
Kerberos’ RC4-HMAC broken in practice: spoofing 
PACs with MD5 collisions
Two cryptographic flaws have been found in Kerberos as used by Microsoft Active Directory, which
together can be exploited to bypass AD security features related to constrained delegation. One 
flaw is a forgery vulnerability in the legacy RC4-HMAC encryption type, that was supported by AD 
by default and rarely disabled. Due to a second flaw in the Privilege Attribute Certificate (PAC) 
protocol, which Windows uses to store authorization data in Kerberos tickets, this could be 
exploited in practice to bypass protections against constrained delegation attacks.

While the impact of the security feature bypass is somewhat limited, it does show that the RC4-
HMAC encryption type is broken in a way that can lead to practical attacks. Since it is used in a 
variety of protocols, this opens up a new attack surface for all these protocols. This provides a 
strong argument in favor of moving towards retiring this encryption type.

Introduction to Kerberos

Kerberos is a protocol that allows members of a network to securely authenticate each other. Its 
most popular application is within Windows Active Directory, where it is used to authenticate 
individual domain users and allows them to prove their identity to domain services. 

The basic idea behind Kerberos is that there is a trusted Key Distribution Center (KDC) which 
shares cryptographic keys with all members of the network. When a member A wishes to 
communicate to another member B, they contact the KDC to obtain a ticket and a session key. The 
ticket appears as an opaque binary string to A, but is actually encrypted and authenticated with the 
key shared between the KDC and B (but which is not known by A). Inside the encrypted ticket, 
there is a description of A’s identity and a copy of the session key.

Next, when A wants to authenticate to B, they submit this ticket along with a timestamped message 
encrypted with the session key. B can then unpack this ticket to determine the associated session 
key, and verify A’s identity by decrypting this timestamp. Depending on the protocol, they can 
continue using this key for post-authentication message encryption.



Figure 1: Illustration of the Kerberos protocol. Image
source: Jeran Renz, Wikimedia Commons.

Kerberos has various encryption types. Each type define a set of cryptographic primitives that can 
be used to encapsulate tickets, verify identities or protect messages. A KDC can support multiple 
encryption types and will negotiate which one to use with each user that logs in. This whitepaper 
describes a vulnerability within a particular encryption type supported by Windows Active 
Directory by default, as well as a vulnerability in a Windows-specific Kerberos extension.

The problem with RC4-HMAC

Modern Windows systems support three Kerberos encryption types by default: 
AES128_HMAC_SHA1, AES256_HMAC_SHA1 and RC4_HMAC_MD5. The AES-HMAC types 
are generally preferred, while the RC4-HMAC type has broader compatibility and uses the same 
shared secret key (derived by computing an unsalted MD4 hash of the user password) as the legacy 
NTLM authentication protocol.

The AES types use a separate key derived with a stronger password key derivation function. 
Therefore, enforcing AES for a user prevents overpass-the-hash attacks and makes it more difficult 
for attackers to brute-force passwords based on tickets collected with Kerberoasting and 
ASREPRoasting attacks.

Besides these known weaknesses, two components of the identifier RC4_HMAC_MD5 should also 
raise some red flags to those familiar with the cryptographic schemes RC4 and MD5, since both 
have well-known cryptographic vulnerabilities. RC4 is a stream cipher with statistical biases in its 
keystream that has led to practical attacks against TLS and other protocols. MD5 is a hash function 
that is not collision-free: an attacker can come up with two values that have the same MD5 hash.

https://book.hacktricks.xyz/windows/active-directory-methodology/over-pass-the-hash-pass-the-key
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/vanhoef
https://book.hacktricks.xyz/windows/active-directory-methodology/asreproast
https://www.secura.com/blog/kerberoasting-exploiting-kerberos-to-compromise-microsoft-active-directory


Exploiting RC4 weaknesses in practice does however require an attacker to intercept a lot of data 
encrypted with the same key, which appears to be difficult to achieve in the case of Kerberos. 
Furthermore, when a hash function is used as part of the HMAC construction, which turns a hash 
function into a Message Authentication Code (MAC) scheme, collision resistance is not really 
necessary. As of 2022, no practical attacks against HMAC-MD5 have been found.

However, while HMAC-MD5 may be secure and RC4’s weaknesses may be unexploitable, that 
does not mean that no mistakes can be made when composing these mechanisms in a cryptographic 
protocol. For this reason, I decided to take a look at RFC 4757, which defines how RC4-HMAC’s 
cryptographic operations are defined. It didn’t take long before I noticed a pretty clear problem:

Figure 2: CHKSUM function as defined in RFC 4757.

This CHKSUM function produces a cryptographic MAC over some message and is supposed to be 
used by the Kerberos protocol and extensions thereof. It first uses HMAC to derives a new key for 
this purpose (that part is fine), then hashes the input and a type identifier with MD5, and then 
performs an HMAC of that MD5 hash.

While HMAC may be secure, HMAC’ing an insecure hash is not: if two inputs have a colliding 
MD5 hash this will result in the HMAC function being fed two identical inputs and thus producing 
the same output. This can be attacked as follows:

1. Given an attacker who has access to a signing oracle that computes a CHKSUM value over 
attacker input, but only if this input has specific properties that the oracle checks for.

2. The attacker produces two messages data1 and data2 such that MD5(T || data1) == MD5(T || 

data2), where data1 is a value that would be accepted by the signing oracle, while data2 is 
not.

3. The attacker submits data1 to the oracle, and obtains a checksum C.

4. Since C == CHKSUM(K, T, data1) == HMAC-MD5(Ksign, MD5(T || data1)) == HMAC-MD5(Ksign, 

MD5(T || data2)) == CHKSUM(K, T, data2), it holds that C is also a valid MAC over data2. 

Therefore, an attacker has obtained a MAC for a value not accepted by the signing oracle.

RFC 4757 also specifies three other operations. The second one is ENCRYPT, which is used to 
encapsulate Kerberos tickets and is therefore probably the most critical. Fortunately, this function 
applies HMAC-MD5 directly to the data it is encrypting, so it is not vulnerable to this attack.

The other two operations are GetMIC and WRAP. These are implementations of standard GSSAPI 
functions that can be used by other protocols to respectively authenticate or encrypt messages after 

https://en.wikipedia.org/wiki/Generic_Security_Services_Application_Program_Interface
https://datatracker.ietf.org/doc/html/rfc4757


the Kerberos authentication handshake. These functions can be used within various protocols, such 
as LDAP and anything based on Microsoft RPC. These functions are used when an RC4-HMAC 
session key is negotiated during the Kerberos exchange, which is generally the case when either the 
server or client does not support AES ciphers.

Both GetMIC and WRAP are vulnerable to similar forgery attacks, since they both apply MD5 to their
input before HMAC’ing it. This might cause vulnerabilities in any protocol using this functions, 
although a network MitM position is probably going to be necessary to exploit those.

Actually exploiting an MD5 collision 

The forgery attacks against three out of the four functions defined in RFC 4757 are interesting in 
theory, but actually turning it into an exploit that achieves something useful for an attacker is quite 
tricky. The reason for this is that an attacker needs to find a MD5 collision between a “ legitimate” 
payload that they can get authenticated by some signing oracle and a “useful” payload that makes 
the attacker achieve some malicious goal when they get use it in combination with a valid 
cryptographic MAC.

While it is trivial to compute some pair (x,y) for which it holds that MD5(x) == MD5(y), there is no 
known method to compute y when x is a given value you can’t control. So when you receive a MAC
over some arbitrary message you can’t generally change this message afterwards while keeping the 
MAC the same.

A powerful type collision that is practical to compute (although it takes some time) is a chosen-
prefix collision: given two arbitrary prefixes p1 and p2, an attacker can find a collision between 
MD5(p1 || r1 || s) and MD5(p2 || r2 || s) where r1 and r2 are sequences of random-looking bytes 
generated by the collision finding algorithm and s is a suffix that is fully under the control of the 
attacker. r1 and r2 are relatively long, but can be shortened at the cost of computing time.

To find something that might be exploitable with a chosen-prefix collision, I browsed around the 
documentation of various Kerberos and AD protocols looking for one that had a combination of the 
following properties:

1. It should use of one of the CHKSUM,  GetMIC or WRAP functions.

2. There should be a method to make the protocol use the RC4-HMAC versions of these 
functions instead of the equivalents from the AES ciphers.

3. It should be possible to receive some message M1 authenticated by an automated process.

4. It should be possible to get a long, attacker-chosen, random string (r1) included in M1.

5. The bytes of M1 before the start of r1 (p1) should be completely predictable before the 
message is obtained.

6. It should be possible to construct a syntactically valid M2 that ends with a random string r2, 
directly followed by a suffix s, which equals the bytes from M1 past p1.

7. Having this M2 with a valid authentication tag should provide a useful advantage to an 
attacker.

After some reading and experimentation, I found one protocol that satisfied all of these 
requirements, which is described in the next section.

https://github.com/corkami/collisions#chosen-prefix-collisions
https://github.com/corkami/collisions#chosen-prefix-collisions
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rpce/290c38b1-92fe-4229-91e6-4fc376610c15
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ldap/lightweight-directory-access-protocol-ldap-api


The PAC protocol

By default, a Kerberos ticket just contains the name and domain of the user authenticating to a 
service. There is also space for implementation-specific authorization data that provides additional 
information about the user’s properties and privileges. Including this information in a ticket allows 
a service to make access control decisions without having to look up authorization information from
a user repository.

In Windows AD environment, the Privilege Attribute Certificate (PAC) data structure is used for 
that purpose. A PAC contains various bits of information about the user’s session, including security
policy information and the AD groups the user is a member of. What drew my interest, however, 
was the inclusion of a two fields called “Server Signature” and “KDC Signature”, which both 
include a cryptographic MAC that can be created using RC4-HMAC’s vulnerable CHKSUM 
function:

These signatures are computed by a KDC (in Active Directory this is always a Domain Controller), 
while it is issuing a service ticket. Given a user U requesting a ticket for service S, the process is 
roughly as follows:

1. The KDC fills in all PAC fields, but fills the signature data with zeroes.

2. Using the service key (the same key, derived from the service user password, used to 
encrypt the service ticket), a cryptographic MAC is computed over the PAC. The result is 
written to the server signature field.

3. Using the KDC’s own key (that of the special krbtgt account), a second MAC is computed 
over the server signature. The result, a MAC over a MAC, is written to the KDC signature 
field.

Figure 3: Snippet from the [MS-PAC] protocol specification, showing supported ciphers for its 
signature feature. Image source: Microsoft Open Specifications.

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-pac/166d8064-c863-41e1-9c23-edaaa5f36962


Figure 4: Illustration of PAC signatures. Note that the server
signature covers the PAC contents, while the KDC signature 
just covers the server signature.

Note that during my research the specification was updated to include a third signature field, called 
a “ticket signature”, with the purpose of binding the PAC stronger to the outer ticket in order to 
mitigate the “bronze bit” attack. This signature field is however not really relevant for the 
vulnerabilities described here, and when it is absent a PAC will still be accepted.

During typical usage of Kerberos, these signature fields are not that important: because the PAC is 
embedded in a ticket that is already encrypted with a service key an attacker will normally not be 
able to tamper with PAC contents. There are however a few situations when PAC tampering does 
become important: one of which is during constrained delegation.

PAC signatures and constrained delegation

There are many use cases where a service A wants to perform an action on some service B on behalf
of a user U. For example: A could be a web-based file browser and B could be an SMB share of 
which U wants to access contents.

A could log in to B’s share using its own service account. However, this would result in all users  
getting the same level of read/write access to files on the share, which may be undesirable. 
Furthermore, B will log reads and writes to the share as originating from the service account A, but 
the log will not actually make clear which end user is behind each interaction.

So ideally U would somehow give A permission to act on its behalf, and access B’s share under U’s 
account. One method to achieve this is through Kerberos unconstrained delegation: when A is 
given permission to use this feature, the KDC will embed a Ticket-Granting Ticket (TGT) in the 
service ticket that authenticates U to A. A can then unpack this TGT and use it to impersonate U 
when communicating with other services. This is risky, however, since A can not just impersonate U
towards B, but also to any other service within the domain. If an attacker were to compromise A, 

https://www.netspi.com/blog/technical/network-penetration-testing/cve-2020-17049-kerberos-bronze-bit-overview/


they would be able to abuse this position to automatically and fully take over the user accounts of 
anyone logging in to the file browser website.

There is also a more fine-grained mechanism to allow this kind of access: namely by allowing 
constrained delegation between A and B. By configuring a constrained delegation relation between 
A and B within a domain, you are basically saying that “A is allowed to impersonate users when 
talking to B”. However, this does not necessarily imply that A is allowed to impersonate users to 
some other service C, or that B is allowed to impersonate towards A.

This mechanism is facilitated through the S4U2proxy protocol: when server A possesses a service 
ticket from U to itself it will be able to present this to the KDC in exchange for a service ticket from
U to B, as long as a constrained delegation relation exists between A and B and the account U is 
allowed to be delegated. A can then use this ticket to authenticate to B with the name and privileges 
of U.

Figure 5: Illustration of constrained delegation process. First a machine 
requests a ticket from a user to itself with the S4U2Self protocol. Then it 
exchanges that for a service ticket impersonating that user with the KDC. 
Image source: Microsoft Open Specifications.

This protocol creates a problem, however, since the U-to-A ticket will be encrypted with a key 
known to A. This means that A is able to decrypt this ticket, make alterations to the PAC (for 
example making it say that U has more privileges than they actually possess) and then re-encrypt 
the ticket again. To prevent this from happening the KDC will verify the server and KDC 
signatures, and reject the ticket when these are not correct.



Since the server signature is set with a key know to A it can be updated by A to authenticate a 
maliciously altered PAC. When the server signature changes the KDC signature will no longer be 
valid, and since A will not know the krbtgt key it should not be able to update the KDC signature 
accordingly.

However, this protection is only effective under the assumption that altering the PAC will invalidate
the server signature. If A could change the PAC in such a way that the original server signature 
remains valid, then the same KDC signature will also be valid. It turns out that the RC4-HMAC 
vulnerability makes this possible.

Spoofing a PAC with an MD5 collision

If an attacker can get the KDC to fill in the signature fields of a PAC X that has an identical MD5 
hash to some other PAC Y, then the attacker can attach those signature fields to Y and make it valid. 
In order to achieve this in practice, the attacker must smuggle in a large string of random-looking 
bytes into both X and Y to make the collision work. Furthermore, they must be able to make the 
KDC produce a signed version of X that includes these random bytes.

The owner of a user account can not generally change much about their own PAC. However, it turns
out that when a user joins a new computer account to the domain, they will then get control over 
various account properties for that computer account that appear in the PAC. Since by default each 
AD user is permitted to join 10 computers, it is usually easy to add a new attacker-controlled 
computer account that can be modified in this way.

Unfortunately there are no controllable fields in a PAC that can contain arbitrary byte strings, but 
one field that comes close is “LogonScript”, which contains the value of the LDAP “scriptPath” 
property (normally used to specify a path for a script to automatically run after logging in with an 
account; I don’t know if it has any meaning for a computer account though). This field is allowed to
be quite long and can contain arbitrary UTF-16 strings.

Now, an MD5 collision algorithm is not normally going to output valid UTF-16. Luckily, Windows 
is pretty liberal on which Unicode code points it accepts, and the only strings it rejects are those 
with invalid surrogate pairs. A surrogate pair consists of two 16-bit words in between 0xD800 and 
0xDFFF. If an even-sized byte string does not contain any 16-bit word that falls into this range, 
Windows will accept it a legal value for LogonScript/scriptPath.

I used Marc Stevens’ HashClash tool to compute the chosen-prefix collision. This tool is non-
deterministic and operates in several steps: every step, a collision ‘block’ is emitted that consists of 
64 bytes. The bits in these blocks are roughly randomly distributed, resulting in a chance of around 
1 in 3 that a block happens to be valid UTF-16. I tweaked the tool to check the block after each 
step, and retry the last step if it contains a 16-bit word in the range 0xD800 and 0xDFFF. This 
allowed me to find an UTF-16-compatible MD5 collision in about three times the time it would take
to find a general collision. On average, this took about 7 hours on the hardware I used.

Now all the ingredients for PAC spoofing were present, allowing for the attack shown in the figure 
below:

https://marc-stevens.nl/p/hashclash/
https://en.wikipedia.org/wiki/UTF-16#Code_points_from_U+010000_to_U+10FFFF


Figure 6: The four steps of the PAC spoofing attack.

A second vulnerability: spoofing with AES-HMAC-SHA1

The AES encryption types Windows support use a more secure CHKSUM operation: namely 
HMAC-SHA1 truncated to 96 bits (12 bytes). While SHA1 is also no longer collision-free, these 
operations apply the HMAC to a message directly and don’t pre-hash it first. When an attacker does
not know the key, they need around 296 attempts before they can forge a MAC, which is probably 
enough in practice. 

What’s interesting about the RC4-HMAC exploit explained in the previous section is that is still 
works if the KDC signature is set using this HMAC-SHA1 scheme: since the KDC signature is only
computed over the server signature (instead of the whole PAC) any collision in the server signature 
will result in a collision in the KDC signature, regardless of whether the MAC algorithm the latter 
uses is secure.

One could say that the security of the MAC-of-a-MAC scheme used for KDC signatures depends 
on the following three properties:

https://shattered.io/


1. The KDC signature must be computed using a secure MAC algorithm.

2. The server signature must be computed using a secure MAC algorithm.

3. An attacker should not be able to produce two PAC’s with the same server signature, even if
they know the MAC key used for the server signature.

Property 1 holds when the KDC uses AES-HMAC-SHA1. Property 2 is broken when attackers can 
choose to use RC4-HMAC, but if an AES type were to be enforced this would be fixed.

However, property 3 does not necessarily follow from property 2: cryptographic MAC algorithms 
are designed to withstand forgery from attackers unaware of the key, but there’s no standard 
requirement to prevent attackers who do know the key from producing specific messages with an 
identical MAC. 

When HMAC output is not truncated and used with a collision-free hash function, it does happen to 
possess property 3. However, once you start chopping off bytes from the HMAC output (which may
be fine in a typical scenario where the attacker does not know the key) you open the opportunity for
birthday attacks.

Due to the birthday paradox, when an attacker produces two 96-bit HMAC’s with some known key 
K and two random distinct messages there is an approximate chance of 1 in 248 that the two 
HMAC’s have the same value. This means that if an attacker can compute around 248 pairs of 
HMAC’s with a known key they should be able to find a collision and therefore spoof an AES-
HMAC-SHA1 KDC signature. If someone were to write an optimized implementation, computing 
the +/- 250 SHA-1 computations needed for this collision should be possible within two days   on   
eight Nvidia GTX 1080 GPUs. This is significantly more time than the few hours needed to 
compute a chosen-prefix MD5 collision, but still very practical.

Impact

Abusing constrained delegation is already a well-known offensive technique. When you 
compromise an account A that has delegation privileges to some other account B, you will often be 
able to compromise B as well by impersonating a highly-privileged user. Only in quite hardened 
environments, where delegation is forbidden for important users, PAC spoofing may offer a useful 
advantage to the attacker. 

In practice, I think it is pretty unlikely that this constrained delegation attack will be actually used 
by pentesters, red teamers or malicious attackers. The situations in which it offers an advantage are 
limited, the attack is difficult to perform and it requires spending a hours on computing an MD5 
collision. 

It should also be noted that the vulnerable RC4-HMAC cipher is used for transport encryption 
within various other protocols, like LDAP and DCE/RPC (which in turn is used as a transport layer 
for many protocols). Also, while RC4-HMAC was designed for use in Windows, it is also supported
by alternative Kerberos implementations like MIT Kerberos and Heimdal, so protocols in non-
Windows environments may be affected as well. While I have not yet been able to find a practical 
exploit in another protocol that uses RC4-HMAC, that does not mean that such exploits will not be 
discovered in the future.

https://www.guidepointsecurity.com/blog/delegating-like-a-boss-abusing-kerberos-delegation-in-active-directory/
https://gist.github.com/epixoip/a83d38f412b4737e99bbef804a270c40
https://gist.github.com/epixoip/a83d38f412b4737e99bbef804a270c40
https://gist.github.com/epixoip/a83d38f412b4737e99bbef804a270c40
https://en.wikipedia.org/wiki/Birthday_problem


The mitigations

These vulnerabilities were disclosed to Microsoft in May 2021. They were assigned CVE-2022-
37966 and CVE-2022-37967 and patches were released on patch Tuesday of November 2022. One 
and a half year is a long time for a bug fix, but note that these are issues in protocols that a lot of 
systems depend on. Maintaining backwards compatibility and testing everything depending on these
protocol must have been quite a pain! Despite this, the patches apparently still broke some things.

The first mitigation measure provided by the patch was to change the Kerberos encryption types 
accounts support for their session keys by default. This default now only includes AES types and 
not RC4-HMAC. Administrators can still choose to re-introduce default RC4-HMAC support by 
changing a new registry key named DefaultDomainSupportedEncTypes. Furthermore, these 
defaults will not apply to accounts that have a specific value set for ms-DS-
SupportedEncryptionType, which may enable RC4-HMAC for specific accounts. Microsoft 
recommends searching your domain for these types of accounts and explicitly disabling the cipher 
on them.

A second mitigation, addressing the general PAC spoofing vulnerability, was to add an additional 
KDC signature to the PAC data structure. This signature would cover the entire PAC and not just 
the server signature.

Figure 7: The additional KDC signature added to PAC's. This time covering the 
entire PAC contents are covered, so it is no longer necessary to assume attackers 
can not create colliding server signatures.

Be aware, however, that the November patch only causes the signature to be added, but does not 
enforce validation by default. How this signature is treated depends on the value of the 
KrbtgtFullPacSignature registry key. This key can be set to “audit mode” in order to receive alerts
(event ID’s 43 and 44) whenever a PAC is received that either does not contain this signature or has 
a full signature that is invalid. If you want to actively block offending PAC’s (and completely 
mitigate the attack), this key should be set to “enforcement mode”.

Over the coming year, Microsoft will keep updating the default of this registry value until it will be 
set to enforcement mode in July 2023. Then, in October 2023, the possibility to reconfigure this 

https://support.microsoft.com/en-us/topic/kb5021131-how-to-manage-the-kerberos-protocol-changes-related-to-cve-2022-37966-fd837ac3-cdec-4e76-a6ec-86e67501407d
https://support.microsoft.com/en-us/topic/kb5021131-how-to-manage-the-kerberos-protocol-changes-related-to-cve-2022-37966-fd837ac3-cdec-4e76-a6ec-86e67501407d
https://www.scmagazine.com/news/vulnerability-management/microsoft-identifies-issues-with-kerberos-authentication-on-certain-windows-servers
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-37967
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-37966
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-37966


setting will be completely removed and full PAC signature validation is mandatory. Refer to 
Microsoft's advisory for the full timeline.

Be aware that as long as enforcement mode is not active your domain will remain vulnerable to 
this attack. If your domain uses constrained delegation but restricts it for sensitive users, you may 
want to consider switching to enforcement mode early. 

While in audit mode, you may start receiving events related to older service tickets that had been 
issued before the November update. Once you start receiving these alerts after these tickets have 
been expired, this may be indicative of an attack.

Conclusion

I have identified cryptographic protocol vulnerabilities in the Kerberos encryption type RC4-
HMAC, and the PAC Kerberos extension. I also discovered a practical exploit that, while having 
low impact, demonstrates that these vulnerabilities are not purely theoretical. Interestingly, this 
attack also shows that reliance on the MD5 hash function has not yet been fully eliminated from 
modern critical systems, and that hash collision attacks can be still be used as part of a practical 
exploit.

While RC4-HMAC has long been considered a ‘weaker’ encryption type than the newer AES-based
alternatives (and has been deprecated by the IETF), I hope that this work provides a strong 
argument to eventually fully disable this encryption type in both Active Directory and other 
Kerberos environments, just like what happened to the encryption types based on DES. Microsoft’s 
choice to no longer enable the cipher for accounts by default is a good first step in this direction. As 
a nice side-effect, phasing out RC4 will also make common attack techniques such as Kerberoasting
significantly more difficult.

https://datatracker.ietf.org/doc/html/rfc8429
https://support.microsoft.com/en-us/topic/kb5020805-how-to-manage-kerberos-protocol-changes-related-to-cve-2022-37967-997e9acc-67c5-48e1-8d0d-190269bf4efb
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