blackhat® EUROPE 2022

DECEMBER 7-8, 2022

BRIEFINGS

Breaking Kerberos' RC4 Cipher and Spoofing Windows PACs Tom Tervoort

Introduction

- 1. Introduction to Kerberos
- 2. The problem(s) with RC4-HMAC
- 3. PAC signatures
- 4. Spoofing a PAC signature
- 5. Spoofing with AES encryption types
- 6. We spoofed a PAC. Now what?
- 7. Follow-up

What is Kerberos?

blackhat®

The problem(s) with RC4-HMAC

Default supported encryption types

RC4_HMAC_MD5	Rivest Cipher 4 with Hashed Message Authentication Code using the Message-Digest function							
	Supported in Windows 2000 Server, Windows XP, Windows Server 2003, Windows Vista, W Windows 7, Windows 10, Windows Server 2008 R2, Windows Server 2012 and Windows Se							
AES128_HMAC_SHA1	Advanced Encryption Standard in 128-bit cipher block with Hashed Message Authenticatio Secure Hash Algorithm (1).							
	Not supported in Windows 2000 Server, Windows XP, or Windows Server 2003.							
	Supported in Windows Vista, Windows Server 2008, Windows 7, Windows 10, Windows 10, Windows Server 2008, Windows 7, Windows 10, Windows 10, Windows Server 2008, Windows 7, Windows 10, Windows 20, Windows Server 2008, Windows 7, Windows 10, Windows 20, Windows 20, Windows 10, Windows 20, Wi							
	Windows Server 2012, and Windows Server 2012 R2.							
AES256_HMAC_SHA1	Advanced Encryption Standard in 256-bit cipher block with Hashed Message Authenticatio Secure Hash Algorithm (1).							
	Not supported in Windows 2000 Server, Windows XP, or Windows Server 2003.							
	Supported in Windows Vista, Windows Server 2008, Windows 7, Windows 10, Windows Server 2012, and Windows Server 2012 R2.							

prithm 5 checksum

Vindows Server 2008, erver 2012 R2.

on Code using the

rver 2008 R2,

on Code using the

RC4_HMAC_MD5	Rivest Cipher 4 with Hashed Message Authentication Code using the Message-Digest algo
	Supported in Windows 2000 Server, Windows XP, Windows Server 2003, Windows Vista, W
	Windows 7, Windows 10, Windows Server 2008 R2, Windows Server 2012 and Windows Se
AES128_HMAC_SHA1	Advanced Encryption Standard in 128-bit cipher block with Hashed Message Authentication
	Secure Hash Algorithm (1).
	Not supported in Windows 2000 Server, Windows XP, or Windows Server 2003.
	Supported in Windows Vista, Windows Server 2008, Windows 7, Windows 10, Windows Se Windows Server 2012, and Windows Server 2012 R2.
AES256_HMAC_SHA1	Advanced Encryption Standard in 256-bit cipher block with Hashed Message Authentication
	Secure Hash Algorithm (1).
	Not supported in Windows 2000 Server, Windows XP, or Windows Server 2003.
	Supported in Windows Vista, Windows Server 2008, Windows 7, Windows 10, Windows Se
	Windows Server 2012, and Windows Server 2012 R2.

ypes

orithm 5 checksum

Vindows Server 2008, erver 2012 R2.

on Code using the

erver 2008 R2,

on Code using the

Coll	lisions!
RC4_HMAC_MD5	Rivest Cipher 4 with Hashed Message Authentication Code using the Message-Digest algo function
	Supported in Windows 2000 Server, Windows XP, Windows Server 2003, Windows Vista, W Windows 7, Windows 10, Windows Server 2008 R2, Windows Server 2012 and Windows Se
AES128_HMAC_SHA1	Advanced Encryption Standard in 128-bit cipher block with Hashed Message Authentication Secure Hash Algorithm (1).
	Not supported in Windows 2000 Server, Windows XP, or Windows Server 2003.
	Supported in Windows Vista, Windows Server 2008, Windows 7, Windows 10, Windows Server 2012, and Windows Server 2012 R2.
AES256_HMAC_SHA1	Advanced Encryption Standard in 256-bit cipher block with Hashed Message Authentication Secure Hash Algorithm (1).
	Not supported in Windows 2000 Server, Windows XP, or Windows Server 2003.
	Supported in Windows Vista, Windows Server 2008, Windows 7, Windows 10, Windows Se Windows Server 2012, and Windows Server 2012 R2.

ypes

prithm 5 checksum

Vindows Server 2008, erver 2012 R2.

on Code using the

erver 2008 R2,

on Code using the

RC4_HMAC_MD5 Fine, actuallyRivest Cipher 4 with Hashed Message Authentication Code using the Message-Dig function Supported in Windows 2000 Server, Windows XP, Windows Server 2003, Windows Windows 7, Windows 10, Windows Server 2008 R2, Windows Server 2012 and Windows Server 2012 Advanced Encryption Standard in 128-bit cipher block with Hashed Message Auth Secure Hash Algorithm (1). Not supported in Windows Vista, Windows Server 2008, Windows 7, Windows Server 2003. Supported in Windows Vista, Windows Server 2008, Windows 7, Windows 10, Windows Server 2012 R2.AES256_HMAC_SHA1Advanced Encryption Standard in 256-bit cipher block with Hashed Message Auth Secure Hash Algorithm (1). Not supported in Windows Server 2012, and Windows Server 2012 R2.AES256_HMAC_SHA1Advanced Encryption Standard in 256-bit cipher block with Hashed Message Auth Secure Hash Algorithm (1). Not supported in Windows 2000 Server, Windows XP, or Windows Server 2003. Supported in Windows Server 2012, and Windows Server 2012 R2.	 Col	lisions!	
AES128_HMAC_SHA1Advanced Encryption Standard in 128-bit cipher block with Hashed Message Auth Secure Hash Algorithm (1). Not supported in Windows 2000 Server, Windows XP, or Windows Server 2003. Supported in Windows Vista, Windows Server 2008, Windows 7, Windows 10, Win 	RC4_HMAC_MD5 Fine, actually	Rivest Cipher 4 with Hashed Message Authentication Code using the Message-Digest a function Supported in Windows 2000 Server, Windows XP, Windows Server 2003, Windows Vista Windows 7, Windows 10, Windows Server 2008 R2, Windows Server 2012 and Windows	algo a, W s Se
AES256_HMAC_SHA1 Advanced Encryption Standard in 256-bit cipher block with Hashed Message Auth Secure Hash Algorithm (1). Not supported in Windows 2000 Server, Windows XP, or Windows Server 2003.	AES128_HMAC_SHA1	Advanced Encryption Standard in 128-bit cipher block with Hashed Message Authentica Secure Hash Algorithm (1). Not supported in Windows 2000 Server, Windows XP, or Windows Server 2003. Supported in Windows Vista, Windows Server 2008, Windows 7, Windows 10, Windows Windows Server 2012, and Windows Server 2012 R2.	atio s Se
Supported in Windows Vista, Windows Server 2008, Windows 7, Windows 10, Win Windows Server 2012, and Windows Server 2012 R2.	AES256_HMAC_SHA1	Advanced Encryption Standard in 256-bit cipher block with Hashed Message Authentica Secure Hash Algorithm (1). Not supported in Windows 2000 Server, Windows XP, or Windows Server 2003. Supported in Windows Vista, Windows Server 2008, Windows 7, Windows 10, Windows Windows Server 2012, and Windows Server 2012 R2.	atio s Se

ypes

prithm 5 checksum

Vindows Server 2008, erver 2012 R2.

on Code using the

erver 2008 R2,

on Code using the

Known weaknesses

- NTLM compatibility => Overpass-the-hash attack
- Password-based key derivation without salting/stretching => easier Kerberoasting
- AES-to-RC4 ticket downgrading (fixed in Server 2019)
- Recent attack by James Forshaw: downgrade to breakable legacy variant

CIS Benchmarks

2.3.11.4 (L1) Ensure 'Network security: Configure encryption types allowed for Kerberos' is set to 'AES128 HMAC SHA1, AES256 HMAC SHA1, Future encryption types' (Automated)

Internet Engineering Task Force (IETF) Request for Comments: 8429 BCP: 218 Updates: 3961, 4120 Category: Best Current Practice ISSN: 2070-1721

Deprecate Triple-DES (3DES) and RC4 in Kerberos

BEST CURRENT PRACTICE

B. Kaduk Akamai M. Short Microsoft Corporation October 2018

A look at RFC 4757

Schemes f	for use	within	Kerberos	protoc
-----------	---------	--------	----------	--------

CHKSUM	Message Authentication Code	(ℕ
--------	-----------------------------	------------

ENCRYPT	Authenticated Encr	yption
---------	--------------------	--------

GSS-API functions (used by LDAP, RPC etc.)

GetMIC	Message Authentication Code	(ℕ
--------	-----------------------------	----

GSS_Wrap Authenticated Encryption

This may be a problem...

The function is defined as follows:

K = the KeyT = the message type, encoded as a little-endian four-byte integer CHKSUM(K, T, data)

Ksign = HMAC(K, "signaturekey") //includes zero octet at end tmp = MD5(concat(T, data))CHKSUM = HMAC(Ksign, tmp)

This may be a problem...

The function is defined as follows:

K = the KeyT = the message type, encoded as a little-endian four-byte integer

```
CHKSUM(K, T, data)
```

Ksign = HMAC(K, "signaturekey") //includes zero octet at endtmp = MD5(concat(T, data))CHKSUM = HMAC(Ksign, tmp)

MD5 hash collision => CHKSUM MAC collision!

Vulnerable schemes (in theory)

Schemes for use within Kerberos protoc									
CHKSUM	✗ MD5-then-HMAC: forgeable								
ENCRYPT	✓ Direct HMAC + encrypt: not vulnerable								
GSS-API functions (used by LDAP, RPC									
GetMIC	X MD5-then-HMAC: forgeable								
GSS_Wrap	X MD5-then-HMAC + encrypt: CCA vuln								

etc.)

erability

Computing MD5 collisions

Chosen-prefix (expensive)

Identical prefix (cheap)

Image source: Ange Albertini (https://github.com/corkami/collisions)

Can't do this, though...

How to exploit?

- 1. Prepare messages M1 and M2 with same MD5 hash (different prefixes, followed by **collision blocks**, followed by identical suffix)
- 2. Get server to produce M1 message, authenticated with some unknown key
- 3. Stick authentication tag from M1 on M2
- 4. Achieve some attack goal with spoofed M2

Challenges:

- Find producer of predictable M1, that attacker can query
- Find way to slot a bunch of collision blocks in M1
- Find a security boundary M2 would break, that an attacker couldn't bypass otherwise

blackhat EUROPE 2022

PAC signatures

A protocol using the broken CHKSUM

[MS-PAC]: Privilege Attribute Certificate Data Structure

Article • 04/27/2022 • 4 minutes to read

Feedback

Specifies the Privilege Attribute Certificate Data Structure, which is used to encode authorization information. The Privilege Attribute Certificate also contains memberships, additional credential information, profile and policy information, and supporting security metadata.

SignatureType (4 bytes): A 32-bit unsigned integer value in little-endian format that defines the cryptographic system used to calculate the checksum. This MUST be one of the values defined in the following table. The corresponding sizes of the signatures are also given. The key used with the cryptographic system corresponds to the value of the **ulType** field of the outer PAC_INFO_BUFFER (section 2.4) structure. The value 0x00000006 specifies the server's key, and the value 0x00000007 specifies the KDC's key.

Value	Meaning
KERB_CHECKSUM_HMAC_MD5 0xFFFFFF76	As specified in [RFC4120] and [RFC4757] section 4. Signature size is bytes. Decimal value is -138.

PAC authorization data

(MAC over PAC fields with Bob's key)

(MAC over MAC with krbtgt key)

This may be worth attacking....

PAC validation is a security feature that addresses PAC spoofing, preventing an attacker from gaining unauthorized access to a system or its resources by using a tampered PAC. This is critical in applications where user impersonation is utilized. PAC validation ensures the user presents exact authorization data as it was granted in the Kerberos ticket.

One key reason why a PAC should be verified as unaltered is to ensure that no additional privileges have been maliciously added to - or removed from - the ticket. This makes the PAC validation an important consideration when designing applications that impersonate users and access sensitive data, or applications that grant administrative privileges.

Source: Microsoft Open Specifications Support Team Blog

blackhat EUROPE 2022

Spoofing a PAC signature

Getting collision bytes into a signed PAC

PS C:\Users\Administrator> New-MachineAccount -MachineAccount pacpoc-computer Enter a password for the new machine account: [+] Machine account pacpoc-computer added PS C:\Users\Administrator> Set-MachineAccountAttribute -MachineAccount pacpoc-computer -Attribute scriptPath -Value

Machine account pacpoc-computer attribute scriptPath updated

- By default, domain users can join up to 10 computer accounts to the AD.
- Gives control of scriptPath/LogonScript property.
- Max string length more than enough!
- However, the value must be valid Unicode (UTF-16 encoded in PAC).

Are random bytes valid UTF-16?

	00	01	02	03	04	05	06	07	80	09	0A	OB	0C	0D	0E	OF	Latin script
	10	11	12	13	14	15	16	17	18	19	1A	1B	1 <mark>C</mark>	1D	1E	1F	Non-Latin European scripts
	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	African scripts
	30	31	32	33	34	35	36	37	38	39	ЗA	ЗВ	ЗC	ЗD	ЗE	ЗF	Middle Eastern and Southwest Asian scripts
	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	South and
	50	51	52	53	54	55	56	57	58	59	5A	5B	5C	5D	5E	5F	Central Asian scripts
																	Southeast Asian scripts
	60	61	62	63	64	65	66	6/	68	69	6A	6B	6C	6D	6E	6F	East Asian scripts
	70	71	72	73	74	75	76	77	78	79	7A	7B	7C	7D	7E	7F	CJK characters
	80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F	Indonesian and
	90	91	92	93	94	95	96	97	98	99	9A	9B	9C	9D	9E	9F	Oceanic scripts
																	American scripts
	40	A1	A2	A3	A4	A5	A6	Α7	A8	A.9	AA	AB	AC	AD	AE	AF	Notational systems
	во	B1	B2	Β3	B4	B5	B6	Β7	B8	Β9	ΒA	BB	BC	BD	BE	BF	Symbols
(0	C1	C2	С3	C4	C5	C6	С7	C8	С9	СА	СВ	СС	CD	CE	CF	Private use
Ī	00	D1	D2	D3	D4	D5	D6	D.	D8	D9	DA	DB	DC	DD	DE	DF	UTF-16 surrogates
	FO	F1-	F2-	F3	F4	F.5.	F.6	F7-	F8	F9	FΔ	FB	FC	FD-	FE-	FE-	As of Unicode 15.0
	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	FA	FB	FC	FD	FE	FF	

Image source: Drmccreedy, Wikimedia Commons

'Unpaired' surrogates are not allowed!

A small HashClash hack

254	# Start the computation
255	rm -f step\$k.log
256	(dostepk \$k 2>&1 &) tee step\$k.log
257	kill \$autokillerpid &>/dev/null
258	killall - <i>r</i> md5 &>/dev/null
259	
•260	# Check for forbidden bit pattern (i.e. invalid UTF-16)
•261	<pre>illegal=`cat workdir\$k/coll2* xxd -p -c 2 grep -q 'd[89a-f]\$'; echo \$?`</pre>
•262	
263	# Check if the termination was completed or killed
264	<pre>if [[-f workdir\$k/killed]]; then</pre>
265	failedk=\$k
266	let $k=$ (($k > 1$? $k-1$: 0))
267	notify "Step \$failedk failed. Backtracking to step \$k"
268	let backtracks=backtracks+1
•269	elif [[\$illegal -eq 0]]; then
•270	notify "Illegal bit pattern. Retrying step \$k "
271	else
272	notify "Step \$k completed"
273	let k=k+1
274	
275	sleep 2
276	done
277	

- 2 in 3 chance an intermediate 64-byte block contains UTF-16 surrogate.
- Reject those; takes thrice as long but results in a UTF-16 compatible collision.

gate. **le collision**.

Attack step 1: prepare fake PAC and request real PAC

Spoofed PAC

PAC_INFO_BUFFER array
User: attacker
LogonPath data: ""
Group memberships: 513, 512, 520, 518,
Zero signatures: 0000000000
MD5: 91839c9173

Authentic PAC

Step 2: compute collision

Spoofed PAC

PAC_INFO_BUFFER array
User: attacker
LogonPath data: ""
Group memberships: 513, 512, 520, 518,
Zero signatures: 0000000000
<collission 1="" bytes=""></collission>
MD5: 39596d86c6

Authentic PAC

PAC_INFO_BUFFER array
User: attacker- computer\$
LogonPath data:
<collission 2="" bytes=""></collission>

MD5. 3959000000.

Step 3: store collision bytes in scriptPath request PAC again

Attack step 4: combine to form final PAC

Spoofed PAC

blackhat®

Spoofing with AES encryption types

The problem with MAC-over-MAC

Problem 1: A secure MAC over an insecure MAC is still an insecure MAC.

Problem 2: Collision-resistance against an attacker who knows the secret key is not a standard security requirements for MAC's.

Colliding AES*-HMAC-SHA1 ciphers

- Alternatives to RC4-HMAC use HMAC-SHA1, truncated to 12 bytes.
- Birthday attack with known key: \approx 1 in 2^48 collision chance.
- Brute-forcing this is much slower than finding an MD5 CPC, but still very feasible with a bunch of GPU's.
- Allows spoofing PAC signatures that use AES*-HMAC-SHA1.

(b5)	evil
(87)	eviL
(61)	evIl
(c4)	evIL
(93)	eVil 🥤
(16)	eViL
(87)	eVII
(d4)	eVIL
(50)	Evil
(f2)	EviL
(b7)	EvIl
(05)	EVIL
(33)	EVil
(1a)	EViL
(22)	EVIL
(a4)	EVIL

blackhat®

We spoofed a PAC. Now what?

PAC signatures and constrained delegation

Image source: Microsoft Open Specifications

KDC signature validation happens here!

A successful (but limited) exploit

- Well-known attack: if you compromise a server A, and server A has a constrained delegation relationship with server B; you can impersonate users when connecting to server B.
- However, accounts in the *Protected Users* group can't be delegated.
- Common for administrators highly-privileged users.
- PAC spoofing: turn a user into domain admin while delegating.
- Conclusion: we can bypass this security feature!
- Impact similar to "bronze bit attack" (CVE-2020-17049).

blackhat EUROPE 2022

Follow-up

The patches

- Disclosed in May 2021
- Patches released in November 2022 (!)
- RC4-HMAC flaw: CVE-2022-37966
- General PAC signature flaw: CVE-2022-37967

CVE-2022-37966 fix

- By default: accounts can't get ticket with RC4-HMAC session key
- ... unless: account has **ms-DS-SupportedEncryptionType** flag that allows it
- RC4-HMAC can be re-enabled domain-wide by updating DefaultDomainSupportedEncTypes registry key
- Windows event 42 when account does not have keys for AES ciphers
- Side-effect: prevent RC4 Kerberoasting (?)
- May limit overpass-the-hash as well

CVE-2022-37967 fix

Black Hat Sound Bytes

- RC4-HMAC is broken. Not just in theory but also in practice. •
- MD5 collisions are apparently still relevant in 2022.
- AD security relies on legacy crypto protocols that are very hard to modify or get rid of.