
Damiano Melotti
Maxime Rossi Bellom
Philippe Teuwen

2021: A Titan M Odyssey

Bringing Security in System Design

2

3 ways to improve security through specialized hardware:

● Virtual Processor (ARM TrustZone)

● On-chip Processor (Apple SEP)

● External security chip (Google Titan M)

3

Source: https://www.ifixit.com/Guide/Google+Pixel+3+Battery+Replacement/124702

What is Titan M?

What is Titan M?

● Security chip made by Google,

for Pixel devices

● Implements critical security features

○ StrongBox

○ AVB (Android Verified Boot)

○ Weaver

○ ...

4

Lack of publicly available knowledge

● Closed source, the vendor claimed intention to publish the sources, but never did

● No existing research/presentation/blogpost

● Only one CVE write-up (CVE-2019-9465)

→ Understand internals, extract hidden information and find vulnerabilities

Research Status and Goals

5

https://alexbakker.me/post/mysterious-google-titan-m-bug-cve-2019-9465.html

6

Architecture and Internals

Specification

7

Hardened SoC based on ARM Cortex-M3

● Anti-tampering defenses

● Cryptographic accelerators &

True Random Number Generator

● UART for logs and console

● SPI to communicate with Android

Source: https://android-developers.googleblog.com/2018/10/building-titan-better-security-through.html

Present in the Pixel file system

● /vendor/firmware/citadel/ec.bin

● No encryption, no obfuscation

● Debug strings

8

Firmware

Firmware

A/B update mechanism

RO section is the loader, RW the main OS

9

Memory Layout

Boot ROM mapped at address 0

Dedicated flash regions for persistent data

Memory mapped registers

10

Titan M Operating System

EC: Embedded Controller

● Open Source OS developed by Google

● Written in C

Conceptually simple

● No dynamic allocation

● Based on tasks with pre-allocated stack

● Driven by interrupts

11

EC Tasks

12

idle

hook
→ system events, timers

nugget → system control task

AVB → secure boot management

faceauth → biometric data

identity → identity documents support

keymaster → key generation and cryptographic operations

weaver → storage of secret tokens

console → debug terminal and logs

Firmware Boot

13

Firmware Update

Regular updated with Nugget task

● One command to write data in the flash

○ Overwrites unused RO/RW images

○ Invalidates associated magic number

● Second command to activate the new image

○ Requires a hash derived from user password

○ Changes back the magic number

14

Firmware Rescue

15

● Implemented in the Titan M loader

● Allows to flash RW_A image

● No need for user password

○ But userdata and RW_B image are

erased

● Requires image to be in a specific

format called .rec

● Can be triggered through fastboot

Firmware Security Measures

● Secure boot (images are signed and verified at boot)

● No MMU, but MPU to give permissions to the memory partitions

● Only software protection: hardcoded stack canary checked in the SVC handler

16

if (*CURRENT_TASK->stack != 0xdeadd00d) {
 next = (int)&CURRENT_TASK[-0x411].MPU_RASR_value >> 6;
 log("\n\nStack overflow in %s task!\n",(&TASK_NAMES)[next]);
 software_panic(0xdead6661,next);
}

Communication with Android

17

package nugget.app.keymaster;
// ...
service Keymaster {
 // ...
 rpc AddRngEntropy (AddRngEntropyRequest) returns (AddRngEntropyResponse);
 rpc GenerateKey (GenerateKeyRequest) returns (GenerateKeyResponse);
 // ...

message AddRngEntropyRequest {
 bytes data = 1;
}
message AddRngEntropyResponse {
 ErrorCode error_code = 1;
}

message GenerateKeyRequest {
 KeyParameters params = 1;
 uint64 creation_time_ms = 2;
}

● Protobuf-based
○ Serialization framework by Google
○ Language agnostic
○ Titan M uses the nanopb library
○ Limited risk of input validation bugs

● Protobuf definitions are part of the AOSP

StrongBox

● StrongBox: hardware-backed version of Keystore

○ The highest security level for keys

○ Generate, use and encrypt cryptographic material

● Titan M does not store keys

○ Key blobs encrypted with a Key Encryption Key

○ Sent to the chip to perform crypto operations

○ root can use any key, but not extract it

18

StrongBox and Root of Trust

● StrongBox builds the KEK with several components. Among them:

○ Root of Trust: SHA256 digest sent once by the bootloader

○ Salt: generated from random when a new RoT is provided

● Stored in a memory area called SFS

19

20

Tools

Static Analysis: Ghidra Loader

21

We implemented a loader to help static reversing

● Loading images to the right addresses

● Creating memory regions (registers, ram, etc)

Dynamic Analysis: Sniffing Communication

22

Where to hook?

Dynamic Analysis: Sniffing Communication

23

Using Frida,
hook the citadeld daemon
(nos_call_application)

Sniffing Communication: Command Parsing

24

One of the steps of key generation, sniffed with Frida

Dynamic Analysis: Sending Commands

25

Implementing a client
bypassing citadeld:
nosclient

Communicates directly
with the driver

Dynamic Analysis: Sending Custom Commands

26

Our client, nosclient leverages protobuf definitions

● To generate command data

● To display the result sent by the chip

./nosclient Keymaster GetBootInfo

is_unlocked: true

boot_color: BOOT_UNVERIFIED_ORANGE

Dynamic Analysis: Sniffing Communication

27

Physically sniffing
on the SPI bus

Hardware Reverse: Finding SPI

28

Hardware Reverse: Guessing Pinout

29

Hardware Reverse: Tracing SPI

30

$ LD_PRELOAD=./libparser.so python parse_sigrok-csv.py reboot_after_spi_rescue.csv
...
AVB: GetLock
{
 IN { lock: BOOT }
 OUT {}
}
Keymaster: SetRootOfTrust
{
 IN { digest: "4bf5122f344554c53bde2ebb8cd2b7e3d1600ad631c385a5d7cce23c7785459a" }
 OUT {}
}
Keymaster: SetBootState
{
 IN
 {
 is_unlocked: true
 public_key: "00"
 color: BOOT_UNVERIFIED_ORANGE
 system_version: 163840
 system_security_level: 10568
 boot_hash: "00dfccb48f331975a1390d5133ce5321e65123bc1f1f76b6ffb9deb61f5d6be8"
 }
 OUT {}
}
...

Taking Control of SPI

31

Now, how to send commands?

Taking Control of SPI

32

Now how to send commands?

SPI is not multi-controller

→ Need to multiplex the bus for a second controller

Taking Control of SPI

33

34

Manual switch to choose between SPI controller:

● Phone Application Processor

● Raspberry PI

→ Now we can send commands to Titan M

even when the main CPU is in bootloader mode

Taking Control of SPI

35

Vulnerabilities and Exploits

First 0-day: Out of Bounds Read

36

void nugget_ap_uart_passthru(uint index)

{

 if (PASSTHRU != index) {

 cprint(4,"passthru %s",(&string_array)[index]);

 }

string_array = {

0x65c00, // -> "off"

0x68594, // -> "usb"

0x68598, // -> "ap"

0x6859c, // -> "ssc"

0x685a0, // -> "citadel"

0x4004002c, // some hw register

0x0, // address 0?

0x40040030

…

● index is provided through SPI command

● Its value isn't checked

● Can only be called when AP in bootloader

Second 0-day: Downgrade Issue

37

Anti-downgrade mechanism seems to be implemented

… but not used

→ Use SPI Rescue to flash any firmware version

$ fastboot stage <any rec file>
$ fastboot oem citadel rescue

→ Can we downgrade and exploit a known vulnerability?

Looking for a Known Vulnerability

38

● CVE-2021-0454 or CVE-2021-0455 or CVE-2021-0456
● Identity task, ICpushReaderCert command

uVar1 = (uint)ic_struct;
 if (*(int *)(uVar1 + 0xbc) == 0) {
LAB_00062822:
 if (pubkey_size != 0) {
 *(uint *)(uVar1 + 0xbc) = pubkey_size;
 memcpy((void *)(uVar1 + x78),pubkey_addr,pubkey_size);
 pubkey_size = 1;
 }
 }

What can we do with the exploit?

39

Vulnerable buffer placed just before

● runtime data of the chip…

● … and the list of command handler pointers

→ overwrite command handler addresses

to gain code execution!

Post Exploitation

We modified our nosclient to exploit this vulnerability

40

● Still, we can use this vulnerability to leak data from the memory

○ Helpful for debugging

○ Allowing to dump Boot Rom

○ Allowing to leak the Root of Trust

● Could not find a way to re-configure MPU

○ Only code reuse attack possible (ROP)

41

Fuzzing for More Vulnerabilities

Fuzzing Titan M

42

Blackbox approach based on libprotobuf-mutator

● On old firmware (2020-09-25)

○ 2 known buffer overflows (including the exploited one)

○ 7 other vulnerabilities leading to device hanging or rebooting

● 2 remaining bugs on latest firmware

○ Chip crash, same underlying function performing a null pointer dereference

○ Not severe enough to be considered as vulnerabilities by Google

Remarks

● All bugs found after few seconds of fuzzing

○ No additional results afterwards

○ No coverage ⇒ only shallow states exercised

● Possible improvements

○ Analyze the actual response

○ Parse the UART log

○ Open the emulation Pandora’s box

○ Grammar aware → Protocol aware

43

44

Conclusion

Conclusion

45

● Interesting findings about the firmware

○ Simple design, but debatable security measures

● Quite effective tooling developed to interact with the chip

○ Future work can be done also on the hardware side

● Exploited a known vulnerability and leaked the boot rom

○ First code-execution exploit known on Titan M

● Fuzzing can bring even more interesting results

Tools & resources:
https://github.com/quarkslab/titanm

contact@quarkslab.com

@max_r_b
@DamianoMelotti
@doegox

Thank you!

https://github.com/quarkslab/titanm
https://twitter.com/@max_r_b
https://twitter.com/@DamianoMelotti
https://twitter.com/@doegox

Command Handling Example on Titan M

uint32_t keymaster_AddRngEntropy (...,
 keymaster_AddRngEntropyRequest *request, ...,
 keymaster_AddRngEntropyResponse *response) {

 // ...

 iVar1 = pb_decode_ex(param_1,param_2,request,(uint)param_4);
 if (iVar1 == 0)
 return 1;

 km_add_entropy(request,response);
 iVar1 = pb_encode(param_4,param_5,response);

 return iVar1 == 0 ? 2 : 0;
}

47

Firmware Boot

At boot, the loader (RO image)

● Chooses the most recent candidate (RW image)

based on version numbers

● Checks if a magic number in the header is present,

then verifies the image signature

● If something goes wrong with a candidate,

the other one is chosen

48

Key Blob Structure

49

KEK: SHA256(Root of Trust || salt || req1 || req2 || flash_bytes)
HMAC KEY: SHA256(Root of Trust || salt || flash_bytes)

Hardware Reverse: Finding SPI

50

First attempt:

● design a flex PCB exposing all 64 pins

● flex PCB allows really small tracks

● should fit in the small space between

vias

Cost: $1500 !!!

Fuzzing Titan M

51

● Black-box approach

○ Cannot recompile and instrument the firmware

○ Almost no useful debugging information

● Rely on return value from library call

● Mutation-based (using libprotobuf-mutator natively on Android)

○ Mutate messages respecting Protobuf definitions

○ Random operators to trigger typical vulnerabilities

