
One Glitch to Rule Them All: Fault
Injection Attacks against AMD’s
Secure Processor
Robert Buhren
Hans Niklas Jacob

BLACKHAT EUROPE 2021

Technische Universität Berlin

1 Formerly known as Platform Security Processor (i.e. PSP)
2

Applications

SECURE ENCRYPTED
VIRTUALIZATION (EPYC)

• SEV protects virtual machines
in untrusted environments by
encrypting VM memory

• The AMD SP is responsible for
key management

• Paper: “Insecure Until Proven
Updated: Analyzing AMD SEV's
Remote Attestation”

3

TRUSTED EXECUTION
ENVIRONMENT

• AMD SP Trusted Execution
Environment

• Linux to support AMD SP TEE API

SECURE OS (RYZEN / TR)

• Firmware TPM

• …

FIRMWARE ANALYSIS

Secure Processor is part of AMD CPU.

• ARMv7-A

Firmware is stored along UEFI FW!

Updatable through UEFI update.

4

Signature verificationDecompression

PEM export of keys Duplicate detection

Python-based Command-line interface

Python API

Parsing Extraction Manipulation

GPLv3Signature update

https://github.com/PSPReverse/PSPTool 5

PSPTOOL

https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu

https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu

Signature verificationDecompression

PEM export of keys Duplicate detection

Python-based Command-line interface

Python API

Parsing Extraction Manipulation

GPLv3Signature update

https://github.com/PSPReverse/PSPTool 6

PSPTOOL

https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu

https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu

AMD
Secure Encrypted Virtualization (SEV)

Data-At-Rest: disk encryption

Data-In-Transit: e.g. TLS

Data-In-Use: unprotected

Hypervisor

“ THE CLOUD IS
SOMEONE ELSE'S
COMPUTER”

8

Data-At-Rest: disk encryption

Data-In-Transit: e.g. TLS

Data-In-Use: Memory Encryption
(AES-128)

Hypervisor

SEV: MEMORY
ENCRYPTION FOR
VIRTUAL MACHINES

AMD SP

9

SEV’s remote attestation allows a
party to validate the authenticity of
a remote system.

Customer: Is my VM deployed on a
genuine AMD system with SEV
protection in place?

Hypervisor

SEV REMOTE
ATTESTATION

AMD SP

10

Faulting the AMD-SP

FAULT INJECTION
ATTACKS

Modifications of an ICs
environment can cause errors in
the ICs operation

• Lower voltage rails
→ Voltage fault injection

• Hit IC with electro magnetic
radiation
→ EM fault injection

• Hit IC with laser
→ Laser fault injection …

• Most faults are useless for an
attacker

input() == “SafePW”

12

Error System reset

This is the only
useful state

false

System lock

???

Error

Auth
successful

FAULT INJECTION
ATTACKS

Modifications of an ICs
environment can cause errors in
the ICs operation

• Lower voltage rails
→ Voltage fault injection

• Hit IC with electro magnetic
radiation
→ EM fault injection

• Hit IC with laser
→ Laser fault injection …

• Most faults are useless for an
attacker

input() == “SafePW”

13

Error System reset

This is the only
useful state

false

System lock

???

Error

Auth
successful

Key Challenges

• Trigger:
Identify when the IC is in desired starting state

• Parameters:
Which changes to the environment can cause a
useful fault

• Reset/success:
Identify failed attacks and retry the attack.

AMD-SP BOOT

1. Load & verify AMD_PUBLIC_KEY

• verify using hash

2. Load & verify PSP_FW_BOOT_LOADER

• verify using public key

3. Load & verify additional applications

• verify using public key

ROM bootloader

AMD_PUBLIC_KEY

SPI flash

ROM

PSP_FW_BOOT_LOADER

Application

PSP_FW_BOOT_LOADER

1.

2.

3.

14

SVC

USR

Logic Analyzer

15

ROM bootloader

AMD_PUBLIC_KEY

SPI flash

ROM

PSP_FW_BOOT_LOADER

1.

CS

MISO

AMD_PUBLIC_KEY

CS

MISO

PUBLIC_KEY

PUBLIC_KEY

Continued SPI
activity

No SPI activity

16

CS

MISO

Key verification!

Constant # of CS level changes

CS

MISO

CS pulled low

CS stays high

SPI CS: trigger and to determine a successful glitch

ATTACK OVERVIEW

1. Replace AMD_PUBLIC_KEY in UEFI image

2. Replace PSP_FW_BOOT_LOADER
component with payload

3. Sign payload with custom key

4. Glitch key verification

Our goal is to execute our
payloads right after the ROM
bootloader.

17

ROM bootloader

AMD_PUBLIC_KEY

SPI flash

ROM

PSP_FW_BOOT_LOADER

PUBLIC_KEY

Payload

CS

MISO

VCORE

DYNAMIC VOLTAGE CONTROL

• SMU monitors SOC and uses the SVI2 bus to
communicate with an SOC-external voltage
regulator

• SVI2 allows to control two voltage domains
per VR

• Ryzen uses single VR, Epyc dedicated VR for
each domain

AMD SOC

x86 cores

AMD SPSVI2

VSOC

SMU

VR

18

VCORE

GLITCH SETUP

• Teensy µController to inject packets in to the
SVI2 bus

• ATX reset line to reset target CPU

• Monitor the SPI bus (CS) to trigger the
voltage glitch

• Control glitch parameters via external PC

AMD SOC

x86 cores

AMD SPSVI2

VSOC

SMU

VR

FLASH

Teensy
µController

ATX reset

SPI

Chen, Zitai, et al. "VoltPillager: Hardware-based fault injection attacks against
Intel {SGX} Enclaves using the {SVID} voltage scaling interface." 30th {USENIX}
Security Symposium ({USENIX} Security 21). 2021. 19

20

SVI2 access

Teensy
µController

SPI access

ATX reset

21

SVC

SVD

VSoC

CS
fail

CS
success

Glitch steps

• SVI2 SVC – clock, CPU/VR (shared)

• SVI2 SVD – data from CPU, pulled low when inactive

• VSoC – target input voltage

• SPI CS – SPI’s chip-select signal (successful/failed pubkey verification)
22

SVC

SVD

VSoC

Glitch steps

• SVI2 SVD: becomes high -> start attack logic

• CPU initially configures voltage

CS
fail

CS
success

23

SVC

SVD

VSoC

Glitch steps

• SVI2 SVD: becomes high -> start attack logic

• CPU initially configures voltage

• VR constantly sends telemetry data to CPU

CS
fail

CS
success

24

SVC

SVD

VSoC

Glitch steps

• SVI2 SVD: becomes high -> start attack logic

• CPU initially configures voltage

• VR constantly sends telemetry data to CPU

• Inject packets to disable telemetry -> avoids packet collision

CS
fail

CS
success

25

SVC

SVD

VSoC

Glitch steps

• Wait until SPI CS becomes active

CS
fail

CS
success

26

SVC

SVD

VSoC

Glitch steps

• Wait until SPI CS becomes active

• Count # of CS level changes to time glitch

CS
fail

CS
success

27

SVC

SVD

VSoC

Glitch steps

• Wait until SPI CS becomes active

• Count # of CS level changes to time glitch

• Inject packet to drop voltage and to revert to the original voltage level

• Verify success by observing CS again -> reset if CS not “low” after
timeout

CS
fail

CS
success

28

1. 2.

RESULTS

Payloads:

• SPI “Hello World”

• Decrypt firmware (Zen 3)

• Dump ROM bootloader to SPI bus

• Deploy custom SEV firmware

• Dump (V)CEK secrets to the SPI bus• Epyc and Ryzen CPUs are affected

• Successful glitch between every
~13min (Zen 1) and every
~46min (Zen 3) https://github.com/PSPReverse/amd-sp-glitch

29

Hosts the SEV firmware that
implements the SEV API

Memory encryption keys

Endorsement keys (CEK / VCEK)

Hypervisor

SEV: AMD-SP

AMD SP

30

MALICIOUS CLOUD
ADMINISTRATOR

• Debug override

Hypervisor

AMD SP

1. Boot system with patched SEV firmware:
Enables the “DBG_DECRPYT” SEV API
command regardless of a guest’s SEV policy

2. Decrypt the VM’s memory

{SEV/SNP}-DBG_DECRYPT

..010100101110000..

Works with SEV / SEV-ES and SEV-SNP 31

SEV’s remote attestation allows a
party to validate the authenticity of
a remote system.

Customer: Is my VM deployed on a
genuine AMD system with SEV
protection in place?

Hypervisor

SEV REMOTE
ATTESTATION

AMD SP

32

1. AMD-SP creates measurement of SEV
protected VM

2. Customer receives signed attestation
report including measurement

3. Customer validates attestation report
by verifying its signature using a key
from an AMD keyserver: (V)CEK

SEV REMOTE
ATTESTATION

33

(V)CEK

AMD Keyserver

signed
attestation report

hash()

Hypervisor

AMD SP

Extracted endorsement keys
allow an attacker to, e.g., fake
the presence of SEV!

SEV REMOTE
ATTESTATION

34

(V)CEK

AMD Keyserver

signed
attestation report

hash()

(V)CEK

VERSIONED CEK (VCEK)
SIMPLIFIED

“[VCEK is] derived from chip-
unique secrets and current TCB
version”

ROM bootloader

PSP_FW_BOOT_LOADER

SEV FW

35

Version X

Version Y

secret

secret_X

secret_X_Y

KDF(X)

KDF(Y)

KDF

VCEK(X,Y)

VCEK ATTACK

What if there is a bug?

ROM bootloader

PSP_FW_BOOT_LOADER

SEV FW

36

Version X

Version Y

secret

secret_X

secret_X_Y

KDF(X)

KDF(Y+1)

KDF

VCEK(X,Y)

SEV FW (patched)

Version Y+1

secret_X_Y+1

VCEK(X,Y+1)

KDF

KDF(Y)

OUR ATTACK

• Version is part of the header

• We get VCEK for any TCB

• SEV-SNPs allows TCB downgrade
→ attack needs only one glitch

ROM bootloader

Attacker Payload

37

Version X

secret

secret_X

KDF(X)

Attacker Machine
secret_X

SPI dump

VCEK(X,…)

KDF(…), KDF

Summary

AMD-SP IS SUSCEPTIBLE TO VOLTAGE FAULT INJECTION ATTACKS

• Ryzen and Epyc Zen 1, Zen 2
and Zen 3 systems are affected

• ThreadRipper most probably

• Allows an attacker to execute
payloads on the AMD-SP right
after the ROM bootloader

• Reliable code-execution
between every ~13min (Zen 1)
and every ~46min (Zen 3)

• SEV’s protection mechanism can
be circumvented

• fTPMs most probably
compromised
• not tested yet

• Mitigations: none

→ Future CPU generations might
include HW and SW mitigations

38

RESOURCES

https://arxiv.org/abs/2108.04575

• Paper: One Glitch to Rule Them All: Fault Injection Attacks Against AMD SEV

https://github.com/PSPReverse/amd-sp-glitch

• Supplemental data and code:

• Glitch setup and code

• (V)CEK key derivation implementation

• Firmware decryption implementation

https://github.com/PSPReverse/amd-sev-migration-attack

• Proof-of-concept implementation of the migration attack for SEV / SEV-ES

https://github.com/PSPReverse/PSPTool

• psptool & psptrace

https://github.com/PSPReverse/PSPEmu

• PSPEmulator: Emulator for the AMD-SP

• QEMU port: https://github.com/RobertBuhren/qemu/tree/pspemu

39

THANK YOU
Robert Buhren: robert.buhren@sect.tu-berlin.de

Hans Niklas Jacob: hnj@sect.tu-berlin.de

40

