
1

driving your security forward

Achieving Linux Kernel Code
Execution Through A Malicious USB

Device

Martijn Bogaard

Principal Security Analyst

martijn@riscure.com

@jmartijnb

Dana Geist

Senior Security Analyst

@geistdana

mailto:Martijn@riscure.com

2

Our agenda

• Why USB based attacks?

• The forgotten vulnerability (a.k.a CVE-2016-2384)

• Exploitation approach

• Demo

• Discussion / Final thoughts

Why USB based attacks?

4

Why USB based attacks?

The forgotten vulnerability
CVE-2016-2384

6

CVE-2016-2384: what is it about?
The forgotten vulnerability

• Double free in the Linux kernel found1 by Andrey Konovalov

• Targets the USB MIDI subsystem

• PoCs demonstrating:
• Denial of Service

• Code execution in the kernel turning the double-free into a use-after-free by:
• Unprivileged code execution (i.e.: syscall interface)

• Sockets (i.e.: allocation of SKBs)

• Affected major Linux based systems and distributions such as Ubuntu
Fedora and CentOS assuming physical access

1 https://xairy.io/articles/2016/cve-2016-2384

7

CVE-2016-2384: why do we still care?
The forgotten vulnerability

13 February 2016

Issue Reported

13 February 2016

Fixed Upstream

14 February 2016

CVE Assigned

October 2020

DeviceX found to be
vulnerable

December 2020

DeviceX successfully
exploited

March 2021

DeviceY found to be
vulnerable

…

8

DeviceX characteristics
The forgotten vulnerability

• Widely used device

• Very minimal Linux-based system
• Kernel early 4.x

• Actively backporting security fixes

• Locked down (attack surface reduction)
• No crash logs, no serial output

USB
(not used)

Network
(1 service)

Sandboxed
browser

The actual device is not relevant for this talk ;-)

9

CVE-2016-2384: how is the double-free triggered?
The forgotten vulnerability

• A USB MIDI device is connected to the target device
• The device's configuration is not standard

10

USB probing process
USB crash course

During probing all communication is initiated by the host:

Who are you? Device Descriptor

EP0 control req.

What are your

capabilities?
Interface + Endpoint

Descriptors

EP0 control req.

What is your name? String Descriptor
EP0 control req.

…?
Another Descriptor

EP0 control req.

usb_hub_wq

11

CVE-2016-2384: how is the double-free triggered?
The forgotten vulnerability

• Since the device is of type MIDI, a specific function is called:
__snd_usbmidi_create()

• The function allocates a structure on the heap

snd_usb_midi

umidi
0xffff000010000200

12

CVE-2016-2384: how is the double-free triggered?
The forgotten vulnerability

• A (deliberate) error in the MIDI configuration is encountered:
• Causing the 1st free: snd_usbmidi_free(umidi)

• But also returns an error which makes the entire probing process fail

• As part of the cleanup process a free is executed on the same
memory location
• Causing the 2nd free: snd_usbmidi_free(umidi)

13

To SLAB or to SLUB
SLUB allocator

• SLUB is the default allocator in Linux (since 2.6.23)
• Implements the nitty gritty details of the kernel allocations and deallocations

• SLUB groups allocated chunks into slabs
• A slab is a collection of objects of the same (rounded) size

• The freelist is arranged as a simple linked list (next ptr = only metadata)

• When allocating a new chunk, the first object in the list will be removed from
the list and its pointer returned

This specific behavior shapes

the freelist in a very specific way

after a double-free occurs!

14

CVE-2016-2384: what happens with the heap?
SLUB allocator

freelist
(before

allocation)

freelist
(after

allocation)

Chunk1 Chunk2 Chunk3 Chunk4

Chunk2 Chunk3 Chunk4

Chunk2 Chunk3 Chunk4

freelist
(after 1st

free)
Chunk1

freelist
(after 2nd

free)

Chunk1

kmalloc()

snd_usbmidi_
free(umidi)

snd_usbmidi_
free(umidi)

ptr ptr ptr NULL

ptr ptr NULL

ptr ptr ptr NULL

ptr

15

CVE-2016-2384: the fix
The forgotten vulnerability

diff --git a/sound/usb/midi.c b/sound/usb/midi.c
index cc39f63299ef0..007cf58311215 100644
--- a/sound/usb/midi.c
+++ b/sound/usb/midi.c
@@ -2455,7 +2455,6 @@ int snd_usbmidi_create(struct snd_card *card,

else
err = snd_usbmidi_create_endpoints(umidi, endpoints);

if (err < 0) {
- snd_usbmidi_free(umidi);

return err;
}

Our exploitation approach

17

USB probing process
USB crash course

• Devices are constrained to reply to the host requests and cannot:
• Initiate arbitrary communication

• Send arbitrary data in USB packets

 Limited exploitation primitives!

18

The midi object
Exploitation approach

• Let’s have a look at our MIDI object

• Struct size is between 256 and 512

• This means we need to focus on the slab-512
• Big enough to hold a reasonable payload

• In general this is a low activity slab

umidi struct
snd_usb_midi

size = 272

This increases our chances of winning the race!

19

Exploitation primitive
Exploitation approach

• So how can turn a double free into something useful?
• Remember, we have a loop in our freelist

• All allocations on the same CPU + Slab get the same chunk
Often results in a kernel panic within seconds

freelist
Chunk1

kmalloc(512)

kmalloc(512)

kmalloc(512)

But every allocation updates the freelist ptr with the content of the first 8 bytes of the chunk!

ptr

20

Exploitation primitive
Exploitation approach

• All allocations on the same CPU + Slab get the same chunk

But every allocation updates the freelist ptr with the content of the first 8 bytes of the chunk!

 2 consecutive allocations with control over the content will result in freelist ptr control

freelist
Chunk1

kmalloc(512)

kmalloc(512)

kmalloc(512)

ptr

21

Exploitation primitive
Exploitation approach

• All allocations on the same CPU + Slab get the same chunk

But every allocation updates the freelist ptr with the content of the first 8 bytes of the chunk!

 2 consecutive allocations with control over the content will result in freelist ptr control

 The 3rd allocation gives then an arbitrary write primitive!

freelist
Chunk1

kmalloc(512)

kmalloc(512)

kmalloc(512)

ptr

Arbitrary location in memory

22

Exploitation primitive
Exploitation approach

• 512-slab chunk

• We need 3 kmallocs in a row

• Controlled data in the first and last allocation
• 1st chunk: contains pointer to arbitrary_mem_location

• 3rd chunk: payload written to arbitrary_mem_location

So where to find such primitive…?
• Let’s dive in another USB driver

23

USB HID
Exploitation approach

• Human Interface Device protocol
• A generic protocol for keyboards, mouse's,

game controllers, etc.

• Describes a device as a series of inputs and outputs

• Uses HID and HID_REPORT descriptors to
describe the device functions
• Report descriptor is a variable length blob

of data (up to 4 KiB)

0x05, 0x01, // USAGE_PAGE (Generic Desktop)
0x09, 0x02, // USAGE (Mouse)
0xa1, 0x01, // COLLECTION (Application)
0x09, 0x01, // USAGE (Pointer)
0xa1, 0x00, // COLLECTION (Physical)
0x05, 0x09, // USAGE_PAGE (Button)
0x19, 0x01, // USAGE_MINIMUM (Button 1)
0x29, 0x03, // USAGE_MAXIMUM (Button 3)
0x15, 0x00, // LOGICAL_MINIMUM (0)
0x25, 0x01, // LOGICAL_MAXIMUM (1)
0x95, 0x03, // REPORT_COUNT (3)
0x75, 0x01, // REPORT_SIZE (1)
0x81, 0x02, // INPUT (Data,Var,Abs)
0x95, 0x01, // REPORT_COUNT (1)
0x75, 0x05, // REPORT_SIZE (5)
0x81, 0x03, // INPUT (Cnst,Var,Abs)
0x05, 0x01, // USAGE_PAGE (Generic Desktop)
0x09, 0x30, // USAGE (X)
0x09, 0x31, // USAGE (Y)
0x15, 0x81, // LOGICAL_MINIMUM (-127)
0x25, 0x7f, // LOGICAL_MAXIMUM (127)
0x75, 0x08, // REPORT_SIZE (8)
0x95, 0x02, // REPORT_COUNT (2)
0x81, 0x06, // INPUT (Data,Var,Rel)
0xc0, // END_COLLECTION
0xc0 // END_COLLECTION

24

USB HID - Probing

static int usbhid_parse(struct hid_device *hid) {

[...]

if (!rsize || rsize > HID_MAX_DESCRIPTOR_SIZE) {

dbg_hid("weird size of report descriptor (%u)\n", rsize);

return -EINVAL;

}

if (!(rdesc = kmalloc(rsize, GFP_KERNEL))) { .. }

ret = hid_get_class_descriptor(dev, interface->desc.bInterfaceNumber, HID_DT_REPORT, rdesc, rsize);

if (ret < 0) { .. }

25

USB HID - Probing

int hid_open_report(struct hid_device *device) {

[..]

start = device->dev_rdesc;

size = device->dev_rsize;

buf = kmemdup(start, size, GFP_KERNEL);

[..]

start = kmemdup(start, size, GFP_KERNEL);

kfree(buf);

device->rdesc = start;

device->rsize = size;

parser = vzalloc(sizeof(struct hid_parser));

We get the report descriptor and make 2 copies of it!

 Arbitrary write

Exploitation in the dark

27

Development environment
Exploitation Approach

Even if the bug is there…
• How do we develop an exploit without any means to debug?

• No crash logs, no serial port, nothing

• How do we make sure we can predictably win the race?

• What is our payload supposed to look like?

Aaand the winner is:

28

Development environment: QEMU
Exploitation Approach

• Spend a lot of time making an environment close to the real device
• Benefit: Full control & ability to debug the attack

• Critical to build a deep understanding of all the steps

• Challenges:
• An obvious consequence is that the target binary will be different

• At least ensure all critical code paths & data structures are identical!

• Also the device’s activity level may vary
• More activity == more chance of losing the race

• How accurate is the emulation?

29

Development environment: QEMU
Exploitation Approach

• How to test the attack?
• We can use the QEMU emulated devices

• usb-mouse MIDI device (with invalid configuration)

• usb-tablet  Delivers payload through HID report descriptor

Major surprise:

When we did it on the real device, it almost immediately worked!

30

Payload delivery method
Exploitation Approach

• No off-the-shelf device will:
• Cause the double-free using a MIDI device

• Allow us to deliver the payload in an HID report descriptor

PC

Facedancer

Python

Script

Target

Vulnerable

device

GreatFET

Facedancer

firmware

31

Payload delivery method
Exploitation Approach

• No off-the-shelf device will:
• Cause the double-free using a MIDI device

• Allow us to deliver the payload in an HID report descriptor

Connect

MIDI device

Trigger

double-free
Disconnect

Connect

HID device

Deliver

payload
?!?

As fast as possible

32

Exploit payload
Exploitation Approach

Code
writeable?

Overwrite kernel code 
Arbitrary code execution

Data only attack

Yes No

33

Where to hijack the code?
Exploitation Approach

34

Payload design
Exploitation Approach

• Started with testing different payloads in QEMU
• First payload only called called printk() & crashed

• Next version called usb_get_string() (observable from the outside)

• Final version could run an indefinite amount of times!

35

Exploit payload
Exploitation Approach

• Destination address of the payload
(kmalloc kmemdup kmemdup)

Destination
pointer

• Set freelist ptr to 0

• Set hid->collection & hid->rdesc to 0Cleanup

• Disable protections (e.g. SELinux)

• Extract data (e.g. cryptographic keys)

• Run shell commands
Payload

Max 512b

36

Exploit payload
Exploitation Approach

•Destination address of the payload
(kmalloc kmemdup kmemdup)

Destination
pointer

•Copy back part of the original code we overwrote with our
payload so we can run the attack againRestore code

•Set freelist ptr to 0

•Set hid->collection & hid->rdesc to 0Cleanup

•Disable protections (e.g. SELinux)

•Extract data (e.g. cryptographic keys)

•Run shell commands
Payload

•Restore callee saved registers

•Return an error code to stop the probing processReturn

Max 512b

37

Exploit payload
Exploitation Approach

•Destination address of the payload
(kmalloc kmemdup kmemdup)

Destination
pointer

•Copy back part of the original code we overwrote with our
payload so we can run the attack againRestore code

•Set freelist ptr to 0

•Set hid->collection & hid->rdesc to 0Cleanup

•Disable protections (e.g. SELinux)

•Extract data (e.g. cryptographic keys)

•Run shell commands
Payload

•Restore callee saved registers

•Return an error code to stop the probing processReturn

38

Run shell commands
Exploitation Approach

• Standard method to run arbitrary commands is using run_cmd()
• However: cannot run from interrupt context

• usb_hub_wq runs under this context

• Alternative:
• Use system_wq to schedule start of new process

• orderly_reboot() / orderly_shutdown()
• Both have writeable commands they are going to execute  overwrite & call

39

Run shell commands
Exploitation Approach

• What shall we run?
• Existing binary in rootfs (e.g. wget, nc, …)

• When a USB stick is auto-mounted  Run binary from USB stick (e.g. reverse shell)

• Otherwise?
• Make device node for USB stick

• Mount USB stick

• Then run the binary

• What about SELinux preventing to spawn processes?
• Disable it! (selinux_enforcing = 0, patching the policydb, unhooking the LSM hooks)

Demo time!

41

Demo time!

<insert video here>

Discussion

43

Attack challenges

• Winning the race
• Midi and HID probe need to happen before kernel panics due to corruption

• Midi and HID probe might happen on different cores due to scheduling
• High chance (~50-80%) of winning the race when system is idle

• Cache behavior

• Exploit mitigations

44

Exploit mitigations

• ASLR?
• Leak kernel pointer (e.g. uninitialized memory vulnerability)

• Alternatively brute-force destination address (only when crashing the device
several times is acceptable)

• Write protected kernel code / rodata
• Data-only attack / targeting code of priv. umode process through physmap

• Might be hard to not crash the kernel due to heap corruption!

• Also: demo device discards writes but caches them until write-back
• Still exploitable!

• Freelist hardening / randomization
• Might be truly making this attack hard / infeasible

45

Applicability

• What about similar bugs?
• Likely exploitable using this approach when it results in a double free on a

low-activity slab

• Exploitation steps may differ
• Architecture specific characteristics (cache, etc.)

• Different Linux kernel configurations

• Implemented exploit mitigations

• Vendor specific customizations

46

Exploitation Requirements

[] Linux based device vulnerable to CVE-2016-2384

[] Physical access

[-] Unprivileged code execution

[-] Networking interface

[+] Low activity slab

47

Takeaways

• Fixed vulnerabilities upstream can take a long time to propagate

• Invest in building debug capabilities for your target!
• Either through emulation or other means

• USB attacks are powerful & physical access might be all you need
• In some cases it’s your only attack vector!

