One Glitch to Rule Them All: Fault
Injection Attacks against AMD’s

Secure Processor

Robert Buhren : : g :
Hans Niklas Jacob Technische Universitat Berlin

berlin

AMD SECURE PROCESS

A Dedicated Security Subsy tem

. AMD' Secure Processor intejatedwi
— 32-bit microcontroller (ARM Cortex-AS) gy (Wl

= Runs a secure 0S/kernel - R

= Secure off-chip NV storage for firmware and
data (i.e. SPIROM)

= Provides cryptographic functionality for
secure key generation and key management

= Enables hardware validated boot

Hardware Root of Trust Providgs
Foundation for Platrorm Security

JUNE 2P AT 3:00 PM CENTRAL U.S. TWE

- ,Mmcuuumasom

L Formerly known as Platform Security Processor (i.e. PSP)

Applications

SEV protects virtual machines Firmware TPM
in untrusted environments by
encrypting VM memory

The AMD SP is responsible for
key management

Paper: “Insecure Until Proven AMP SP Trusted Execution
Updated: Analyzing AMD SEV's ~ Environment

Remote Attestation” Linux to support AMD SP TEE API

3

54

Sl POiIe T
T
€ A

T

s

I

»»

s
@

o

o

};ﬁ}

g

t1vy, S1
i

jo . v

I8 ll il

*u25
7 &

LT

/

Q0
.4 ;
«1R203 4/

cM76°v24

6‘?..
T SN R [~

i . “.'?Um i
; 1

FIRMWARE ANALYSIS

Secure Processor is part of AMD CPU.
ARMvV7-A

LF1 C84 .

a3

Firmware is stored along UEFI FW!

o

Uh2 117 ZEE

@ g |

Updatable through UEFI update.

-

04
.-
»

co2) gl s
T?

Python-based Command-line interface

Parsing Extraction

Decompression

PEM export of keys Duplicate detection

Signature update Python API

https://media.ccc.de/v/36¢3-10942-uncover understand own - regaining control over your amd cpu

Manipulation

Signature verification

O Why GitHub? Enterprise Explore Marketplace Pricing Search

PSPReverse / PSPTool

<> Code Issues 4 Pull requests 0 Projects 0 Security Insights

Display, extract, and manipulate PSP firmware inside UEFI images

{D 76 commits ¥ 3 branches 7 0 packages © 0 releases

Branch: master ~

& cwerling Update README.md

bin Finally discard legacy psptool and rename psptool2 to psptool
psptool Show MD5 sums of Entries in verbose mode (-v)
E) .gitignore Finally discard legacy psptool and rename psptool2 to psptool
) LICENSE Add GPLv3 license
E] README.md Update README.md
) setup.cfg Update configs to upload to PyPI

E) setup.py Update configs to upload to PyPI

EE README.md

PSPTool

® Watch 18 W Star = 285 ¥ Fork 20

42 2 contributors o GPL-3.0

Find file Clone or download ~

Latest commit feflbed 3 days ago

4 months ago
4 months ago
4 months ago
7 months ago

3 days ago
2 months ago

2 months ago

PSPTool is a Swiss Army knife for dealing with firmware of the AMD Secure Processor (formerly known as Platform
Security Processor or PSP). It locates AMD firmware inside UEFI images as part of BIOS updates targeting AMD

platforms.

It is based on reverse-engineering efforts of AMD's proprietary filesystem used to pack firmware blobs into UEFI
Firmware Images. These are usually 16MB in size and can be conveniently parsed by UEFITool. However, all binary blobs

by AMD are located in padding volumes unparsable by UEFITool.

PSPTool favourably works with UEFI images as obtained through BIOS updates.

Installation

https://github.com/PSPReverse/PSPTool

pip install psptool

https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu

O Why GitHub? -~ Enterprise Explore -~ Marketplace Pricing Search / Signin

@ media.ccc.de EEEY 88

browse > congress > 2019 > event

® Watch 18 W Star = 285 ¥ Fork 20

Uncover, Understand, Own - Regaining
ontrol Over Your AMD CPU

and]

L)

42 2 contributors o GPL-3.0

Brae

\ ' , A Latest commit feflbed 3 days ago

PythOn-baSE Q - Q _— E E 4 months ago
V4 \ E E 4 months ago

LA R L 4 months ago

Pa rSi ng 7 months ago

3 days ago

Uncover, Una@rstand, Own -

Decompress

PEM export

bcessor (formerly known as Platform
Irt of BIOS updates targeting AMD

Signature ug

d to pack firmware blobs into UEFI
ed by UEFITool. However, all binary blobs

Ol ¢ l 01:37156:3 @3 o) 100x ¥ L3

/

£ 2019-12-27 X 2019-12-28

sor that y

This talk presents our efforts investigating the PSP internals and functionality and how you can better understand it.

Our talk is divided into three parts:

https://media.ccc.de/v/36¢3-10942-uncover understand own

regaining control over your amd cpu

pip install psptool
https://github.com/PSPReverse/PSPTool

https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu

AMD
Secure Encrypted Virtualization (SEV)

NN

“THE CLOUD IS
SOMEONE ELSE'S
COMPUTER”

Data-At-Rest: disk encryption
Data-In-Transit: e.g. TLS

Data-In-Use: unprotected

:_EE;_

a
$

SEV: MEMORY
ENCRYPTION FOR

VIRTUAL MACHINES
Data-At-Rest: disk encryption

Data-In-Transit: e.g. TLS

Data-In-Use: Memory Encryption ssssss
(AES-128) AMD SP

SEV’s remote attestation allows a
party to validate the authenticity of

a remote system. 5 3‘ - > Hvpervisor
H0 ~~F yP

Customer: Is my VM deployed on a TITI

genuine AMD system with SEV AMD SP

protection in place?

10

Faulting the AMD-SP

NN

FAULT INJECTION
ATTACKS

Modifications of an ICs
environment can cause errors in
the ICs operation

* Lower voltage rails
— Voltage fault injection

* Hit IC with electro magnetic
radiation
- EM fault injection

* Hit IC with laser
—> Laser fault injection ...

>~

* Most faults are useless for an | 1y Wi S S mmEC 2
attacker This is the onl’yi
useful state

12

FAULT INNIECTINNI -\

ATTAC Key Challenges

Modifical | Tri .

environr ger: 2 : .

the ICs of Identify when the IC is in desired starting state
* Lower:

> \olt ° Parameters:
_ Which changes to the environment can cause a
© ele useful fault

radiatic
-
* Reset/success:

* HitICv . .
S Lase |dentify failed attacks and retry the attack.
* Most faults are useless for an
attacker This is the only

useful state 13

oPIARPE S 2 W S T S | .
| - vy = T | 3 r i :
o i ‘.““1‘.‘.'\;\‘1'4‘?: © S ' ’—g«- .0 i ',,.L =4 ke (
‘,, " ‘rr')’o P "n vy < Caa i i':: N 2 vy]
[[JOIR120 “w 2 oot R428 v‘ o f L
1w Y e = = o n 6301 s - > B s
[V e—— J Y33 27 m G300 e W) vV «
8 IV R3%82 = G298 e P 4 <
P37 - ' & = €297 —&e 995 " (14
37 3 s 2 D7 A NGy S g S JD88o3
% R3uk B\ e A~ —1D8808

¢ - - : -
1 Az e -
ifnnni

.......... b A e 5 N\ Fi n s
HiSS o FiTes B ¥

()

AMD-SP BOOT

1. Load & verify AMD_PUBLIC_KEY SVEITE] . [J
. verify using hash PPTTPTPPrrIT ey ;m'.f ‘ ansnmana LERLLLCEIED e
e

-

CD20RD6
1

2. Load & verify PSP_FW_BOOT_LOADER

-

. verify using public key i 55 > 5.:::::::;. ;
3. Load & verify additional applications) o . =
= B 38
. verify using public key Raie o i

Continued SPI
activity

PSP_FW_BOOT_LOADER

B
A
0

CS UL

/‘ MISO | [1]

(Z3}PUBLIC_KEY No SPI activity

CS U |
MISO | | ||

CS
MISO

Constant # of CS level changes CS pulled low
A

|

A1 S N

| |

|

\ J
|

Key verification!

SPI CS: trigger and to determine a successful glitch

CS stays high
|

CS

MISO

JUTHE |1]

R e

16

ATTACK OVERVIEW

Our goal is to execute our

payloads right after the ROM R i
bootloader. SPI flash
. _ PUBLIC_KEY
1. Replace AMD PUBLIC_KEY in UEFI image
2. Replace PSP_FW_BOOT_LOADER
component with payload Payload

3. Sign payload with custom key
4. Glitch key verification

CS (100011 — T 1]
MISO Tl

17

DYNAMIC VOLTAGE CONTROL

* SMU monitors SOC and uses the SVI2 bus to
communicate with an SOC-external voltage
regulator

* SVI2 allows to control two voltage domains
per VR

* Ryzen uses single VR, Epyc dedicated VR for
each domain

AMD SOC

x86 cores

18

AMD SOC

= Teensy
= | upController

-IIIIII _ -"""-
- -
innnni Sl ?
SPI ¢
innnnin innnnin
Teensy pController to inject packets in to the TITTT TIOT
innnnin innnnin

SVI2 bus

LR x86 cores AR

ATX reset line to reset target CPU

Monitor the SPI bus (CS) to trigger the
voltage glitch

Chen, Zitai, et al. "VoltPillager: Hardware-based fault injection attacks against
Intel {SGX} Enclaves using the {SVID} voltage scaling interface." 30th {USENIX}

Control glitch parameters via external PC security symposium ({USENIX} Security 21). 2021. 15

20

SVI2 access

Teensy
uController

SPI access

ATX reset

21

SVC HIGH

LOowW

SVD HIGH

Low

11V

1oV
VSoC ooy

0.8V

IJ:G v
CS HIGH —
fail Low

CS

SUCCESS Low

SVI2 SVC — clock, CPU/VR (shared)

SVI2 SVD — data from CPU, pulled low when inactive

VSoC — target input voltage

SPI CS — SPI’s chip-select signal (successful/failed pubkey verification)

HIGH
svo I 4
Low
1.1V e |
1.0V o
VS (0] C - A NAY. <
0.8V ’
0.7V
0.6V
CS HIGH
fail Low
C S HIGH
SUCCesSS Low

SVI2 SVD: becomes high -> start attack logic

CPU initially configures voltage

23

ve . Il
svo I

1.1V Y
J‘.f
1.0V M
v
",
VS O C 0.9 V '\ AAAANAN AN ’
0.8V

CS

S 1
cs " T
SVI2 SVD: becomes high -> start attack logic

CPU initially configures voltage

VR constantly sends telemetry data to CPU

24

CS

11V N L At mpn A W Y Y
o
IV
If\"“
-
AR b L

0.7V

0.6V

HIGH ‘ ‘
fail Low
CS HIGH
SUcCcCessS Low

SVI2 SVD: becomes high -> start attack logic

CPU initially configures voltage
VR constantly sends telemetry data to CPU

Inject packets to disable telemetry -> avoids packet collision

| Glitch steps

sV i:ﬁMﬂWﬂMﬂHﬂm\;mH;ﬂmﬂmrl il 5
svp IO 4o 4 |-

A R AR m\hm«nwuwuuuwwuwx\w
J
ol ‘

VS O C : :: : u\ﬂxﬂwu—'\,_r\,mwwb’*’lmh , ‘ﬁ
0.8V ’ ’

'l

CS HIGH

fail Low 1 1
CS HIGH
SUCCesS Low

/ * Wait until SPI CS becomes active

26

| Glitch steps

Ve :ﬁm“mnmmm;mu;wmmrl I 5 5
IENER | . ;

svo N

rqu{\ k. ___ 3 TP LS PSS MKHWMW\JW\A\A\A\N'\A\,WW'L\\M
p,
Al ‘

VS O C : :: : u\r«\H\n'L—'\,J\,J\ﬂwwV"’IWM , L
0.8V l l

CS H;GH —

fail Low ‘ ‘ i ‘ |
¢ [

/ * Wait until SPI CS becomes active

* Count # of CS level changes to time glitch

27

ve . IMmTyITy M

—
—

svo I 4 %

1.1V ek . AP Pttt A Mttt At
v
J

5
=
€
%
I
L - |
¢ E=
%
& —
.§:.~ —
o

£

rd
<

1.0V oM
r._r'u
08V

07V

P N
v

CS wer | A |

fail Low

¢ ™ ’

SUCCESS Low L -l

Wait until SPI CS becomes active

Count # of CS level changes to time glitch
Inject packet to drop voltage and to revert to the original voltage level

Verify success by observing CS again -> reset if CS not “low” after
timeout 28

Payloads:
SPI “Hello World”

innnni
Decrypt firmware (Zen 3)

Dump ROM bootloader to SPI bus
Deploy custom SEV firmware

Epyc and Ryzen CPUs are affected Dump (V)CEK secrets to the SPI bus

Successful glitch between every

~13min (Zen 1) and every
~A46min (Zen 3) https://github.com/PSPReverse/amd-sp-glitch

29

SEV: AMD-SP

Hosts the SEV firmware that
implements the SEV API

Memory encryption keys

Endorsement keys (CEK / VCEK)

30

mommmow-' / 7 /
i //////// 7
{SEV/SNP}-DBG_DECRYPT .

<€ > Hypervisor

..010100101110000..

AMD SP

Boot system with patched SEV firmware:
Debug override Enables the “DBG_DECRPYT” SEV API
command regardless of a guest’s SEV policy

Decrypt the VM’s memory

Works with SEV / SEV-ES and SEV-SNP 31

SEV’s remote attestation allows a
party to validate the authenticity of

a remote system. 5 3‘ - > Hvpervisor
H0 ~~F yP

Customer: Is my VM deployed on a TITI

genuine AMD system with SEV AMD SP

protection in place?

32

AMD Keyserver

signed
attestation report

AMD-SP creates measurement of SEV
protected VM

Customer receives signed attestation
report including measurement

Customer validates attestation report
by verifying its signature using a key
from an AMD keyserver: (V)CEK

0
.

AMD SP

!

Hypervisor

33

AMD Keyserver

signed
attestation report

Extracted endorsement keys
allow an attacker to, e.g., fake
the presence of SEV!

(V)CEK

34

VERSIONED CEK (VCEK)
SIMPLIFIED

“IVCEK is] derived from chip-
unique secrets and current TCB
version”

35

VCEK ATTACK

i\m
KDF(Y)
What if there is a bug?

$ KDF

$ KDF

36

(FERNY
N

OUR ATTACK

* Version is part of the header

* We get VCEK for any TCB

* SEV-SNPs allows TCB downgrade
—> attack needs only one glitch

l
==

V

KDF(X)

SPI dump

KDF(...), KDF

37

Summary

Ryzen and Epyc Zen 1, Zen 2
and Zen 3 systems are affected

ThreadRipper most probably

Allows an attacker to execute
payloads on the AMD-SP right
after the ROM bootloader

Reliable code-execution
between every ~¥13min (Zen 1)
and every ~46min (Zen 3)

SEV’s protection mechanism can
be circumvented

fTPMs most probably
compromised

not tested yet
Mitigations: none

- Future CPU generations might
include HW and SW mitigations

38

https://arxiv.org/abs/2108.04575
Paper: One Glitch to Rule Them All: Fault Injection Attacks Against AMD SEV

https://github.com/PSPReverse/amd-sp-glitch

Supplemental data and code:
Glitch setup and code
(V)CEK key derivation implementation
Firmware decryption implementation

https://github.com/PSPReverse/amd-sev-migration-attack

Proof-of-concept implementation of the migration attack for SEV / SEV-ES
https://github.com/PSPReverse/PSPTool

psptool & psptrace
https://github.com/PSPReverse/PSPEmu

PSPEmulator: Emulator for the AMD-SP
QEMU port: https://github.com/RobertBuhren/gemu/tree/pspemu

39

THANK YOU

Robert Buhren: robert.buhren@sect.tu-berlin.de

Hans Niklas Jacob: hnj@sect.tu-berlin.de

Technische

Universitat

Berlin

40

