
Exploring a New Class of

Kernel Exploit Primitive

Andrew Ruddick @arudd1ck

Microsoft Security Response Center (MSRC)

Vulnerabilities & Mitigations

Who Are We?

Andrew Ruddick

Security Researcher @ MSRC Vulnerabilities & Mitigations

8 years experience in low-level Windows internals, kernel development, VR,

exploit development & mitigation techniques

Red Member of MSRC Purple Team

Prior Conferences: USENIX WOOT ’16, 44Con `22

Rohit Mothe

Security Researcher @ MSRC Vulnerabilities & Mitigations

10 years experience in VR and exploit development on Windows platforms.

MSRC OS Mitigations Lead

Prior Conferences: BlackHat USA ‘16, RECON '16

Motivations MSRCs handling of kernel bugs

 The bug is often clear, but the exploitability is not always.

 We don’t require an exploit from finders, just a crashing PoC.

 It’s sometimes hard to prove exploitability without investing longer than it would

take to just fix it.

 We don’t want to ‘put finders off’ submitting issues to us. We want to patch the OS.

 Proving the Negative is Hard

 What do we do with an OOB-R where the attacker can’t retrieve the

data? DoS? Info Disclosure? Is that worth us patching down-level?

 Not all OOB-Rs are equal. An MSRC we handled got us talking. Is it

possible to do better than DoS with some of these reads?

Agenda

• Blind Arbitrary Read Primitive

• Memory Mapped I/O (MMIO)

• Targeting Drivers that use MMIO

 Enumeration / Windbg Scripting

• Reverse Engineering Drivers

• Interesting MMIO Patterns / Primitives

• What’s Next?

Blind Arbitrary
Read Primitive

Hyper-V Host Arbitrary Read

(CVE-2021-28476)

 Hyper-V Guest can cause Host to de-reference

arbitrary pointer for read

 Reported independently by more than one finder

 Presented at BH USA 2021 (hAFL1: Our Journey of

Fuzzing Hyper-V and Discovering an 0-day)

Acknowledgements

• Leo Adrien (@australeo)

• Daniel Fernandez Kuehr of Blue Frost Security GmbH

• Peleg Hadar (@peleghd) of SafeBreach Labs and

Ophir Harpaz (@OphirHarpaz) of Guardicore Labs

MSRC 64478 Reproduction

https://twitter.com/australeo
https://twitter.com/ergot86
https://twitter.com/peleghd
https://twitter.com/OphirHarpaz

Hyper-V Host Arbitrary Read (CVE-2021-28476)

 Bug in Hyper-V virtual networking

switch driver (vmswitch.sys)
 Provides virtual ethernet services to guest VMs

over vmbus

 Processes RNDIS packets from guest

 Kernel Panic due to invalid pointer

de-reference for read in

vmswitch!VmsIfrInfoParams_OID_S

WITCH_NIC_REQUEST

 For all requests to the physical NIC, this routine

is called to log them

 Logging routine accepts an

NDIS_SWITCH_NIC_OID_REQUEST structure

 If OidRequest is not NULL, it is

de-referenced to access

information in the request
 Attacker can forge this structure

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_oid_request

Hyper-V Host Arbitrary Read (CVE-2021-28476)

_NDIS_SWITCH_NIC_OID_REQUEST

typedef struct _NDIS_SWITCH_NIC_OID_REQUEST {

NDIS_OBJECT_HEADER Header;

ULONG Flags;

NDIS_SWITCH_PORT_ID SourcePortId;

NDIS_SWITCH_NIC_INDEX SourceNicIndex;

NDIS_SWITCH_PORT_ID DestinationPortId;

NDIS_SWITCH_NIC_INDEX DestinationNicIndex;

PNDIS_OID_REQUEST OidRequest;

} NDIS_SWITCH_NIC_OID_REQUEST, *PNDIS_SWITCH_NIC_OID_REQUEST;

Hyper-V Host Arbitrary Read (CVE-2021-28476)

VmsIfrInfoParams_OID_SWITCH_NIC_REQUEST

Static VOID VmsIfrInfoParams_OID_SWITCH_NIC_REQUEST (

…

In PVOID Data,

…

)

{

PNDIS_SWITCH_NIC_OID_REQUEST switchNicOid = (PNDIS_SWITCH_NIC_OID_REQUEST)Data;

if ((DataLength > 0) && (DataLength >= SIZEOF_NDIS_SWITCH_NIC_OID_REQUEST))

{

if (switchNicOid->OidRequest != NULL)

{

VmsIfrLogRoutine(

<irrelevant args>,

" --> Params: InnerOID=%!NDIS_OID!",

switchNicOid->OidRequest->DATA.QUERY_INFORMATION.Oid); // Crash

Hyper-V Host Arbitrary Read (CVE-2021-28476)

1: kd> !analyze –v

…

EXCEPTION_RECORD: fffff60589adf568 -- (.exr 0xfffff60589adf568)

ExceptionAddress: fffff8056ffd1a63 (vmswitch!VmsIfrInfoParams_OID_SWITCH_NIC_REQUEST+0x00000000000000fb)

ExceptionCode: c0000005 (Access violation)

ExceptionFlags: 00000000

NumberParameters: 2

Parameter[0]: 0000000000000000

Parameter[1]: ffffffffffffffff

Attempt to read from address ffffffffffffffff

CONTEXT: fffff60589adeda0 -- (.cxr 0xfffff60589adeda0)

rax=fffff80570157214 rbx=fffff805701862a0 rcx=0000000000000000

rdx=000000008f112807 rsi=fffff60589adf960 rdi=ffff8082815c0700

rip=fffff8056ffd1a63 rsp=fffff60589adf7a0 rbp=ffff8082815c07c0

r8=0000000000000000 r9=000000000000013b r10=4141414141414141

r11=fffff60589adf770 r12=fffff805701573d0 r13=00000000c0000001

r14=00000000000021f0 r15=fffff80570157360

iopl=0 nv up ei pl zr na po nc

cs=0010 ss=0000 ds=002b es=002b fs=0053 gs=002b efl=00050246

vmswitch!VmsIfrInfoParams_OID_SWITCH_NIC_REQUEST+0xfb:

fffff805`6ffd1a63 418b4a20 mov ecx,dword ptr [r10+20h] ds:002b:41414141`41414161=????????

Memory Mapped
I/O (MMIO)

Why MMIO?

 Peripheral device drivers use

MMIO for 2-way device

communications with Firmware

over the peripheral buses
 These are mapped (often transiently) to the

Kernel Virtual Address Space (VAS)

 Assuming an attacker knew the

location of such an address, could

it theoretically be targeted to

corrupt the device driver ‘state

machine’?
 Could such corruptions lead to EoP / RCE?

PCI Local Bus

Vendor-id = 8006

Device-id = 4a3

Device # = 3

Vendor-id = 1001

Device-id = 4b

Device # = 2

Vendor-id = 8080

Device-id = 520

Device # = 2

Vendor-id = 1020

Device-id = 3

Device # = 1

Vendor-id = 1000

Device-id = 4

Device # = 1

PCI Host

Bridge

CPU RAMRAMRAM

Bus 0 PCI Bus

Graphics

Adapter

LAN

Adapter

SCSI HBA

Bus 1

PCI Bus

Bridge

Programmed Input Output (PIO)

 Two methods of I/O between CPU

and PCI hardware devices

 Memory Mapped I/O (MMIO) uses

general purpose memory and is accessed

using the same CPU instructions

 Port Mapped I/O (PMIO) uses a special

class of CPU instructions (e.g. x86 in/out)

and operates on a different address space.

Copies bytes between EAX register and

specified I/O port

 PCI Device Registers

 PCI devices have a set of registers

(configuration space registers) mapped to

main memory

 Base Address Registers (BARs) are

mapped to an I/O memory region

 The length of each BAR is defined by the hardware

and communicated to software via the

configuration registers.

Semantics of MMIO mapping

attributes across architectures

(2016)

On the Linux Kernel implementation of

MMIO (https://lwn.net/Articles/698014)

“The size of the access could

therefore be thought of as

additional bits feeding into

the device's state-change

logic.”

https://lwn.net/Articles/698014

Semantics of MMIO mapping

attributes across architectures

(2016)

On the Linux Kernel implementation of

MMIO (https://lwn.net/Articles/698014)

“For example, the MMIO read

operation that reads a character

from a serial input device would

be expected to also remove that

character from the device's

internal queue, so that the next

MMIO read would read the next

input character. As with writes, the

size of the MMIO read is

significant.”

https://lwn.net/Articles/698014

Prior MMIO Bugs

Google P0 AMD EPYC

SEV-SNP: Firmware

accepts malleable

MMIO Pages (here)

Intel: Processor MMIO

Stale Data

Vulnerabilities (here)

CanSecWest 2022:

Matryoshka Trap:

Recursive MMIO Flaws

Lead to VM Escape

(here)

https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/AMD_GPZ-Technical_Report_FINAL_05_2022.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/processor-mmio-stale-data-vulnerabilities.html#:~:text=Processor%20MMIO%20Stale%20Data%20Vulnerabilities%20are%20operations%20that,processors%204%20is%20different%20than%20for%20client%20processors.
https://qiuhao.org/Matryoshka_Trap.pdf

Targeting Drivers
that use MMIO

Enumerating Target Drivers

 Registry / Device Manager Probing
 Script available on the MSRC blog, here

 Naïve String Scanning
 Script is available on the MSRC blog, here

 ACPI MCFG Table

 MmMapIoSpace Interception

https://msrc-blog.microsoft.com/2022/03/22/exploring-a-new-class-of-kernel-exploit-primitive/
https://msrc-blog.microsoft.com/2022/03/22/exploring-a-new-class-of-kernel-exploit-primitive/

Registry / Device Manager Probing

 We can manually examine device

manager to find interesting

devices on the system

 Can script extraction of MMIO

ranges using WMI

 Win32_DeviceMemoryAddress /

Win32_PNPAllocatedResource

 Our script is available on the MSRC blog,

here

https://msrc-blog.microsoft.com/2022/03/22/exploring-a-new-class-of-kernel-exploit-primitive/

Registry / Device Manager Probing

Name DeviceID Physical Address

Mobile 6th/7th Generation Intel(R)

Processor Family I/O PCI Express

Root Port #1 – 9D10

PCI\VEN_8086&DEV_9D10&SUBS

YS_72708086&REV_F1\3&115836

59&0&E0

{0xD4400000-0xD45FFFFF}

Intel(R) UHD Graphics 620 PCI\VEN_8086&DEV_5917&SUBSY

S_00271414&REV_07\3&1158365

9&0&10

{0xD3000000-0xD3FFFFFF,

0xB0000000-0xBFFFFFFF}

Marvell AVASTAR Wireless-AC

Network Controller

PCI\VEN_11AB&DEV_2B38&SUBS

YS_045E0009&REV_00\4&32FA7C

C7&0&00E0

{0xD4500000-0xD45FFFFF,

0xD4400000-0xD45FFFFF}

Intel(R) Management Engine

Interface #1

PCI\VEN_8086&DEV_9D3A&SUBS

YS_72708086&REV_21\3&115836

59&0&B0

{0xDFBDF000-0xDFBDFFFF}

Naïve String Scanning

 Simplest manner to locate drivers

is to scan for strings

 Search for any driver on a system

containing the string ‘MMIO’

 A second script is available on the

MSRC blog, here that can be

executed in any directory to dump

this list of drivers

 Running the Sysinternals ‘strings’

utility over the output gives

further context on each driver

 Using this method, we identified

24 drivers for further analysis on

our lab machines

 Includes components related to GPIO, I2C,

DirectX / Video, Virtualization (Hyper-V),

USB and OEM device-specific hardware

https://msrc-blog.microsoft.com/2022/03/22/exploring-a-new-class-of-kernel-exploit-primitive/

Naïve String Scanning

Identified Driver Images

C:\Windows\System32\drivers\iaStorAVC.sys

C:\Windows\System32\drivers\USBXHCI.SYS

C:\Windows\System32\drivers\Vid.sys

C:\Windows\System32\drivers\vmbkmcl.sys

C:\Windows\System32\drivers\vmbus.sys

C:\Windows\System32\drivers\dxgkrnl.sys

C:\Windows\System32\drivers\iaLPSS2i_GPIO2.sys

C:\Windows\System32\drivers\iaLPSS2i_GPIO2_BXT_P.sys

C:\Windows\System32\drivers\iaLPSS2i_GPIO2_CNL.sys

C:\Windows\System32\drivers\iaLPSS2i_GPIO2_GLK.sys

C:\Windows\System32\drivers\iaLPSS2i_I2C.sys

C:\Windows\System32\drivers\iaLPSS2i_I2C_BXT_P.sys

C:\Windows\System32\drivers\iaLPSS2i_I2C_CNL.sys

C:\Windows\System32\drivers\iaLPSS2i_I2C_GLK.sys

C:\Windows\System32\drivers\iaLPSSi_I2C.sys

What is ACPI?

 Advanced Configuration & Power Interface (ACPI)

 Controls at the lowest level, interactions with system hardware over primary and peripheral

busses

 Brings control of firmware management operations to the OS, reducing reliance on SMM

 Organized into tables which are stored in the registry

 \REGISTRY\MACHINE\HARDWARE\ACPI\DSDT\A_DEVICE\A_THING\00000000

 ACPI tables can be dumped using open-source tools from ACPI Component Architecture

(ACPICA) project

 The (optional) ‘MCFG’ table contains PCI config. Information, including registered MMIO

ranges and PCI BARs

https://www.acpica.org/downloads/binary-tools

ACPI MCFG Table

 ACPI Specification says:

 ‘PCI Express memory mapped

configuration space base address

Description Table’

 Contains a physical base address

that details the PCI bus, device and

function numbers for each PCI

device on the system

 Can extract and decompile the MCFG

table to get this physical base address

 Output can be parsed manually, but we

used the RWEverything tool to do this for

us

 Hyper-V VMs examined (at least

under default configuration) don’t

have this registered

https://pcisig.com/specifications/pciexpress?field_document_type_value%5B%5D=specification&speclib=pci+firmware
http://rweverything.com/

ACPI Binary Table Extraction

Intel ACPICA: ACPI Binary Table Extraction Utility

C:\Workspace\ACPI\iasl-win-20210730>acpidump.exe > acpitabl.dat

C:\Workspace\ACPI\iasl-win-20210730>acpixtract.exe -l acpitabl.dat

Signature Length Version Oem Oem Oem Compiler

Id TableId RevisionId Name

_________ __________ ____ ________ __________ __________ _______

01) MCFG 0x0000003C 0x01 "ALASKA" "A M I " 0x01072009 "MSFT"

02) FACP 0x000000F4 0x04 "ALASKA" "A M I " 0x01072009 "AMI "

03) APIC 0x0000009E 0x03 "ALASKA" "A M I " 0x01072009 "AMI "

04) HPET 0x00000038 0x01 "ALASKA" "A M I " 0x01072009 "AMI "

05) FPDT 0x00000044 0x01 "ALASKA" "A M I " 0x01072009 "AMI "

06) SSDT 0x00001714 0x01 "AMD " "POWERNOW" 0x00000001 "AMD "

07) XSDT 0x00000054 0x01 "ALASKA" "A M I " 0x01072009 "AMI "

08) DSDT 0x00005BC1 0x02 "ALASKA" "A M I " 0x00000000 "INTL"

Found 8 ACPI tables in acpitabl.dat

Disassembling An ACPI Table

Intel ACPICA: ACPI Binary Table Extraction Utility

C:\Workspace\ACPI\iasl-win-20210730>acpixtract -s MCFG acpitabl.dat

MCFG - 60 bytes written (0x0000003C) - mcfg.dat

C:\Workspace\ACPI\iasl-win-20210730>iasl mcfg.dat

File appears to be binary: found 38 non-ASCII characters, disassembling

Binary file appears to be a valid ACPI table, disassembling

Input file mcfg.dat, Length 0x3C (60) bytes

ACPI: MCFG 0x0000000000000000 00003C (v01 ALASKA A M I 01072009 MSFT 00010013)

Acpi Data Table [MCFG] decoded

Formatted output: mcfg.dsl - 1568 bytes

MCFG Table Disassembly (ASL / DSL)

Intel ACPICA: AML/ASL+ Disassembler

[000h 0000 4] Signature : "MCFG" [Memory Mapped Configuration Table]

[004h 0004 4] Table Length : 0000003C

[008h 0008 1] Revision : 01

[009h 0009 1] Checksum : 84

[00Ah 0010 6] Oem ID : "ALASKA"

[010h 0016 8] Oem Table ID : "A M I"

[018h 0024 4] Oem Revision : 01072009

[01Ch 0028 4] Asl Compiler ID : "MSFT"

[020h 0032 4] Asl Compiler Revision : 00010013

[024h 0036 8] Reserved : 0000000000000000

[02Ch 0044 8] Base Address : 00000000E0000000

[034h 0052 2] Segment Group Number : 0000

[036h 0054 1] Start Bus Number : 00

[037h 0055 1] End Bus Number : FF

[038h 0056 4] Reserved : 00000000

PCI Device Dump

RWEverything: PCI Device Dump

Bus 00, Device 02, Function 00 - ATI Technologies Inc. PCI-to-PCI Bridge (PCIE)

ID=5A161002, SID=5A141002, Int Pin=INTA, IRQ=0B, PriBus=00, SecBus=01, SubBus=01

MEM=FEA00000-FEAFFFFF C0000000-D07FFFFF IO=0000E000-0000EFFF

Device/Vendor ID 0x5A161002

Revision ID 0x00

<snip>

IO Range

0x0000E000 - 0x0000EFFF

Memory Range

0xFEA00000 - 0xFEAFFFFF

Prefetchable Memory Range

0xC0000000 - 0xD07FFFFF

Expansion ROM 0x00000000

Subsystem ID 0x5A141002

Reading / Writing to Device Registers

PVOID MmMapIoSpace(

[in] PHYSICAL_ADDRESS PhysicalAddress,

[in] SIZE_T NumberOfBytes,

[in] MEMORY_CACHING_TYPE CacheType

);

• Ntoskrnl exports public interfaces from Mm executive

 MmMapIoSpace(Ex)

 Maps a given physical address range to a non-paged system address space

 Device drivers can access device registers through this mapping

 MmMapIoSpace maps WX memory (if HVCI is turned off)

 MmMapIoSpaceEx allows caller to specify page protections

Reading / Writing to Device Registers

PVOID MmUnMapIoSpace(

[in] PVOID BaseAddress,

[in] SIZE_T NumberOfBytes

);

• Ntoskrnl exports public interfaces from Mm executive

 MmUnmapIoSpace

 Unmaps a specified range of physical addresses previously mapped by MmMapIoSpace

MmMapIoSpace(Ex) Interception

 We can hook calls to

MmMapIoSpace(Ex) to gather a

list of all Physical to Virtual

mappings made on the system

 Also hook releases via

MmUnmapIoSpace

 Ntoskrnl.exe exports these

routines, easy to locate with public

symbols

 We provide Windbg scripted

breakpoints to do this

MmMapIoSpace Interception

Windbg MASM Scripted Breakpoints

bu nt!MmMapIoSpace ".block{ r $t1 = @rcx; r $t2 = @rdx; r $t3 =
@r8; .printf \"[+] MmMapIoSpace - Physical Address: %p, Size: %p,
Cache Type: %p)\\n\", @$t1, @$t2, @$t3}; gc"

bu nt!MmMapIoSpaceEx ".block{ r $t1 = @rcx; r $t2 = @rdx; r $t3 =
@r8; .printf \"[+] MmMapIoSpaceEx - Physical Address: %p, Size:
%p, Protect: %p)\\n\", @$t1, @$t2, @$t3}; gc"

bu nt!MmUnmapIoSpace ".block{ r $t1 = @rcx; .printf \"[-]
Unmapped at Virtual Address: %p\\n\", @$t1}; gc"

MmMapIoSpace Interception

Windbg MASM Scripted Breakpoints #2

bu nt!MmMapIoSpace+0x22 ".block{ r $t1 = @rax; .printf \"[+]
Mapped at Virtual Address: %p\\n\", @$t1}; gc"

bu nt!MmMapIoSpaceEx+0x30 ".block{ r $t1 = @rax; .printf \"[+]
Mapped at Virtual Address: %p\\n\", @$t1}; gc"

MmMapIoSpace Interception

Windbg Script Output

[+] MmMapIoSpaceEx - Physical Address: 00000000000f93d0,

Size: 000000000000439b, Protect: 0000000000000004)

[+] Mapped at Virtual Address: ffffb980cff123d0

[-] Unmapped at Virtual Address: ffffb980cff123d0

[+] MmMapIoSpaceEx - Physical Address: 00000000f7ff0300,

Size: 0000000000000024, Protect: 0000000000000204)

[+] Mapped at Virtual Address: ffffb980d04da300

[-] Unmapped at Virtual Address: ffffb980d04da300

MMIO Ranges Remaining After Boot

MMIO Range Interception

0xfffff67c84600000 // nt size 0x300000

0xffffe68063040000 // BOOTVID size 0x20000

0xffffe68063616000 // BasicDisplay size 0x20000

0xffffe6806343e4f0 // vmgencounter size 0x10

0xffffe680631e8064 // ACPI size 0xff

0xffffe680631ff000 // winhv size 0x1000

0xffffe6806336c000 // fvevol size 0x4000

0xfffff67c89000000 // DXGKrnl size 0x300000

<…>

Reverse
Engineering

Drivers Noted

 Some we confirmed to Contain

MMIO

 Iacamera64.sys

 SurfaceHotPlug.sys

 USBXHCI.sys

 Reads MMIO range values, then immediately

resets that range location.

 Could be susceptible to double-fetch, if on a valid

device stack?

 vid.sys (MmioGpaRange for emulation of

MMIO device registers)

 iaLPSS2i_GPIO2.sys + variants

 iaLPSS2i_I2C.sys + variants

 Dxgkrnl.sys (vGPU uses MMIO – Hyper-V)

 Some candidates not looked at

(Hyper-V):

 vmbusproxy.sys, Vmbususr.sys, Vpcivsp.sys

(SR-IOV), vmbkmcl.sys, vmbus.sys,

vmswitch.sys

https://devblogs.microsoft.com/directx/directx-heart-linux/
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-single-root-i-o-virtualization--sr-iov-

Iacamera64.sys

 Intel AVStream Camera Driver
 Used for SurfaceBook embedded camera

 Naïve String scanning returned an ‘interesting’ string:

TraceRoutine(1, "The MMIO base address is 0x%o8x.", *((unsigned int *) a1 + 12));
LABEL_7:

_mm_lfence();
pVAMapping = MmMapIoSpaceEx(a1[6], *((unsigned int *)a1 + 14), 4i64); // PAGE_READWRITE
a1[8] = pVAMapping;
if (!pVAMapping)
return 0xC000009Ai64; // STATUS_INSUFFICENT_RESOURCES

_mm_lfence();
CACHE_VA_REGION(pVAMapping); // Store Mapped MMIO Region VA in Global
v17[0] = 0;
v19 = 0i64;
TraceRoutine_0(&v19, "IISPHWConfigManager::Dereference");
if (_InterlockedExchangeAdd((volatile signed __int32 *)a1 + 10, 0xFFFFFFFF) == 1)

Iacamera64.sys

 Plug and Play Device Management

 IspInterfaceNotification routine is

registered to intercept PnP notifications

for EventCategoryDeviceInterfaceChange

events.

 The PnP manager calls registered

callbacks for

GUID_DEVICE_INTERFACE_ARRIVAL or

GUID_DEVICE_INTERFACE_REMOVAL

events

 CISPInterfacedConfigMgr::IaIspArrival

(registered arrival callback) sets up an

MMIO range for device interface, that is

mapped to some cached globals for the

duration of its use

 MMIO unmapping routines registered for

device removal

 Wrapper routines implement

SpinLocks and memory fences on

R/W operations to MMIO regions

Iacamera64.sys

DO_MMIO_READ Routine

__int64 __fastcall DO_MMIO_READ(unsigned int mmioReadBase, unsigned int readLength)
{

__int64 result; // rax
KIRQL v5; // bl
unsigned int v6; // edi

if (sub_14004A400(mmioReadBase, readLength))
return sub_14004A4C0(mmioReadBase, readLength);

v5 = KeGetCurrentIrql();
if (v5 >= 2u)
{
if (v5 == 2)

KeAcquireSpinLockAtDpcLevel(&SpinLock);
}
else
{
_mm_lfence();
KfRaiseIrql(2u);
while (!KeTryToAcquireSpinLockAtDpcLevel(&SpinLock))
{

KeLowerIrql(v5);
KfRaiseIrql(2u);

}
}
result = READ_MMIO_OFFSET(mmioReadBase, readLength);
v6 = result;
if (v5 >= 2u)
{
if (v5 == 2)
{

KeReleaseSpinLockFromDpcLevel(&SpinLock);
result = v6;

}
}
else
{
_mm_lfence();
KeReleaseSpinLock(&SpinLock, v5);
result = v6;

}
return result;

}

Iacamera64.sys

READ_MMIO_OFFSET,

READ_MMIO_RANGE_OFFSET

CacheMMIORegionBase

CACHE_VA_REGION

Routines

__int64 __fastcall READ_MMIO_OFFSET(unsigned int al, int a2)
{

__int64 result; // rax

if (al < 3)
result = (unsigned int) GET_MMIO_READ_RANGE_OFFSET(a2 + dword_14010ED60[a1]);

else
result = 0xFFFFFFFFi64;

return result;
}

__int64 __fsatcall GET_MMIO_READ_RANGE_OFFSET(unsighed int readIndex)
{

__int64 result; // rax

if (g_MappedMMIORangeReadAddress && *(_QWORD *)g_MappedMMIORangeReadAddress)
result = *(unsigned int *)(*(_QWORD *)g_MappedMMIORangeReadAddress + readIndex);

else
result = 0xFFFFFFFFi64;

return result;
}

__int64 *__fastcall CacheMMIORegionBase(__int64 a1)
{

__int64 *result; // rax

result = &g_MappedMIORegionbase;
g_MappedMIOIRegionbase = a1;
g_MappedMMIORangeReadAddress = (__int64)&g_MappedMMIORegionbase;
return result;

}

__int64 *__fastcall CACHE_VA_REGION(__int64 a1)
{

KeInitializeSpinLockThunk();
return CacheMMIORegionBase(a1);

}

Iacamera64.sys

CISPInterfacedConfigMgr::IaIspArrival

Routine

pVAMapping = MmMapIoSpaceEx(*((_QWORD *)a1 + 6), a1[14], 4i64); // PAGE_READWRITE
V20 = a1[14];
V21 = a1[12];
*((_QWORD *)a1 + 8) = pVAMapping;
if (pVAMapping)
{

LODWORD(StartingOffset) = v20;
TraceRoutine(
1,
"%s: (m_Base %#x, m_Length %#x) map to %#x",
"CISPInterfacedConfigMgr: :IaIspArrival",
v21,
StartingOffset,
pVAMapping);

CACHE_VA_REGION(*((_QWORD *)a1 + 8)); // StoreMMIO Region in Global

Iacamera64.sys

 Pivoting on these DO_MMIO_READ wrappers
 261 locations perform Writes,

 184 locations perform Reads

 A lot of these related to perf. counters, but not all

TraceRoutine(1, "****** CDrivferControl : : AuthenticateFW");
v5 = (unsigned int)DO_MMIO_READ(2u, 0x300u);
TraceRoutine(1, "****** SECURITY_CTL register value before authentication: %x", v5);
If ((v5 & 0x1F) == 0)
{

v1 = sub_140022EC0(
a1,
*(_QWORD *)(a1 + 1760),
*(_DWORD **)(a1 + 1768),
*(_DWORD *)(a1 + 1776),
*(_DWORD *)(a1 + 1760),

v5 = (unsigned int)DO_MMIO_READ(2u, 0x300u);
TraceRoutine(1, "****** SECURITY_CTL register value after authentication: %x", v5);
if (v1 < 0 && (_DWORD)qword_140110560 == 2 && !dword_140110568)

iaLPSS2i_I2C.sys

 Intel Low Power Subsystem Support Integrated Circuit Driver

 Responsible for registration of devices onto a PCI bus

 Holds a linked list of Device Driver object entries, each with various registration handlers

hooked up

 Presumably, this is to allow dispatch of power events to devices registered on a bus by device

Index

 We suspect this driver employs MMIO to support registration of an ACPI-compliant device

with the PCI bus

 Several variants of this driver exist, that look very similar in terms of offered functionality

 iaLPSS2i_I2C_BXT_P.sys, iaLPSS2i_I2C_CNL.sys, iaLPSS2i_I2C_GLK.sys, iaLPSSi_I2C.sys

iaLPSS2i_I2C.sys

OnDeviceAdd

Dst[5] = (__int64)OnPrepareHardware;
Dst[6] = (__int64)OnReleaseHardware;
Dst[1] = (__int64)OnD0Entry;
Dst[3] = (__int64)OnD0Exit;
Dst[9] = (__int64)OnSelfManagedIoInit;
Dst[7] = (__int64)OnSelfManagedIoCleanup;
Dst[14] = (__int64)OnQueryStop;

Dst[3] = (__int64)OnInterruptIsr;
Dst[4] = (__int64)OnInterruptDpc;
Dst[1] = v20;

iaLPSS2i_I2C.sys

OnPrepareHardware

pVAMapping = MmMapIoSpaceEx(*(_QWORD *)(v15 + 4), *(unsigned int *)(v15 + 12), 0x204i64);
If (!pVAMapping)
{

status = 0xC0000009A; // STATUS_INSUFFICENT_RESOURCES
if (((__int64)WPP_MAIN_CB.Queue.Wcb.DeviceObject & 1) != 0)
ETWLogThunk(

&iaLPSS2_I2C_PROVIDER_Context,
&EvtPrepareHardware_MmioMap_Error,
v9,
0,
*(_QWORD *)(v15 + 4),
*(_DWORD *)(v15 + 12),
154);

goto LABEL_53;
}
*(_QWORD *)(v8 + 32) = pVAMapping;
*(_QWORD *)(v8 + 24) = *(_QWORD *)(v15 + 4);
*(_DWORD *)(v8 + 40) = *(_DWORD *)(v15 + 12);
*(_QWORD *)(v8 + 56) = pVAMapping + 512;
*(_QWORD *)(v8 + 272) = pVAMapping + 2048;
*(_QWORD *)(v8 + 48) = pVAMapping;
If (((__int64)WPP_MAIN_CB.Queue.Wcb.DeviceObject & 2) != 0)

ETWLogThunk2(
(__int64)&iaLPSS2_I2C_PROVIDER_Context,
(__int64)&EvtPrepareHardware_MmioMapped_Info,
(__int64)v9,
0,
*(_QWORD *)(v15 + 4),
*(_DWORD *)(v15 + 12),
pVAMapping);

iaLPSS2i_I2C.sys

 We suspect MMIO is used here to

support registration of ACPI-

compliant devices with the PCI bus

 ACPI supports thermal event

triggers

 Managed and issued by ACPI subsystem

to support device temperature cut-off

 Managed using System Control Interrupts

(SCI)

 Could we cause an interpolated

MMIO read during ACPI SCI

Interrupt handling?

 If so, we could consider the ACPI code,

and its interpreter state a valid attack

surface

 AML is a Turing-complete language,

running in a VM, in ring-0

 It would appear the same observations we

apply to device drivers could apply here

too

 This would make any ACPI-

compliant device with dynamic

registration handlers a target

MMIO Double-Fetch

 Where a device performs:

 MmMapIoSpace / ExAllocatePool /

RtlCopyMemory / MmUnmapIoSpace

 Some action relying on the state

 MmMapIoSpace / ExAllocatePool /

RtlCopyMemory / MmUnmapIoSpace

 There may be opportunities to

exploit an MMIO double-fetch

 We saw this pattern in drivers

examined

 Often the mapping operations will be

wrapped to include memory barriers and

caching (maybe also logging), so pattern

becomes:

 ReadMMIO() / Some action / ReadMMIO()

 Hypervisor attack primitive?

 Virtualized devices?

 Hyper-V?

MMIO Double-

Fetch

At least one person doesn’t think we’re crazy…

MMIO Operation Race Conditions

 Ordering of operations can be

extremely important

 Uncached (UC) and Write Combining

(WC) are most common types of MMIO

 Any driver sensitive to the order

of MMIO operations not using

memory fences, barriers and cache

flushing may be a target

 This complexity adds to the potential for

bugs

Fuzzing MMIO
Ranges

Fuzzing MMIO addresses - Idea

 Intercept MmMapIoSpaceEx function to obtain mapped virtual address and

size.

 Obtain the MMIO address ranges that are mapped long after boot.

 Create multiple threads

 Read from these addresses, within the size range of each mapping

 Essentially simulate a “blind read” across all the MMIO ranges.

Fuzzing MMIO addresses - Problems

 IO drivers constantly

map/unmap/remap the MMIO

ranges.

 Example for reading a status register
on the device on the fly.

 Accessing an unmapped address will
bugcheck; restart fuzzing setup

 Solution: Track and update the latest
mapped regions by intercepting
MMapIoSpaceEx and
MmUnmapIoSpace.

 Observing “weird” behavior

 What are we looking for?

 Crashes?

 Freezes?

 Something else….?

 Not all exploitable behaviors will

manifest as an observable crash by

fuzzing.

 Behavior is very specific to each IO

device and the associated driver

Conclusions

Parting Thoughts

 Programming low-level device

interactions is complicated and

fraught with complexities

 Where there is complexity, there is
usually bugs

 Many classes of device exist out

there, we only have a small subset

 barely scratches the surface

 Not all exploit primitives are

created equal

 MMIO exploit is unlikely to be
portable (device specific)

 Will likely require another bug to
exploit (e.g. VA leak)

 Not a lot of low-hanging-fruit

 Perhaps a better avenue to attack the
Hypervisor than ring-0 devices

 Theoretically it looks possible

 What could be cooler than RCE from a
pointer read?

Call to Arms

We’d love for the external research community to build on this idea.

Tell us if you find some interesting devices and behaviors that can facilitate exploitation!

Questions?
• Andrew Ruddick @arudd1ck

• Rohit Mothe @rohitwas

Thank you

	Slide 1: Exploring a New Class of Kernel Exploit Primitive
	Slide 2: Who Are We?
	Slide 3: Motivations
	Slide 4: Agenda
	Slide 5: Blind Arbitrary Read Primitive
	Slide 6: Hyper-V Host Arbitrary Read (CVE-2021-28476)
	Slide 7: Hyper-V Host Arbitrary Read (CVE-2021-28476)
	Slide 8: Hyper-V Host Arbitrary Read (CVE-2021-28476)
	Slide 9: Hyper-V Host Arbitrary Read (CVE-2021-28476)
	Slide 10: Hyper-V Host Arbitrary Read (CVE-2021-28476)
	Slide 11: Memory Mapped I/O (MMIO)
	Slide 12: Why MMIO?
	Slide 13: PCI Local Bus
	Slide 14: Programmed Input Output (PIO)
	Slide 15: “The size of the access could therefore be thought of as additional bits feeding into the device's state-change logic.”
	Slide 16: “For example, the MMIO read operation that reads a character from a serial input device would be expected to also remove that character from the device's internal queue, so that the next MMIO read would read the next input character. As with wri
	Slide 17: Prior MMIO Bugs
	Slide 18: Targeting Drivers that use MMIO
	Slide 19: Enumerating Target Drivers
	Slide 20: Registry / Device Manager Probing
	Slide 21: Registry / Device Manager Probing
	Slide 22: Naïve String Scanning
	Slide 23: Naïve String Scanning
	Slide 24: What is ACPI?
	Slide 25: ACPI MCFG Table
	Slide 26: ACPI Binary Table Extraction
	Slide 27: Disassembling An ACPI Table
	Slide 28: MCFG Table Disassembly (ASL / DSL)
	Slide 29: PCI Device Dump
	Slide 30: Reading / Writing to Device Registers
	Slide 31: Reading / Writing to Device Registers
	Slide 32: MmMapIoSpace(Ex) Interception
	Slide 33: MmMapIoSpace Interception
	Slide 34: MmMapIoSpace Interception
	Slide 35: MmMapIoSpace Interception
	Slide 36: MMIO Ranges Remaining After Boot
	Slide 37: Reverse Engineering
	Slide 38: Drivers Noted
	Slide 39: Iacamera64.sys
	Slide 40: Iacamera64.sys
	Slide 41: Iacamera64.sys
	Slide 42: Iacamera64.sys
	Slide 43: Iacamera64.sys
	Slide 44: Iacamera64.sys
	Slide 45: iaLPSS2i_I2C.sys
	Slide 46: iaLPSS2i_I2C.sys
	Slide 47: iaLPSS2i_I2C.sys
	Slide 48: iaLPSS2i_I2C.sys
	Slide 49: MMIO Double-Fetch
	Slide 50: MMIO Double-Fetch
	Slide 51: MMIO Operation Race Conditions
	Slide 52: Fuzzing MMIO Ranges
	Slide 53: Fuzzing MMIO addresses - Idea
	Slide 54: Fuzzing MMIO addresses - Problems
	Slide 55: Conclusions
	Slide 56: Parting Thoughts
	Slide 57: Call to Arms
	Slide 58: Questions?
	Slide 59: Thank you

