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1 Formerly known as Platform Security Processor (i.e. PSP)
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Applications

SECURE ENCRYPTED 
VIRTUALIZATION (EPYC)

• SEV protects virtual machines  
in untrusted environments by 
encrypting VM memory

• The AMD SP is responsible for 
key management

• Paper: “Insecure Until Proven 
Updated: Analyzing AMD SEV's 
Remote Attestation”

3

TRUSTED EXECUTION 
ENVIRONMENT

• AMD SP Trusted Execution 
Environment

• Linux to support AMD SP TEE API

SECURE OS (RYZEN / TR)

• Firmware TPM

• …



FIRMWARE ANALYSIS

Secure Processor is part of AMD CPU.

• ARMv7-A

Firmware is stored along UEFI FW!

Updatable through UEFI update.
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Signature verificationDecompression

PEM export of keys Duplicate detection

Python-based Command-line interface

Python API

Parsing Extraction Manipulation

GPLv3Signature update

https://github.com/PSPReverse/PSPTool 5

PSPTOOL

https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu

https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu
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AMD
Secure Encrypted Virtualization (SEV)



Data-At-Rest: disk encryption

Data-In-Transit: e.g. TLS

Data-In-Use: unprotected

Hypervisor

“ THE CLOUD IS 
SOMEONE ELSE'S 
COMPUTER”
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Data-At-Rest: disk encryption

Data-In-Transit: e.g. TLS

Data-In-Use: Memory Encryption
(AES-128)

Hypervisor

SEV: MEMORY 
ENCRYPTION FOR 
VIRTUAL MACHINES

AMD SP
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SEV’s remote attestation allows a 
party to validate the authenticity of 
a remote system.

Customer: Is my VM deployed on a 
genuine AMD system with SEV 
protection in place?

Hypervisor

SEV REMOTE 
ATTESTATION

AMD SP
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Faulting the AMD-SP



FAULT INJECTION 
ATTACKS

Modifications of an ICs 
environment can cause errors in 
the ICs operation

• Lower voltage rails
→ Voltage fault injection

• Hit IC with electro magnetic 
radiation
→ EM fault injection

• Hit IC with laser
→ Laser fault injection …

• Most faults are useless for an 
attacker

input() == “SafePW”

12

Error System reset

This is the only
useful state

false

System lock

???

Error

Auth 
successful
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Error System reset

This is the only
useful state

false

System lock

???

Error

Auth 
successful

Key Challenges

• Trigger:
Identify when the IC is in desired starting state

• Parameters:
Which changes to the environment can cause a 
useful fault

• Reset/success:
Identify failed attacks and retry the attack. 



AMD-SP BOOT

1. Load & verify AMD_PUBLIC_KEY

• verify using hash

2. Load & verify PSP_FW_BOOT_LOADER

• verify using public key

3. Load & verify additional applications

• verify using public key

ROM bootloader

AMD_PUBLIC_KEY

SPI flash

ROM

PSP_FW_BOOT_LOADER

Application

PSP_FW_BOOT_LOADER

1.

2.

3.
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USR



Logic Analyzer
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ROM bootloader

AMD_PUBLIC_KEY

SPI flash

ROM

PSP_FW_BOOT_LOADER

1.

CS

MISO

AMD_PUBLIC_KEY

CS

MISO

PUBLIC_KEY

PUBLIC_KEY

Continued SPI
activity

No SPI activity
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CS

MISO

Key verification!

Constant # of CS level changes

CS

MISO

CS pulled low

CS stays high

SPI CS: trigger and to determine a successful glitch



ATTACK OVERVIEW

1. Replace AMD_PUBLIC_KEY in UEFI image

2. Replace PSP_FW_BOOT_LOADER 
component with payload

3. Sign payload with custom key

4. Glitch key verification

Our goal is to execute our 
payloads right after the ROM 
bootloader.
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ROM bootloader

AMD_PUBLIC_KEY

SPI flash

ROM

PSP_FW_BOOT_LOADER

PUBLIC_KEY

Payload

CS

MISO



VCORE

DYNAMIC VOLTAGE CONTROL

• SMU monitors SOC and uses the SVI2 bus to 
communicate with an SOC-external voltage 
regulator

• SVI2 allows to control two voltage domains 
per VR

• Ryzen uses single VR, Epyc dedicated VR for 
each domain

AMD SOC

x86 cores

AMD SPSVI2

VSOC

SMU

VR
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VCORE

GLITCH SETUP

• Teensy µController to inject packets in to the 
SVI2 bus

• ATX reset line to reset target CPU

• Monitor the SPI bus (CS) to trigger the 
voltage glitch

• Control glitch parameters via external PC

AMD SOC

x86 cores

AMD SPSVI2

VSOC

SMU

VR

FLASH

Teensy 
µController

ATX reset

SPI

Chen, Zitai, et al. "VoltPillager: Hardware-based fault injection attacks against 
Intel {SGX} Enclaves using the {SVID} voltage scaling interface." 30th {USENIX} 
Security Symposium ({USENIX} Security 21). 2021. 19
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SVI2 access

Teensy 
µController

SPI access

ATX reset
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SVC

SVD

VSoC

CS
fail

CS
success

Glitch steps

• SVI2 SVC – clock, CPU/VR (shared)

• SVI2 SVD – data from CPU, pulled low when inactive

• VSoC – target input voltage

• SPI CS – SPI’s chip-select signal (successful/failed  pubkey verification)
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SVC

SVD

VSoC

Glitch steps

• SVI2 SVD: becomes high -> start attack logic

• CPU initially configures voltage

CS
fail

CS
success
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SVC

SVD

VSoC

Glitch steps

• SVI2 SVD: becomes high -> start attack logic

• CPU initially configures voltage

• VR constantly sends telemetry data to CPU

CS
fail

CS
success
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SVC

SVD

VSoC

Glitch steps

• SVI2 SVD: becomes high -> start attack logic

• CPU initially configures voltage

• VR constantly sends telemetry data to CPU

• Inject packets to disable telemetry -> avoids packet collision 

CS
fail

CS
success
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SVC

SVD

VSoC

Glitch steps

• Wait until SPI CS becomes active

CS
fail

CS
success
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SVC

SVD

VSoC

Glitch steps

• Wait until SPI CS becomes active

• Count # of CS level changes to time glitch

CS
fail

CS
success
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SVC

SVD

VSoC

Glitch steps

• Wait until SPI CS becomes active

• Count # of CS level changes to time glitch

• Inject packet to drop voltage and to revert to the original voltage level

• Verify success by observing CS again -> reset if CS not “low” after 
timeout

CS
fail

CS
success
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RESULTS

Payloads:

• SPI “Hello World”

• Decrypt firmware (Zen 3)

• Dump ROM bootloader to SPI bus

• Deploy custom SEV firmware

• Dump (V)CEK secrets to the SPI bus• Epyc and Ryzen CPUs are affected

• Successful glitch between every 
~13min (Zen 1) and  every 
~46min (Zen 3) https://github.com/PSPReverse/amd-sp-glitch
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Hosts the SEV firmware that 
implements the SEV API

Memory encryption keys

Endorsement keys (CEK / VCEK)

Hypervisor

SEV: AMD-SP

AMD SP

30



MALICIOUS CLOUD 
ADMINISTRATOR

• Debug override

Hypervisor

AMD SP

1. Boot system with patched SEV firmware: 
Enables the “DBG_DECRPYT” SEV API 
command regardless of a guest’s SEV policy

2. Decrypt the VM’s memory

{SEV/SNP}-DBG_DECRYPT

..010100101110000..

Works with SEV / SEV-ES and SEV-SNP 31



SEV’s remote attestation allows a 
party to validate the authenticity of 
a remote system.

Customer: Is my VM deployed on a 
genuine AMD system with SEV 
protection in place?

Hypervisor

SEV REMOTE 
ATTESTATION

AMD SP
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1. AMD-SP creates measurement of SEV 
protected VM

2. Customer receives signed attestation 
report including measurement

3. Customer validates attestation report 
by verifying its signature using a key 
from an AMD keyserver: (V)CEK

SEV REMOTE 
ATTESTATION
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(V)CEK

AMD Keyserver

signed
attestation report

hash()

Hypervisor

AMD SP



Extracted endorsement keys 
allow an attacker to, e.g., fake 
the presence of SEV!

SEV REMOTE 
ATTESTATION
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(V)CEK

AMD Keyserver

signed
attestation report

hash()

(V)CEK



VERSIONED CEK (VCEK)
SIMPLIFIED

“[VCEK is] derived from chip-
unique secrets and current TCB 
version”

ROM bootloader

PSP_FW_BOOT_LOADER

SEV FW
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Version X

Version Y

secret

secret_X

secret_X_Y

KDF(X)

KDF(Y)

KDF

VCEK(X,Y)



VCEK ATTACK

What if there is a bug?

ROM bootloader

PSP_FW_BOOT_LOADER

SEV FW
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Version X

Version Y

secret

secret_X

secret_X_Y

KDF(X)

KDF(Y+1)

KDF

VCEK(X,Y)

SEV FW (patched)

Version Y+1

secret_X_Y+1

VCEK(X,Y+1)

KDF

KDF(Y)



OUR ATTACK

• Version is part of the header

• We get VCEK for any TCB

• SEV-SNPs allows TCB downgrade
→ attack needs only one glitch

ROM bootloader

Attacker Payload
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Version X

secret

secret_X

KDF(X)

Attacker Machine
secret_X

SPI dump

VCEK(X,…)

KDF(…), KDF



Summary

AMD-SP IS SUSCEPTIBLE TO VOLTAGE FAULT INJECTION ATTACKS

• Ryzen and Epyc Zen 1, Zen 2 
and Zen 3 systems are affected

• ThreadRipper most probably 

• Allows an attacker to execute 
payloads on the AMD-SP right 
after the ROM bootloader

• Reliable code-execution 
between every ~13min (Zen 1) 
and every ~46min (Zen 3)

• SEV’s protection mechanism can 
be circumvented 

• fTPMs most probably 
compromised
• not tested yet

• Mitigations: none

→ Future CPU generations might 
include HW and SW mitigations
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RESOURCES

https://arxiv.org/abs/2108.04575

• Paper: One Glitch to Rule Them All: Fault Injection Attacks Against AMD SEV

https://github.com/PSPReverse/amd-sp-glitch

• Supplemental data and code: 

• Glitch setup and code

• (V)CEK key derivation implementation

• Firmware decryption implementation

https://github.com/PSPReverse/amd-sev-migration-attack

• Proof-of-concept implementation of the migration attack for SEV / SEV-ES

https://github.com/PSPReverse/PSPTool

• psptool & psptrace

https://github.com/PSPReverse/PSPEmu

• PSPEmulator: Emulator for the AMD-SP

• QEMU port: https://github.com/RobertBuhren/qemu/tree/pspemu
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THANK YOU
Robert Buhren: robert.buhren@sect.tu-berlin.de

Hans Niklas Jacob: hnj@sect.tu-berlin.de
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