www.safebreach.com/blog/safebreach-labs-researcher-discovers-multiple-zero-day-vulnerabilities/
https://www.safebreach.com/blog/safebreach-labs-researcher-discovers-multiple-zero-day-vulnerabilities/
https://www.safebreach.com/blog/safebreach-labs-researcher-discovers-multiple-zero-day-vulnerabilities/
https://www.safebreach.com/blog/safebreach-labs-researcher-discovers-multiple-zero-day-vulnerabilities/
https://www.safebreach.com/blog/safebreach-labs-researcher-discovers-multiple-zero-day-vulnerabilities/
https://www.safebreach.com/blog/safebreach-labs-researcher-discovers-multiple-zero-day-vulnerabilities/
https://www.safebreach.com/blog/safebreach-labs-researcher-discovers-multiple-zero-day-vulnerabilities/
https://www.safebreach.com/blog/safebreach-labs-researcher-discovers-multiple-zero-day-vulnerabilities/

Classic TOCTOU: CVE-2024-40843

• YARA rule matching → Remediating file

• Replace the target file using a symlink

oAfter matching YARA rule before remediating file

oThe timing of YARA rule match can be monitored through log command

Provenance Sandbox Bypass

• I reported several bypass methods

• Example 1: Process execution via LaunchServices

oDrop a .terminal script and execute .terminal using open

▪ While executed by Terminal.app, Terminal does not run within the Provenance Sandbox

• Example 2: Bypass through XPC

oExecute workflow files via automator (fixed in Sequoia 15)

• Previous App Sandbox bypass techniques are likely applicable

Outline

1. Introduction

2. Tooling

3. RE results

1. Overview

2. Initialization

3. RemediationBuilder

4. Remediation Logic

5. Provenance Sandbox

4. Vulnerability Research

5. Conclusion

Conclusion

• Covered:

oTooling and how to analyze XPR

oXPR internals (initialization, XPAPIHelpers, RemediationBuilder, remediation logic)

oProvenance Sandbox (brief overview, how to utilize provenance attribute)

oA bit of vulnerability research

• Not covered:

oProvenance Sandbox internals and other use cases of provenance attribute

oOther XPR scanners internals (such as XPR CardboardCutout)

oSeveral bugs of XPR scanners

Future Work

• XProtect Behavior Service (XBS)

oXBS internals and how can XBS detection be bypassed?

oStay tuned!

• Tracking Gatekeeper

o I found this while analyzing syspolicyd

o It also appears to use a provenance attribute

Black Hat Sound Bytes

• XPR is a treasure trove of Apple's threat intelligence

oSecurity researchers should actively engage in analyzing scanners in future updates

oMy custom tools for XPR analysis will be published on GitHub, so please use them

• Provenance attribute serves as a valuable forensic artifact

oBlue teams make the most of it

oRed teams may need to bypass Provenance Sandbox to achieve stealth operations

• Vulnerabilities in XPR and Provenance Sandbox are quite basic

oSimilar bugs found in AVs on other platforms may still exist in XPR

oPrevious App Sandbox escape bugs may apply to Provenance Sandbox bypass

Acknowledgements

• @howardnoakley

• @Morpheus______

• @birchb0y

• @philofishal

• @patrickwardle

• @gergely_kalman

• @blacktop__

• @oryair1999

Published Tools

• All published tools are available from the following link

• https://github.com/FFRI/PoC-public/tree/main/bhusa2025/xunprotect

https://github.com/FFRI/PoC-public/tree/main/bhusa2025/xunprotect
https://github.com/FFRI/PoC-public/tree/main/bhusa2025/xunprotect
https://github.com/FFRI/PoC-public/tree/main/bhusa2025/xunprotect
https://github.com/FFRI/PoC-public/tree/main/bhusa2025/xunprotect

Disclaimer

This document is a work of authorship performed by FFRI Security, Inc. (hereafter referred to

as "the Company"). As such, all copyrights of this document are owned by the Company and

are protected under Japanese copyright law and international treaties. Unauthorized

reproduction, adaptation, distribution, or public transmission of this document, in whole or in

part, without the prior permission of the Company is prohibited.

While the Company has taken great care to ensure the accuracy, completeness, and utility of

the information contained in this document, it does not guarantee these qualities. The

Company will not be liable for any damages arising from or related to this document.

©FFRI Security, Inc. Author: FFRI Security, Inc.

Thank You!

Feedback? Ideas?

@tsunek0h (X)

@tsunekoh@infosec.exchange (Mastodon)

research-feedback@ffri.jp

White paper (in progress)

Icon

• https://www.flaticon.com

• https://macosicons.com/#/

https://www.flaticon.com/
https://www.flaticon.com/
https://macosicons.com/#/
https://macosicons.com/#/

	Intro
	Slide 1: XUnprotect: Reverse Engineering macOS XProtect Remediator
	Slide 2: NSUserFullName()
	Slide 3: About This Presentation
	Slide 4: What You’ll Gain from This Talk?
	Slide 5: Outline
	Slide 6: What Is XPR?
	Slide 7: What Is XPR?
	Slide 8: Why Is Remediation Needed?
	Slide 9: Research Motivation
	Slide 10: Research Motivation
	Slide 11: Research Target
	Slide 12: Related Work

	Tooling
	Slide 13: Outline
	Slide 14: Static Analysis
	Slide 15: Challenges in RE of Stripped Swift Binaries
	Slide 16: Swift Metadata
	Slide 17: binja-swift-analyzer
	Slide 18: Type Metadata Accessor Identification
	Slide 19: Type Metadata Identification
	Slide 20: Dynamic Analysis – LLDB Scripting Bridge
	Slide 21: Branch Tracing & Imported into Binja
	Slide 22: Dynamic Analysis – Custom LLDB Commands

	Overview
	Slide 23: Outline
	Slide 24: Flow of “Remediation”

	Initialization
	Slide 25: Outline
	Slide 26: mod_init_func_0
	Slide 27: Decrypting XPR Sensitive Strings
	Slide 28: Decryption Results
	Slide 29: Program Entry Point
	Slide 30: XPAPIHelpers
	Slide 31: XPAPIHelpers: Interesting Property
	Slide 32: XPR Plugin Main
	Slide 33: Vnode Rapid Aging

	RemediationBulider
	Slide 34: Outline
	Slide 35: How to Describe Remediation Logic
	Slide 36: Naive Implementation
	Slide 37: Naive Implementation
	Slide 38: Naive Implementation
	Slide 39: Naive Implementation
	Slide 40: Naive Implementation
	Slide 41: Naive Implementation
	Slide 42: Issues When Implementing Remediation Logic
	Slide 43: What Are Result Builders?
	Slide 44: Example: Generating HTML
	Slide 45: Example: Generating HTML
	Slide 46: Power of Result Builders
	Slide 47: Power of Result Builders
	Slide 48: Power of Result Builders
	Slide 49: Power of Result Builders
	Slide 50: RemediationBuilder DSL
	Slide 51: Which Scanner Uses RemediationBuilder?
	Slide 52: Specification of RemediationBuilder DSL
	Slide 53: FileRemediationBuilder Example
	Slide 54: ProcessRemediationBuilder Example
	Slide 55: OpenRemediationBuilder

	Remediation Logic
	Slide 56: Outline
	Slide 57: XPR RoachFlight
	Slide 58: Remediation Logic of XPR RoachFlight
	Slide 59: What Are These Two CDHashes?
	Slide 60: What Are These Two CDHashes?
	Slide 61: XPR BadGacha
	Slide 62: XPR BadGacha: Decrypted Strings
	Slide 63: OCR-based Gatekeeper Bypass Detection
	Slide 64: Which Malware Family Does XPR BadGacha Detect?
	Slide 65: Other BadGacha Detection
	Slide 66: XPR RedPine
	Slide 67: XPR RedPine: Two Scans
	Slide 68: Scanning the Main Executable in Memory
	Slide 69: Why Does XPR RedPine Perform In-Memory Scanning?
	Slide 70: LoadedLibrary Scanner
	Slide 71: Peculiar Logic
	Slide 72: Mystery of the LoadedLibrary Scanner
	Slide 73: Hypothesis 3: Stealthier Reflective Loader
	Slide 74: Stealthier Reflective Loader
	Slide 75: Remaining Mysteries
	Slide 76: XPRTestSuite

	Provenance Sandbox
	Slide 77: Outline
	Slide 78: Which App Created Remediated Files?
	Slide 79: Solution: Provenance Sandbox
	Slide 80: Provenance Sandbox
	Slide 81: com.apple.provenance
	Slide 82: Why XPR Collects Provenance Attribute?
	Slide 83: How to Utilize Provenance Attribute
	Slide 84: Tools to Utilize Provenance Attribute

	Vulnerability Research
	Slide 85: Outline
	Slide 86: Arbitrary File Deletion (TCC Bypass)
	Slide 87: Classic TOCTOU: CVE-2024-40843
	Slide 88: Provenance Sandbox Bypass

	Conclusion & Takeaway
	Slide 89: Outline
	Slide 90: Conclusion
	Slide 91: Future Work
	Slide 92: Black Hat Sound Bytes
	Slide 93: Acknowledgements
	Slide 94: Published Tools
	Slide 95: Disclaimer
	Slide 96: Thank You! Feedback? Ideas? @tsunek0h (X) @tsunekoh@infosec.exchange (Mastodon) research-feedback@ffri.jp

	Acknowledgement
	Slide 97: Icon

