
#BHUSA @BlackHatEvents

Shade BIOS
Unleashing the Full Stealth of UEFI Malware

Kazuki Matsuo (@InfPCTechStack)

2025/08/06 Oceanside C, Level 2

https://x.com/InfPCTechStack

#BHUSA @BlackHatEvents

Whoami - Kazuki Matsuo (@InfPCTechStack)

Title
Security Researcher at FFRI Security, Inc.

Interests
UEFI BIOS, SMM (Negative Rings)

Previous work
SmmPack: Obfuscation for SMM Modules with TPM Sealed Key [DIMVA 2024]
You've Already Been Hacked: What if There Is a Backdoor in Your UEFI OROM? [BHUSA 2024]

https://x.com/InfPCTechStack
https://dl.acm.org/doi/10.1007/978-3-031-64171-8_23
https://dl.acm.org/doi/10.1007/978-3-031-64171-8_23
https://www.blackhat.com/us-24/briefings/schedule/#you39ve-already-been-hacked-what-if-there-is-a-backdoor-in-your-uefi-orom-39579

#BHUSA @BlackHatEvents

Importance of UEFI Security

Is infecting BIOS overkill? Well, what about in these two fields ↓

National Security
• BIOS is a reasonable place to install backdoors

• Many companies are involved in its vast supply chain (unlike OS, VMM, CPU)
• Leaked documents and toolkits, such as Vault 7 and vector-edk clearly confirm that

UEFI security is considered to be critical

Cloud Security
• Can compromise every VMs
• Strong rivalry with hypervisor-based

security [Fractured, Amli]

Image from https://www.binarly.io/blog/attacking-pre-efi-ecosystem

https://wikileaks.org/ciav7p1/cms/page_13763800.html
https://www.binarydefense.com/resources/blog/running-malware-below-the-os-the-state-of-uefi-firmware-exploitation/#:~:text=VectorEDK%20is%20a%20UEFI%20bootkit,governments%20and%20law%20enforcement%20agencies.
https://www.binarydefense.com/resources/blog/running-malware-below-the-os-the-state-of-uefi-firmware-exploitation/#:~:text=VectorEDK%20is%20a%20UEFI%20bootkit,governments%20and%20law%20enforcement%20agencies.
https://www.binarydefense.com/resources/blog/running-malware-below-the-os-the-state-of-uefi-firmware-exploitation/#:~:text=VectorEDK%20is%20a%20UEFI%20bootkit,governments%20and%20law%20enforcement%20agencies.
https://www.blackhat.com/docs/us-17/wednesday/us-17-Bulygin-Fractured-Backbone-Breaking-Modern-OS-Defenses-With-Firmware-Attacks.pdf
https://i.blackhat.com/EU-24/Presentations/EU-24-Takekoshi-AML-InjectionAttackson-ConfidentialVMs.pdf?_gl=1*v0k5gs*_gcl_au*MzgzMjA1MDg1LjE3MzQ2OTYzMTM.*_ga*NzcxNDU4NzM2LjE3MzQ2OTYzMTQ.*_ga_K4JK67TFYV*MTczNzYyMTA1Ni44LjAuMTczNzYyMjgxMy4wLjAuMA..&_ga=2.200497838.1437486830.1737608995-771458736.1734696314
https://www.binarly.io/blog/attacking-pre-efi-ecosystem
https://www.binarly.io/blog/attacking-pre-efi-ecosystem
https://www.binarly.io/blog/attacking-pre-efi-ecosystem
https://www.binarly.io/blog/attacking-pre-efi-ecosystem
https://www.binarly.io/blog/attacking-pre-efi-ecosystem
https://www.binarly.io/blog/attacking-pre-efi-ecosystem
https://www.binarly.io/blog/attacking-pre-efi-ecosystem

#BHUSA @BlackHatEvents

Challenges of Existing UEFI malware

In-the-wild UEFI bootkits (Lojax-BlackLotus)
• After all, they all perform malicious activities in userland or kernel
 Not pure-BIOS malware (they just support userland/kernel malbehaviors)
 Dependent on OS-level security (despite BIOS having higher privileges than OS）

Leaked BIOS/UEFI backdoors (Jetplow, vector-edk, …)
• Legacy BIOS or SMM backdoors: Very specific attack targets
• UEFI backdoors: Identical to UEFI bootkits

PoC BIOS/UEFI malware in the research fields
• There are several SMM backdoors but they require device-specific implementation

=> They suffer from OS & Hardware -Dependence

#BHUSA @BlackHatEvents

OS Dependence of Existing Bootkits

They can disable OS security mechanisms
• ESPector disables DSE (Driver Signature Enforcement)
• CosmicStrand disables Patch Guard

That’s good, but can they ...
• Disable all kernel drivers of every AV/EDR vendor product ?
• Disable all the OS security features ?

• For example, existing UEFI malware didn’t bypass ETW
• Moreover, what if new security features are added?

• Update malware on OS update ?
• Existing malware finds OS functions by pattern matching
• These methods won’t work when OS is updated

and the patterns change
 It will be detectable if it fails to disable just 1 of them

We don’t want to care about OS！(attacker’s perspective)

Windows Boot Manager

(bootmgfw.efi)

Windows OS Loader

(winload.efi)

Windows Kernel

(ntoskrnl.exe)

OslArchTransferToKernel

Archpx64TransferTo64BitApplicationAsm

Common technique to disable OS security mechanisms

nt!SepInitializeCodeIntegrity

nt!KiFilterFiberContext

Find & Hook

Find & Hook

Find
&

Patch

https://www.welivesecurity.com/2021/10/05/uefi-threats-moving-esp-introducing-especter-bootkit/
https://www.welivesecurity.com/2021/10/05/uefi-threats-moving-esp-introducing-especter-bootkit/
https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/
https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/

#BHUSA @BlackHatEvents

OS Dependence of Existing Bootkits

They can disable OS security mechanisms
• ESPector disables DSE (Driver Signature Enforcement)
• CosmicStrand disables Patch Guard

That’s good, but can they ...
• Disable all kernel drivers of every AV/EDR vendor products ?
• Disable all the OS security features ?

• Existing UEFI malware don’t bypass ETW for example
• Moreover, what if new security features are added?

• Update malware on OS update ?
• Existing malware finds OS functions by pattern matching
• These methods won’t work when OS is updated

and the patterns change
 It will be detectable if failed to disable just 1 of them

We don’t want to care about OS！(attacker’s perspective)

Windows Boot Manager

(bootmgfw.efi)

Windows OS Loader

(winload.efi)

Windows Kernel

(ntoskrnl.exe)

OslArchTransferToKernel

Archpx64TransferTo64BitApplicationAsm

Common technique to disable OS security mechanisms

nt!SepInitializeCodeIntegrity

nt!KiFilterFiberContext

Find & Hook

Find & Hook

Find
&

Patch

Why not implement everything using only the BIOS ?

https://www.welivesecurity.com/2021/10/05/uefi-threats-moving-esp-introducing-especter-bootkit/
https://www.welivesecurity.com/2021/10/05/uefi-threats-moving-esp-introducing-especter-bootkit/
https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/
https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/

#BHUSA @BlackHatEvents

Difficulty of Pure-BIOS Malware
Secrets exists primarily at runtime

• Sensitive data like credentials typically reside in process memory during runtime
• Files can be accessed during boot, but confidential data is often encrypted

However, BIOS environments are mostly destroyed in runtime
• No Boot Services (AllocatePages, etc.) or Protocols (HttpProtocol, DiskIoProtocol, etc.)

=> No interfaces for device access (difficult to communicate with C2, read files, etc.)

Attacker can directly perform I/O but…
• Hard: Essentially have to implement a full driver stack (e.g., Arp, Ip, Tcp, Http,... for networking)
• Device-dependent: Backdoor will only work on specific target that has specific device

Kernel Drivers

DiskDxe

HttpDxe

NtfsDxe

DXE

Boot Loader

HTTP Boot

Normal Boot

BDS/TSL

DiskIoProtocol

FileProtocol

HttpProtocol

OS

Runtime

ExitBootServices

DXE drivers are unloaded
Protocols, Services are
unavailable from now

Install

#BHUSA @BlackHatEvents

Hardware Dependence of Existing BIOS Backdoors
Existing BIOS backdoors
• vector-edk: BIOS hacking tool-kits sold to governments
• DEITYBOUNCE: Possible BIOS backdoor leaked from ANT Catalog
• DerStarke (Dark Matter): Possible BIOS backdoor leaked from Vault 7
※ And more: IronChef, BANANABALLOT&JETPLOW

Very
specific
target

https://www.binarydefense.com/resources/blog/running-malware-below-the-os-the-state-of-uefi-firmware-exploitation/#:~:text=VectorEDK%20is%20a%20UEFI%20bootkit,governments%20and%20law%20enforcement%20agencies.
https://www.binarydefense.com/resources/blog/running-malware-below-the-os-the-state-of-uefi-firmware-exploitation/#:~:text=VectorEDK%20is%20a%20UEFI%20bootkit,governments%20and%20law%20enforcement%20agencies.
https://www.binarydefense.com/resources/blog/running-malware-below-the-os-the-state-of-uefi-firmware-exploitation/#:~:text=VectorEDK%20is%20a%20UEFI%20bootkit,governments%20and%20law%20enforcement%20agencies.
https://www.binarydefense.com/resources/blog/running-malware-below-the-os-the-state-of-uefi-firmware-exploitation/#:~:text=VectorEDK%20is%20a%20UEFI%20bootkit,governments%20and%20law%20enforcement%20agencies.
https://www.eff.org/files/2014/01/06/20131230-appelbaum-nsa_ant_catalog.pdf
https://www.eff.org/files/2014/01/06/20131230-appelbaum-nsa_ant_catalog.pdf
https://wikileaks.org/ciav7p1/cms/page_13763800.html
https://wikileaks.org/ciav7p1/cms/page_13763800.html
https://wikileaks.org/ciav7p1/cms/page_13763800.html
https://www.eff.org/files/2014/01/06/20131230-appelbaum-nsa_ant_catalog.pdf#page=2
https://musalbas.com/blog/2016/08/16/equation-group-firewall-operations-catalogue.html
https://musalbas.com/blog/2016/08/16/equation-group-firewall-operations-catalogue.html

#BHUSA @BlackHatEvents

Hardware Dependence of PoC BIOS Backdoors
There are some pure-SMM backdoors, but ...
• SMM also doesn’t have any abstracted interface for accessing the device
• Therefore, attackers need to know what devices the target has, read specs, and write hardware-dependent code
• Fortunately, USB has standardized specs (xHCI, ...), but other devices such as NIC have no such thing

and that could be the reason why we cannot find SMM backdoors other than keylogger

← Requires direct r/w to
USB Host Controller registers

↓

Works only on USB keyboards
+

Requires USB HC specs and the
attacker has to understand it

(What about other devices?
Attacker has to read all those specs...)

#BHUSA @BlackHatEvents

Dilemma of Existing BIOS Malware

Hardware Dependent
• Highly specific attack target
• Difficult to implement
• No abstracted interface for

device access

BIOS code

OS/Userland Code

OS Dependent
• Detectable by OS-level security
• Detectable by AV/EDR products

It is said that BIOS can do anything, but this is NOT true.
=> This dilemma is suppressing the potential of BIOS malware

Malware Code Ratio

#BHUSA @BlackHatEvents

Latest Trends: SMM Isolation

SMM Isolation (ISRD & ISSR)
• Only Intel modules can execute in SMM (ring 0)
• All SMI handlers execute in SMM (ring 3)

Impact on SMM Backdoors
• OS memory regions become inaccessible

• SMM page tables are hardware-locked and
cannot be modified

• I/O access is restricted
• SMM (ring 0) traps every device interaction

attempt

 SMM backdoors are no longer effective !

(unless they bypass this isolation)

Intel modules
Full access to
memory and I/O

Non-Intel modules
Restricted access to
memory and I/O

Ring 0

Ring 3

Smm Entry
Security

Monitor

PPAM

PiSmmCpuDxeSmm

OEM SMM Modules

sysexit/
sysenter

Exception/
IRET

PPAM Manifest Signed
by
Intel

#BHUSA @BlackHatEvents

UEFI modules executable at Runtime
(After OS boot)

1. SMM module
• Resides in SMRAM, inaccessible from OS (non-SMM)
• (Was) More powerful than other UEFI modules

• OS cannot inspect SMRAM
• Can compromise hypervisor-based security such as VBS at runtime [Fractured]

• Research into (pure) SMM backdoors exists [keylogger1, keylogger2, SmmBackdoorNg]
• However, the implementation remains hardware-dependent

 No longer effective due to SMM isolation

2. Runtime DXE module
• Mapped to high canonical virtual address, similar to kernel drivers
• Executed when the OS invokes UEFI runtime services (e.g., gRT->GetVariable())
• Based on current observations, only our previous work [OromBackdoor] uses this module

• Able to access OS memory and every I/O !

=> Runtime DXE modules are stronger than SMM modules (with SMM Isolation)

https://learn.microsoft.com/ja-jp/windows-hardware/design/device-experiences/oem-vbs
https://www.blackhat.com/docs/us-17/wednesday/us-17-Bulygin-Fractured-Backbone-Breaking-Modern-OS-Defenses-With-Firmware-Attacks.pdf
https://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
https://ieeexplore.ieee.org/document/6980293
https://github.com/Cr4sh/SmmBackdoorNg
https://i.blackhat.com/BH-US-24/Presentations/US24-Matsuo-Youve-Already-Been-Hacked-What-if-There-Is-a-Backdoor-in-Your-UEFI-OROM-Thursday.pdf?_gl=1*1hwf5o8*_gcl_au*MTczMTYwMjMxLjE3MzM3MjQyMzc.*_ga*MTAwNjg2NzI4MS4xNzE3NTc3MzI1*_ga_K4JK67TFYV*MTczOTc2Njk5MS4xMjkuMC4xNzM5NzY2OTkxLjYwLjAuMA..&_ga=2.221931934.760751930.1739766991-1006867281.1717577325

#BHUSA @BlackHatEvents

BIOS — Is That All You’ve Got?

We don’t want to use OS...
yet we want OS functionalities like memory management, device drivers, etc.

Imagine an “attacker-exclusive OS” running silently in parallel ?

The OS can’t run in parallel, and building a full OS is difficult...

But wait—BIOS is a kind of mini-OS: it has memory management, device drivers, and more

 So, could a BI-“OS” quietly run after the main OS boots ?

Attacker
Exclusive

OS ?

#BHUSA @BlackHatEvents

Shade BIOS

What Shade BIOS does
• Retain BIOS in memory even after OS boot

• Allows UEFI functionality during runtime (UEFI services, protocols, ...)
• Allows use of UEFI drivers during runtime to access the device

What Shade BIOS accomplish
1. Pure-BIOS malware: Disassociate UEFI malware from OS-level security
2. Device independent: Doesn’t need to know what device the target is using
3. Easy to implement: Doesn’t need to implement all driver stack or access I/O directly

How to Shade BIOS
1. Retain BIOS after OS boot
2. Make retained BIOS code work properly in runtime

Shade BIOS

#BHUSA @BlackHatEvents

UEFI Memory Map
• DxeCore manages the actual memory map as a doubly-linked list of MEMORY_MAP entries
• Each entry has an EFI_MEMORY_TYPE based on its content
• Only the copy of memory map is available by gBS->GetMemoryMap()
• OS loader calls gBS->GetMemoryMap() and determines what region can be used for what

• Regions like EfiLoaderCode/Data, EfiBootServicesCode/Data, EfiConventionalMemory are usable
• BIOS code/data in EfiBootServicesCode/Data is overwritten after gBS->ExitBootServices()

(which is called by OS loader)

OS Loader

gBS->GetMemoryMap()

DxeCore

EfiConventionalMemory

EfiBootServicesCode

EfiBootServicesData

EfiRuntimeServicesCode

EfiConventionalMemory

…

EfiConventionalMemory

Start = 0x00000000

End = 0x40000000

gMemoryMap

EfiConventionalMemory

Start = 0x7F000000

End = 0x80000000

EfiBootServicesCode

Start = 0x40000000

End = 0x50000000

EfiBootServicesData

Start = 0x50000000

End = 0x60000000

～～

Memory Map Copy Actual Memory Map

https://github.com/tianocore/edk2/blob/bc664d1830c9446cb1d33b10a41e6b3d207997f1/MdeModulePkg/Core/Dxe/Mem/Imem.h#L16-L28
https://github.com/tianocore/edk2/blob/bc664d1830c9446cb1d33b10a41e6b3d207997f1/MdeModulePkg/Core/Dxe/Mem/Imem.h#L16-L28
https://github.com/tianocore/edk2/blob/bc664d1830c9446cb1d33b10a41e6b3d207997f1/MdePkg/Include/Uefi/UefiMultiPhase.h#L38-L127
https://github.com/tianocore/edk2/blob/bc664d1830c9446cb1d33b10a41e6b3d207997f1/MdePkg/Include/Uefi/UefiMultiPhase.h#L38-L127

#BHUSA @BlackHatEvents

Retaining BIOS

• Hook gBS->GetMemoryMap() and change BootServices to RuntimeServices type!
• Actual memory map in the DxeCore is not modified
• OS will use only EfiLoaderData/Code and EfiConventionalMemory

• Most of the regions OS use are EfiConventionalMemory

ShadeBiosDxe

GetMemoryMapHook()

OS Loader

gBS->GetMemoryMap()
DxeCore

EfiConventionalMemory

EfiBootServicesCode

EfiBootServicesData

EfiRuntimeServicesCode

EfiConventionalMemory

…

Memory Map Copy

EfiConventionalMemory

EfiRuntimeServicesCode

EfiRuntimeServicesData

EfiRuntimeServicesCode

EfiConventionalMemory

…

Modified Memory Map Copy

#BHUSA @BlackHatEvents

Make retained BIOS code work
1. Memory Management

• BIOS memory allocator thinks OS memory regions are free to use
• gBS->AllocatePages() will allocate from OS memory regions

2. Virtualized Memory
• BootServicesCode/Data thinks they are executing on a physical address

• Precisely, identity mapped address
• OS remaps the memory to high canonical addresses at runtime

3. Boot-time-only Resources
• UEFI variables lacking RT attributes and tables like Boot Services Table disappear after boot

4. Device Settings
• OS device drivers reinitialize devices to their own configuration
• UEFI device drivers thinks the device is already configured with the UEFI driver entry

5. Exclusive Control
• BIOS code must not execute alongside OS code

https://github.com/tianocore/edk2/blob/bc664d1830c9446cb1d33b10a41e6b3d207997f1/MdePkg/Include/Uefi/UefiSpec.h#L1928-L2021
https://github.com/tianocore/edk2/blob/bc664d1830c9446cb1d33b10a41e6b3d207997f1/MdePkg/Include/Uefi/UefiSpec.h#L1928-L2021

#BHUSA @BlackHatEvents

1: Runtime Memory Management

BIOS Memory Management
• BIOS allocates pages of specified type from the actual memory map
• If there are no pages available, it allocates from EfiConventionalMemory

=> Problem: during runtime, OS uses this EfiConventionalMemory…

Solution: Reserve portions of EfiConventionalMemory for BIOS use at
runtime

• Deceive the OS to think those as RuntimeServicesCode/Data
• OS avoids using RuntimeServicesCode/Data region

• Remove OS-used ConventionalMemory from the actual memory map
=> Only the reserved ConventionalMemory is used for BIOS memory allocation

#BHUSA @BlackHatEvents

1: Runtime Memory Management

OS Loader
gBS->GetMemoryMap()

DxeCore

EfiConventionalMemory

EfiBootServicesCode

EfiBootServicesData

EfiRuntimeServicesCode

…

EfiConventionalMemory

EfiRuntimeServicesData

EfiConventionalMemory

Start = 0x00000000

End = 0x40000000

gMemoryMap

EfiConventionalMemory

Start = 0x7F000000

End = 0x80000000

EfiBootServicesCode

Start = 0x40000000

End = 0x50000000

EfiBootServicesData

Start = 0x50000000

End = 0x60000000

Memory Map Copy

Actual Memory Map

<=

<=Let OS use

Don’t let OS use

(Save it for runtime BIOS)

Keep this linked so the allocator will

use this region

Unlink it because OS will use this

#BHUSA @BlackHatEvents

2: Virtualized Memory
• Problem: Non-runtime BIOS code assumes physical addresses

• Have global pointers that holds physical addresses
• Access hard-coded physical addresses

• Create identity page table and set it to CR3 ?
=> No. Current instructions execute on virtual addresses

• Solution: Use Partial Identity Mapping [OromBackdoor]

• Runtime DXE drivers use high canonical virtual address and don’t require PML4[0]
• On the other hand, identity paging only uses PML4[0]
• Swap only PML4[0] in the current page table

=> Runtime DXE driver runs on virtual address normally and
switches to identity map only when accessing physical address !

https://i.blackhat.com/BH-US-24/Presentations/US24-Matsuo-Youve-Already-Been-Hacked-What-if-There-Is-a-Backdoor-in-Your-UEFI-OROM-Thursday.pdf?_gl=1*1hwf5o8*_gcl_au*MTczMTYwMjMxLjE3MzM3MjQyMzc.*_ga*MTAwNjg2NzI4MS4xNzE3NTc3MzI1*_ga_K4JK67TFYV*MTczOTc2Njk5MS4xMjkuMC4xNzM5NzY2OTkxLjYwLjAuMA..&_ga=2.221931934.760751930.1739766991-1006867281.1717577325

#BHUSA @BlackHatEvents

3: Boot-time-only Resources

Freed Tables
• Problem: Parts of EFI_SYSTEM_TABLES and EFI_BOOT_SERVICES are deallocated
• Solution: Copy during boot, restore in runtime :)

UEFI Variables
• Problem: Retained modules will try to r/w UEFI variables without RT attributes
• Solution: Hook gRT->SetVariable(), add RT attributes, and save it to the new variable

• Copy it during boot time for variables that are only set at boot time

https://uefi.org/specs/UEFI/2.10/04_EFI_System_Table.html
https://uefi.org/specs/UEFI/2.9_A/07_Services_Boot_Services.html

#BHUSA @BlackHatEvents

4: Device Settings

Driver Settings
• For example, USB host controller stores the memory address of command ring in its CRC register
• Driver sets this by preparing the ring in memory and writing the base address to this register

Problem: OS device drivers reinitialize the device by overwriting these registers

Solution: Overwrite device registers from UEFI drivers and seize control
without device-specific code! (Not knowing the registers of the device)

USB Host Controller

CRC

OS Command Ring

BIOS Command Ring
Retained

BIOS code

① Writes command
② Device is looking at

OS command ring now...

Memory

Hardware Device

https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf#page=401

#BHUSA @BlackHatEvents

4: UEFI Driver Model

EFI_HANDLE

ControllerHandle

NIC

(Network Interface Card)

Ip4Dxe

TcpDxe

HttpDxe
DriverBinding->Start() {
// Init device

// Install HttpServiceBindingProtocol

}

DriverBinding->Stop() {
// Reset device

// Uninstall HttpServiceBindingProtocol

}

MnpDxe

SnpDxe

UNDI

gBS->ConnectController(

ControllerHandle

);

gBS->DisconnectController(

ControllerHandle

);

UEFI Network Driver Stack

#BHUSA @BlackHatEvents

4: Hijacking Device Control

USB Host Controller

CRC
OS Command Ring

BIOS Command RingBIOS code
Writes command

gBS->DisconnectController(UsbHcHandle);

EFI_HANDLE UsbHcHandle;

gBS->ConnectController(UsbHcHandle);

USB Host Controller

CRC
OS Command Ring

BIOS Command RingBIOS code
Writes command

EFI_HANDLE UsbHcHandle;

Only 2 steps!

1. gBS->DisconnectController() to reset the device

2. gBS->ConnectController() to initialize the device for BIOS (and install protocols)

#BHUSA @BlackHatEvents

4: Returning Control to the OS
After the BIOS malbehavior is done, we have to return the device control to the OS

Self-repairing OS Drivers
• No need for manual restoration — OS device drivers often auto-recover

• Example: If you used NIC, it drops connection briefly but regains it within ~3 minutes

Manual Restoration Challenges
• Copying the entire MMIO space and pasting for restoration won’t work because some

registers trigger device actions (not just hold data)
• You have to know what device the target is using and read device specification to put

the settings back correctly
=> Makes the backdoor device-dependent...

=> This “device control return problem” is a key hurdle for Shade BIOS

#BHUSA @BlackHatEvents

5: Exclusive Control

Shade BIOS modifies paging and device settings
=> Must exclude OS code when running BIOS code

Suppressing Interrupts
• BIOS→OS happens when interrupt occurs — so suppress them
• CLI/STI instructions are unreliable

• There are lots of CLI/STI inside BIOS code (Single STI re-enables interrupts)
Prefer setting CR8 (Task Priority Register) = 0xF (max value) to block all external interrupts

What about the interrupts for BIOS ?
• UEFI BIOS only uses timer interrupts (for timer events registered by gBS->SetTimer())
• UEFI drivers often rely on polling, and most work properly without interrupts actually
• But, we can iterate the list of timer events and signal them manually to emulate interrupt

 Just use OS IDT and emulate interrupt (timer events) for BIOS

https://github.com/tianocore/edk2/blob/bc664d1830c9446cb1d33b10a41e6b3d207997f1/EmulatorPkg/Library/DxeTimerLib/DxeTimerLib.c#L21

#BHUSA @BlackHatEvents

5: Emulating Interrupts (Timer Events)

① UEFI network drivers will

register some timer events

IEVENT

NotifyFunction

TriggerTime

mEfiTimerList

IEVENT

NotifyFunction

TriggerTime

IEVENT

NotifyFunction

TriggerTime

IEVENT

NotifyFunction

TriggerTime

～～

Insert

② All of the events are triggered

regardless of TriggerTime

Timer Interrupt Behavior

- Timer interrupts advance SystemTime

- Events with “TriggerTime < SystemTime”

have their NotifyFunction invoked

https://github.com/tianocore/edk2/blob/b64f735867ead2e1b4cc2df5d1ee8a4273ee7c39/MdeModulePkg/Core/Dxe/Event/Event.h#L29-L32
https://github.com/tianocore/edk2/blob/b64f735867ead2e1b4cc2df5d1ee8a4273ee7c39/MdeModulePkg/Core/Dxe/Event/Timer.c#L16

#BHUSA @BlackHatEvents

Recap
We want OS & Hardware -independent BIOS malware => Shade BIOS

➢ Retains BIOS after OS boot and allows use of UEFI drivers, services, ...

1. Retain BIOS after OS boot
• Hook gBS->GetMemoryMap(), reclassify EfiBootServicesCode/Data → RuntimeServicesCode/Data

2. Make retained BIOS code work in runtime
1. Memory Management

Reserve EfiConventionalMemory, exclude OS-used regions from the actual memory map
2. Virtualized Memory Addresses

Use partial identity mapping for physical access
3. Boot-time-only Resources

Save gST/gBS during boot time, and copy it in runtime. Add RT attribute to boot-only variables.
4. Device Settings

Reset via DisconnectController(), reconfigure with ConnectController()
5. Exclusive Control

Block interrupts via CR8 = 0xF, emulate timer events manually

#BHUSA @BlackHatEvents

OS Independence of Shade BIOS

CreateFile

NtCreateFile (e.g., ETW logging)

Device Driver

EDR/AV filter driver

Hardware

FileProtocol->Open

Retained DXE Driver

Device Driver

Retained DXE Driver

Retained DXE Driver

Existing UEFI malware

(userland/kernel malbehaviors)

Pure-BIOS Malware

(OS independent)

Ring 3

Ring 0

OS

detection

EDR/AV

detection

No

risks!

#BHUSA @BlackHatEvents

Device Independence of Shade BIOS
NO direct access to I/O !

Works with the

same code!

#BHUSA @BlackHatEvents

Difficulty of Pure-BIOS Malware

#BHUSA @BlackHatEvents

Shade BIOS Limitation
To be precise, 1 kernel feature remains essential
=> A single call to nt!MmGetVirtualForPhysical()

Why?
• Runtime DXE module runs on the paging parepared by OS
• OS only knows the virtual address of page tables

• CR3 has “physical” address of page tables

• Requires when applying partial identity mapping (when modifying PML4[0])
• Once mapping is active, direct physical access makes MmGetVirtualForPhysical() unnecessary

Detectable by OS-level security? => No
• OS may reject MmGetVirtualForPhysical() towards CR3 value (&PML4[0])
• But, BIOS can replicate and patch MmGetVirtualForPhysical code (which is couple of lines of

assembly), disable the logic, and use it

#BHUSA @BlackHatEvents

Finding Secrets

Depending on what the attacker wants to achieve, kernel/userland features might be necessary
e.g., Reading process memory requires the page table of that target process (DirBase)

Is this detectable by OS-level security? => Nearly NO
• OS-level security focuses on active malbehaviors:

• Modifying memory attributes
• Network data interception
• ...

• Shade BIOS isolates the most suspicious part of the malbehavior
• Just reading the memory contents cannot trigger the detection

#BHUSA @BlackHatEvents

How to detect Shade BIOS

OS or AV/EDR products cannot observe malbehavior of Shade BIOS
• C2 communications, file accesses, … can never be observed

However, you can detect it by performing preventive inspection
• Best detection method is “Memory Forensic”

• Shade BIOS (runtime DXE driver) is mapped to the high canonical address
• Dump it from kernel-level code (kraft_dinner) and analyze it statically

• There are only a few runtime services and checking the codes isn’t that much of an effort

Watch out for Shade BIOS side-effects
• After Shade BIOS execute malbehaviors, the device used will freeze until it is

self-repaired by the OS
• Frequent device error is a sign of Shade BIOS

• However, frequency of the execution depends on the attacker’s demand

https://github.com/tandasat/kraft_dinner

#BHUSA @BlackHatEvents

How to detect Pure-BIOS malware

Shade BIOS is just one form of Pure-BIOS malware

Pure-BIOS malware implemented as SMM module

• Check whether SMM Isolation is enabled:
• Yes => Inspect SMM isolation level reported by PPAM

• It’s reported in Windows “System Information”

• No => Analyze SPI flash and reverse-engineer all UEFI modules ...

Pure-BIOS malware implemented as runtime DXE module

• Dump runtime DXE modules from high canonical address

and apply memory forensics to identify anomalies

These inspections are critical for systems

acquired through government procurement

In any case, there’s still a lack of BIOS research.

There should be more attack methods

#BHUSA @BlackHatEvents

Difficulty of Pure-BIOS Malware

#BHUSA @BlackHatEvents

Future Work

Much can be done to improve Shade-BIOS
• Accelerate repair of OS device settings or explore alternative strategies
• Expand hardware support and test across diverse BIOS implementations
• Support UEFI drivers that doesn’t follow UEFI driver model
• Enable additional UEFI functionalities
• ...
 It is like making one small OS

SMM backdoors bypassing SMM isolation
• SMM (ring 0) backdoors offer deeper stealth than runtime DXE modules
• Please refer to appendix for further discussion on SMM (ring 0) backdoor

#BHUSA @BlackHatEvents

Black Hat Sound Bytes

BIOS is said to be able to do everything, but there are some barriers
• Existing UEFI malware suffers the dilemma of OS and hardware -dependencies
• OS holds control over the devices in runtime, and BIOS needs to compete for control

Pure-BIOS malware is achievable
• UEFI threats in the wild are just the tip of the iceberg, and detectable by OS-level security

• It can be completely OS-independent with less device-dependence

Preventive inspection of PC is the only way to detect pure-BIOS malware
• Leverage newer technologies like SMM isolation to inspect them
• Apply memory forensics for those implemented with runtime DXE modules

#BHUSA @BlackHatEvents

Disclaimer

This document is a work of authorship performed by FFRI Security, Inc. (hereafter referred to as

"the Company"). As such, all copyrights of this document are owned by the Company and are

protected under Japanese copyright law and international treaties. Unauthorized reproduction,

adaptation, distribution, or public transmission of this document, in whole or in part, without the

prior permission of the Company is prohibited.

While the Company has taken great care to ensure the accuracy, completeness, and utility of the

information contained in this document, it does not guarantee these qualities. The Company will

not be liable for any damages arising from or related to this document.

©FFRI Security, Inc. Author: FFRI Security, Inc.

#BHUSA @BlackHatEvents

Thank you for listening!

Contacts
X DM: https://twitter.com/ffri_research

e-mail: research-feedback@ffri.jp

Repo
https://github.com/FFRI/ShadeBIOS

https://twitter.com/ffri_research
mailto:research-feedback@ffri.jp
mailto:research-feedback@ffri.jp
mailto:research-feedback@ffri.jp
https://github.com/FFRI/ShadeBIOS/

#BHUSA @BlackHatEvents

Appendix: Discussing the Future SMM Malware

SMM backdoor bypassing SMM Isolation?
• Not easily investigatigated by 3rd -party security researchers

• Latest laptops with SMM Isolation comes with strict protections for writing to the
SPI flash chip
• I bought a Dell Latitude 5340, but the SPI flash contents were encrypted ...

• We cannot implant SMM modules via UEFI shell or OROM

We could not find a way to run our own SMM module on the latest laptop ...

However, I organized potential attack vectors through statical analysis
(special thanks for Satoshi’s notes explaining the SMM Isolation implementation)

https://tandasat.github.io/blog/2024/02/29/ISRD.html

#BHUSA @BlackHatEvents

ISRD Attack vectors

Ring 0

Ring 3

Smm Entry
Security

Monitor

PiSmmCpuDxeSmm

OEM SMM

Modules

sysexit/

sysenter
Exception/

IRET

ISRD Components

Check

【Modifying Page Tables】
CR3 is locked on every SMI entry.

 Patching this will allow CR3 modification

 Then, SMM code can access OS memory pages

Smm entry is patched by PiSmmCpuDxeSmm

during boot, so it should be modifiable.

Policies

【Modifying Policy Evaluation】
PiSmmCpuDxeSmm install this so this might

also be modifiable during boot.

=> Then, SMM (ring3) can access arbitrary I/O

【Modifying Policy】
Will be detected by ISSR.

OEM can put policy that allows every I/O

but, ISSR calculates SMM Isolation level

by checking which ports are opened.

(Intel System Resource Defense)

#BHUSA @BlackHatEvents

ISSR Attack vectors

OS Loader

Processor uCode

SINIT ACM

MLE

PPAM

① GETSEC[SENTER]

② verifies & runs
TPM PCR[17]

TPM event log

PPAM Manifest

Extends with computed

measurements

③
Save the measurements

⑤ Get the measurements

Get the reference measurements

④ verifies & runs

⑥ verifies & vmcall⑦ Return info about

memory & I/O

⑧ Calculate SMM

Isolation level

【Modifying Calculation of SMM Iso Level】
Patching MLE is prevented by DRTM.

But, it is possible if MLE (tcblaunch.exe) has

vulnerability that uses untrusted code.

(e.g., calling some DXE module functions)

【Modify PPAM→MLE Info Passing】
We cannot hook hypercall because it requires

SMM (ring 0) so we need to patch PPAM.

 PPAM integrity is check by the signed manifest.

【Modify PPAM Manifest】
How about changing the manifest?

 PPAM Manifest is also signed

【Modify the level displayed to the user】
ISSR is just for the user to check the level.

(e.g., Patch “System Information” of Windows)

(Intel System Security Report)

#BHUSA @BlackHatEvents

Detecting Pure-SMM Malware (bypassing SMM Iso)

Detection is more challenging than with runtime DXE-based malware

We have to investigate whole DXE and SMM modules ...
• The number of SMM modules compared to DXE modules are very small
• However, analyzing the whole SMM modules is not enough!
• DXE modules that are loaded before SMRAM is locked can modify SMRAM!
• Such DXE modules can also bypass SMM Isolation

 Investigating the bypass of SMM isolation and detecting the SMM malware is
an important future work!

	スライド 1
	スライド 2: Whoami - Kazuki Matsuo (@InfPCTechStack)
	スライド 3: Importance of UEFI Security
	スライド 4: Challenges of Existing UEFI malware
	スライド 5: OS Dependence of Existing Bootkits
	スライド 6: OS Dependence of Existing Bootkits
	スライド 7: Difficulty of Pure-BIOS Malware
	スライド 8: Hardware Dependence of Existing BIOS Backdoors
	スライド 9: Hardware Dependence of PoC BIOS Backdoors
	スライド 10: Dilemma of Existing BIOS Malware
	スライド 11: Latest Trends: SMM Isolation
	スライド 12: UEFI modules executable at Runtime
	スライド 13: BIOS — Is That All You’ve Got?
	スライド 14: Shade BIOS
	スライド 15: UEFI Memory Map
	スライド 16: Retaining BIOS
	スライド 17: Make retained BIOS code work
	スライド 18: 1: Runtime Memory Management
	スライド 19: 1: Runtime Memory Management
	スライド 20: 2: Virtualized Memory
	スライド 21: 3: Boot-time-only Resources
	スライド 22: 4: Device Settings
	スライド 23: 4: UEFI Driver Model
	スライド 24: 4: Hijacking Device Control
	スライド 25: 4: Returning Control to the OS
	スライド 26: 5: Exclusive Control
	スライド 27: 5: Emulating Interrupts (Timer Events)
	スライド 28: Recap
	スライド 29: OS Independence of Shade BIOS
	スライド 30: Device Independence of Shade BIOS
	スライド 31: Difficulty of Pure-BIOS Malware
	スライド 32: Shade BIOS Limitation
	スライド 33: Finding Secrets
	スライド 34: How to detect Shade BIOS
	スライド 35: How to detect Pure-BIOS malware
	スライド 36: Difficulty of Pure-BIOS Malware
	スライド 37: Future Work
	スライド 38: Black Hat Sound Bytes
	スライド 39: Disclaimer
	スライド 40: Thank you for listening!
	スライド 41: Appendix: Discussing the Future SMM Malware
	スライド 42: ISRD Attack vectors
	スライド 43: ISSR Attack vectors
	スライド 44: Detecting Pure-SMM Malware (bypassing SMM Iso)

