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Abstract—We report several practically-exploitable crypto-
graphic vulnerabilities in the Matrix standard for federated real-
time communication and its flagship client and prototype imple-
mentation, Element. These, together, invalidate the confidentiality
and authentication guarantees claimed by Matrix against a
malicious server. This is despite Matrix’ cryptographic routines
being constructed from well-known and -studied cryptographic
building blocks. On the one hand, one of our attacks proceeds
by chaining three attacks to achieve a full authentication and
confidentiality break. On the other hand, the vulnerabilities
we exploit differ in their nature (insecure by design, protocol
confusion, lack of domain separation, implementation bugs)
and are distributed broadly across the different subprotocols
and libraries that make up the cryptographic core of Matrix.
Together, these vulnerabilities highlight the need for a systematic
and formal analysis of the cryptography in the Matrix standard.

I. Introduction

Matrix [1] is an open standard and communication proto-
col roughly aiming to do for real-time communication what
SMTP does for email. In particular, the specification defines
a federated communication protocol allowing clients, with
accounts on different Matrix servers (their homeservers), to
exchange messages across the entire ecosystem. Since this
setting inherently involves untrusted third party servers, the
specification enables end-to-end encryption by default.1

While Matrix’ federated nature makes it difficult to assess
how widely it is used, several notable organisations and
institutions have adopted it or announced plans to do so. For
example, both KDE and Mozilla announced plans to switch
their internal communications to Matrix in 2019; the Fourth
Estate announced its plans to build an encrypted messenger for
journalists and news organisations based on Matrix in 2021;
the French government announced plans to create their own
instant messaging app – Tchap – based on Matrix which was
released in 2019; the German ministry of defence launched
BwMessenger – for use in internal, official (and classified)
communication – based on Matrix in 2020 with a view to
move over other parts of the German government; the German
healthcare system announced its plans to adopt Matrix in 2021.
In March 2021, matrix.org – the most popular Matrix server

1In addition to standard security considerations such as breaches or lack of
trust in a single-server setting.
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Fig. 1: Alice establishes a Megolm channel (a) and sends a
ciphertext (b).

– announced that there are 28 million global visible accounts.
The Element (see below) website claims +60M Matrix users.

The most popular implementations of the Matrix server
and client are Synapse and Element (Desktop, Android, iOS,
Web) respectively. While the security guarantees of Ma-
trix and these popular implementations have received at-
tention from the information security practitioners commu-
nity – e.g. CVE-2022-31052, CVE-2022-23597, CVE-2021-
41281, CVE-2021-39163, CVE-2021-39164, CVE-2021-
32659, CVE-2021-32622 and CVE-2021-29471 – its bespoke
cryptographic protocol has not received an in-depth treatment
from the cryptographic (academic or practitioner) community.
That is, while Matrix uses TLS to secure the communica-
tion between clients and servers and between servers (for
federation), end-to-end encryption is realised using a custom
cryptographic protocol called Megolm which extends Olm to
support group chat (see below). Since in Matrix every chat is
a group chat, including 1-on-1 chats (as users have different
devices), the study of its Megolm group messaging protocol
is central to understand its security guarantees. We begin by
describing the Matrix cryptographic protocol.

A. Matrix Overview
In Matrix a user may have several devices (e.g. a phone and
a laptop). For a user Alice with identifier 𝐴, we refer to their
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𝑖th device as (𝐴, 𝑖) with device identifier 𝐷𝐴,𝑖 . Each user
has an account with a homeserver, which allocates their user
and device identifiers. There are many homeservers, i.e. the
protocol is federated, but for our purposes it suffices to think
of the network of homeservers as a single such homeserver
that facilitates communication.

A room is a collection of devices communicating in a single
conversation. Each unique pair of devices in a room shares an
Olm channel [2], used to share and exchange channel estab-
lishment information for the devices’ Megolm channels [3].
The Olm protocol is an implementation of a modified 3DH
key exchange protocol [4]2 and the Signal Double Ratchet
algorithm [6], [1]. Olm plaintexts exchanged between devices
are not visible to users, and are used to manage Megolm
channels as in Fig. 1. Out-of-band verification allows users
to verify that the received (device-specific) Olm public keys
are actually owned by that device.

Each Megolm channel [3] is a unidirectional channel,
used to send payload information from one device to all
other devices in the room. The composition of unidirectional
Megolm channels enables groups of devices to communicate in
a single conversation. These unidirectional Megolm channels
are used to exchange all instant messages (those entered and
seen by users). All conversations are implemented as group
messaging, even with only two devices present. We use the
terms Megolm channel and Megolm session interchangeably,
but prefer the latter to emphasise a party’s view or state of a
channel.

After channel establishment, senders (and receivers) sym-
metrically ratchet (via the bespoke Megolm Ratchet [3]) the
shared secret state forward after each message sent (resp. re-
ceived) by the unidirectional channel, aiming to achieve for-
ward secrecy. We note, however, that the specification allows
implementations to keep old copies of the ratchet on the
receiving side [3], [7] – something which matrix-js-sdk
does – and that this invalidates forward secrecy guarantees.
In addition, senders can periodically generate a new (and
independent) Megolm secret state, and send it to the receiving
devices in the room via Olm, thus aiming to achieve some
form of post-compromise security.

Each device has a unique cryptographic identity (with long-
term signing keys). Matrix optionally allows users to verify
and sign each others identities and devices. The Cross-Signing
module defines cryptographic identities for users and their
devices (each consisting of one or more Ed25519 [8] key
pairs). These are linked with one another using Ed25519
signatures, as the result of verification through the Verification
Framework. It provides protocols for users to verify other
users, and their own devices, using an out-of-band channel. It
provides two protocols: Short Authentication String (SAS)
verification and QR code verification.

By default, a user’s secret cross-signing keys are generated
and stored on the first device for which they login. However, it

23DH key exchange is a pre-cursor to the Extended Triple Diffie-Hellman
(X3DH) key exchange protocol [5].

is important for a user to be able to recover their cross-signing
identity if they lose access to this device (or simply log out).

The cross-signing module uses the Secure Secret Storage
and Sharing (SSSS) module to store and backup users’
secret keys. SSSS enables users to backup secrets to their
homeserver (encrypted using a recovery passphrase) as well
as to share those secrets with their verified devices (over the
Olm protocol). The SSSS module provides a generic facility
for storing and sharing user secrets.

In addition to SSSS, Matrix offers two modules to enable
devices to backup and share Megolm sessions specifically. The
Key Request protocol provides a means for devices to request
and share copies of inbound Megolm sessions with each other.
The Server-side Megolm Backups module enables devices to
backup copies of inbound Megolm sessions on the server. This
allows a user’s new device to gain access to old messages the
user has access to, even if no other devices are online (that
could otherwise distribute the sessions using the Key Request
protocol). The recovery key used to decrypt these backups is
itself stored and shared using the SSSS module.

B. Prior Work

Cryptanalysis: An audit of the Olm and Megolm protocols
(along with their reference implementation) was performed by
NCC Group in 2016 [7]; this audit found a number of security
issues that have now been fixed or recorded as limitations in
the protocol specification [3], [2]. Since then, several further
cryptographic vulnerabilities have been reported, e.g. CVE-
2021-34813 and CVE-2021-40824. Wong reported a vulner-
ability in the out-of-band verification provided by the Short
Authentication String (SAS) protocol in Matrix [9, Chap-
ter 11]. These suggest that further study is needed to assess the
resistance of Matrix to cryptanalytic attacks. In 2022 Matrix
started a series of audits of their (future) core libraries [10],
[11].

Formal analysis: As mentioned above, Olm is a modified
implementation of the Signal protocol, which itself has re-
ceived multiple formal analyses over the last seven years [12],
[13], [14]. Further, the Megolm protocol shares its architecture
with the Sender Keys variant of the Signal protocol [15].
This variant is also used to implement group messaging in
WhatsApp. For this reason, existing analysis of these protocols
will be relevant to Megolm; [16] provides one such example.
However, none of these works cover Olm or Megolm itself.

C. Contributions

We report several practically-exploitable vulnerabilities in
the end-to-end encryption in the Matrix standard and de-
scribe proof-of-concept attacks exploiting these vulnerabil-
ities. When relying on implementation specific behaviour,
these attacks target the Matrix standard as implemented by
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the matrix-react-sdk and matrix-js-sdk libraries.3

These libraries provide the basis for the aforementioned Ele-
ment flagship client.

We are primarily interested in a setting where encrypted
messaging and verification are enabled, i.e. in the presence of
the strongest protections offered by the protocol. Furthermore,
all attacks require cooperation of the homeserver. This is
a natural threat model to consider, given that end-to-end
encryption aims to provide protections against such untrusted
third parties. As mentioned above, for ease of exposure, we
assume a single homeserver in this work. We report the
following vulnerabilities and attacks:

a) Trivial confidentiality break: In Section III we start
by reporting two trivial attacks breaking confidentiality of
Megolm channels, the central object in Matrix secure mes-
saging, thus breaking confidentiality of user messages. These
attacks exploit the homeserver’s control over the list of users
and/or devices in a room. The attacks differ in whether they
target the list of users in a room or the list of devices of a user.
We note that this attack does not break confidentiality of the
underlying Olm sessions, nor does it break the cryptographic
guarantees of individual Megolm sessions. Instead, we utilise
the control that homeservers have over the room participants to
force target clients into sharing decryption keys with devices
under the attacker’s control. These attacks exploit issues in the
specification.

b) Attack against out-of-band verification: In Section IV we
report an attack on out-of-band verification in Matrix. This
enables an attacker to convince a target to cryptographically
sign (and thus verify) a cross-signing identity controlled by
the attacker. This attack exploits a lack of domain separation
between device identifiers and users’ master signing keys.
The attack enables a mallory-in-the-middle (MITM) attack
breaking confidentiality and authenticity of the underlying
Olm channels (and thus also Megolm channels). This attack
exploits an insecure implementation choice permitted by the
specification which does not enforce domain separation.

c) Semi-trusted impersonation: In Section V we report on
an impersonation attack against Megolm by which attackers
achieve the same level of authentication as keys honestly
forwarded through the Key Request protocol (cf. Section II-H).
Since the Key Request protocol does not provide the same se-
curity guarantees as non-forwarded keys, messages decrypted
using forwarded keys are flagged as less trustworthy in the
UI. Whilst Matrix clients restrict who they share keys with,
no verification is implemented on who accepts key shares
from. Our attack exploits this lack of verification in order to
send attacker controlled Megolm sessions to a target device,

3Our analysis is based on, and our proof-of-concept attacks tested against,
Element Web at commit #479d4bf with matrix-react-sdk at commit
#59b9d1e and matrix-js-sdk at commit #4721aa1. We note that
while these SDKs are still the default, Matrix is in the process of transitioning
to matrix-rust-sdk [17].

claiming they belong to a session of the device they wish
to impersonate. The attacker can then send messages to the
target device using these sessions, which will authenticate
the messages as coming from the device being impersonated.
This exploits an implementation bug supported by a lack of
guidance on processing incoming key shares in the spec.

d) Trusted impersonation: In Section VI-B we report on
a second impersonation attack against Megolm which builds
on the first. Here, we exploit protocol confusion, whereby
message types expected to originate from an Olm channel
will be accepted when sent over a Megolm channel. Briefly,
the attack proceeds by initiating a new Megolm session over
the Megolm channel established through the previous attack
(Section V). This inner shared Megolm session inherits its
sender from the outer, forged Megolm session, but without
inheriting its forwarded status. Thus, this attack allows an
attacker to upgrade the level of trust enjoyed by the key
material sent by the attacker such that no indication is given
in the UI that a user should treat it with caution. That is,
this attack convinces a target device of the validity of the
impersonated session to a stronger degree than legitimate
execution of the Key Request protocol. As a consequence,
an attacker can outperform a legitimate party in convincing
a target device of the validity of a sending identity. This
exploits an implementation bug aided by the overall design
of cryptographic processing in matrix-js-sdk.

e) Impersonation to confidentiality break: In Section VI-C
we report on a confidentiality break against Megolm which
builds upon the semi-trusted impersonation attack in Sec-
tion V. Upon completing out-of-band self-verification, the
newly verified device will use the SSSS protocol to request
a copy of the key used for server-side Megolm backups from
the verifying device. The Olm/Megolm protocol confusion in
Section VI-A (also exploited in Section VI-B) can be exploited
by an attacker to impersonate a trusted device and reply to the
request, setting the Megolm backup key used by the newly
verified device.4 The device will accept this key and proceed
to backup inbound Megolm sessions to the homeserver. The
attacker and colluding homeserver are then able to decrypt
the backups, giving them access to the plaintext of every
Megolm message the target device has access to. This exploits
an implementation bug.

f) IND-CCA break: AES-CTR is used for encryption in both
the SSSS protocol and in symmetric Megolm Key Backups.
However, the initialisation vector (IV) for AES-CTR is not
included in the message authentication code (MAC). A similar
issue exists when attachments are shared. This can be exploited
to break the IND-CCA security of the underlying encryption
scheme: an adversary is able to decrypt a challenge cipher-
text by querying encryption and decryption oracles, without

4That is, the attack in Section VI-C exploits the same class of vulnerability
as Section VI-B, but a different instance of this vulnerability.
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requesting decryption of the challenge ciphertext directly.
However, in practice we do not know how to instantiate this
attack and thus it, in contrast to those mentioned so far, is
only of theoretical interest. See Appendix A. This is an issue
in the Matrix specification.

In summary, we found that Matrix and its flagship client
Element as deployed provide neither authentication nor confi-
dentiality against homeservers that actively attack the protocol,
i.e. its end-to-end encryption falls short of the security guar-
antees expected from it.

D. Disclosure

We disclosed our attacks to the Matrix developers between
20 May 2022 and 6 July 2022. They acknowledge these as
vulnerabilities except for one of our attacks on confidentiality
(discussed in Section III-C) which they consider as an accepted
risk (but aim to mitigate regardless). We coordinated a public
vulnerability disclosure for the 28 September 2022, to coincide
with the first set of countermeasures. These should provide
immediate fixes (to varying degrees) for the attacks in Sec-
tions III to VI. At the time of public disclosure, the Matrix
specification and Element will not be vulnerable to the attack
against out-of-band verification (Section IV), the semi-trusted
impersonation attack (Section V), the trusted impersonation
attack (Section VI-B) and the impersonation to confidentiality
attack (Section VI-C). A second set of countermeasures is
currently in the design phase, which aim to provide complete
fixes for every vulnerability in this work.

In particular, the attacks concerning homeserver control of
room membership and user’s device lists (Section III) will not
be fixed at the time of disclosure. However, a new local per-
room setting will be added alongside the disclosure in order
to mitigate the homeserver’s control of user device lists. In the
long-term, the Matrix developers plan to develop fixes for both
of these attacks (detailed in Section III-C). A fix for the IND-
CCA break (in Appendix A) will also be distributed at a later
date. Since the IND-CCA break appears not to be practically
exploitable, this should not affect users.

To aid readability, throughout the remainder of this work, we
use the present tense to refer to vulnerabilities and behaviours
in Matrix clients or servers even if these have since been
addressed in response to our vulnerability disclosures.

E. Scope

We discuss the scope of this work:
First, we exclusively considered the Matrix specification

and the Matrix flagship client Element. There are other
clients available, see e.g. [18], some of which also use the
matrix-js-sdk and some of which do not, but we did not
investigate to what extent these other clients are vulnerable to
our attacks or variants thereof. For the avoidance of doubt,
any implementation specific behaviour reported throughout
exclusively refers to matrix-js-sdk and Element, even

when we write “Matrix”.
Second, in this work we focus on authentication and con-

fidentiality, i.e. the two most fundamental security properties
provided by cryptography, without the need for a client se-
cret compromise. Matrix aims to provide stronger notions of
security such as forward secrecy (i.e. before a client secret
compromise), post-compromise security (i.e. eventually after
a client secret compromise) and deniability. Given our results
against more fundamental security goals, we consider such
more advanced notions of security out of scope.

Third, our attacks target Matrix in the setting where ev-
ery device and user have performed out-of-band verification.
In this ideal scenario, the client interface will display a
warning next to messages that are unencrypted, or cannot
be cryptographically linked to the claimed sender. From the
perspective of an attacker, this is the most challenging and thus
interesting setting. However, when a user has not been verified,
the Element client will no longer display such warnings.
The Matrix specification does not enforce that messages in
encrypted rooms are indeed encrypted. This renders imper-
sonation attacks trivial: the attacker, in collusion with the
homeserver, simply sends an unencrypted message with a
forged sender. As such, even when the issues described in
this work are fixed, clients operating in this non-ideal setting
do not offer any cryptographic authentication guarantees.

II. Preliminaries

We write semi-trusted for messages that are accepted but
displayed with a warning and trusted for messages that are
accepted (without warning).

A. Algorithms

We reference the following algorithms:
• sort(𝑥1, 𝑥2, . . . , 𝑥𝑛) returns a sorted copy of the list
[𝑥1, 𝑥2, . . . , 𝑥𝑛].
• HMAC-SHA-256(𝑘, 𝑚) is a Hash-based Message Authen-
tication Code (HMAC) constructed with the SHA-256 [19]
hash function taking as input a key 𝑘 and message 𝑚 [20].
Matrix truncates HMAC outputs to 64 bits5, which contrasts
with the HMAC RFC [21] which recommends at least 128 bits
for SHA-256 (no less than half the length of the hash output)
and not less than 80 bits.
• HKDF-SHA-256(𝑠, 𝑘, 𝑐, ℓ) is a Hash-based Key Derivation
Function (HKDF) constructed with SHA-256 where 𝑠 is the
salt, 𝑘 is the secret key material, 𝑐 is the info/context and ℓ is
the output length in bytes [22], [23].
• AES(𝑘, 𝑚) is AES [24] taking a key 𝑘 and a message block
𝑚 of size 128 bits. Matrix uses AES-256, i.e. keys of length
256 bits.
• AES-CTR(𝑖𝑣, 𝑘, 𝑚) is AES in counter (CTR) mode [25]

5This issue was noted in an audit[11] and will be fixed in a future version
of the Olm and Megolm specifications.



where 𝑖𝑣 is the nonce, 𝑘 is an AES encryption key and 𝑚 is
a message.
• AES-CBC(𝑖𝑣, 𝑘, 𝑚) is AES in cipher block chaining (CBC)
mode [25] where 𝑖𝑣 is the nonce, 𝑘 is an AES encryption key
and 𝑚 is a message. Matrix uses PKCS7 [26] padding to split
plaintexts into blocks for CBC mode in the Olm and Megolm
protocols, as well as the asymmetric Megolm backup scheme.

B. Message Types

Matrix supports a number of message types. Messages with
the type m.room.message are instant messages entered
and seen by users. Encrypted messages consist of an inner
plaintext message (with its own message type) that has been
encrypted and placed in an outer message structure with the
type m.room.encrypted. The outer structure of an en-
crypted message is an unauthenticated wrapper, specifying the
encryption algorithm used. We introduce additional message
types in this text as needed.

Messages are sent either to a particular room, in which case
they will be distributed by homeservers to the devices of all
users in the room, or to a particular device. In the latter case,
these are known as to-device messages.

C. Users, Identities and Cross-Signing

Upon registration, each user is allocated a user identifier
𝐴 of the form @localpart:domain by their home-
server. Similarly, when a new device logs in with ac-
count credentials, the homeserver allocates device identifier
𝐷𝐴,𝑖 . The device then generates its keys (a) Device Finger-
print/Signing Key (𝑎𝑠𝑘𝐴,𝑖 , 𝑎𝑝𝑘𝐴,𝑖), and (b) Olm Key Bundle
(isk𝐴,𝑖 , ipk𝐴,𝑖 , esk𝐴,𝑖 , epk𝐴,𝑖 , fsk𝐴,𝑖 , fpk𝐴,𝑖). It registers them
with the homeserver (as a bundle self-signed with 𝑎𝑠𝑘𝐴,𝑖). The
tuple (esk𝐴,𝑖 , epk𝐴,𝑖) represents the pre-key bundle consisting
of one or more key pairs. The tuple (fsk𝐴,𝑖 , fpk𝐴,𝑖) represents
a bundle of one or more fallback key pairs [27].

The cross-signing module [28] provides support for crypto-
graphic user identities. It defines three sets of cryptographic
keys for each user in the form of Ed25519 digital signature key
pairs: (a) Master Keys (msk𝐴,mpk𝐴); (b) User-signing Keys
(usk𝐴, upk𝐴); (c) Self/Device-signing Keys (ssk𝐴, spk𝐴).

These key pairs are generated on the device where cross-
signing is setup. The master key mpk𝐴 signs both the self-
signing key ssk𝐴 and the user-signing key upk𝐴. The self-
signing key is used to sign a user’s own devices, while the
user-signing key is used to sign other users’ master keys. These
signatures are created and distributed by the homeserver.

When logging in to a new device, users are prompted
to (optionally) verify it (as described in Section II-D). An
existing device (with control of the user’s cross-signing keys)
and the new device then mutually verify each other out-of-
band. Once verification is complete, the new device’s keys
(𝑎𝑝𝑘𝐴,𝑖 , ipk𝐴,𝑖) are signed by the user’s self-signing key ssk𝐴.
The existing device then distributes the cross-signing secrets to

the new device using the secret sharing functionality of SSSS
(Section II-E). This process is referred to as self-verification.

Additionally, when two users are communicating with one
another, they may perform an out-of-band verification between
two of their devices (each device should have a copy of
their respective user’s cross-signing keys). Once verification
is complete, each user will sign the other’s master key mpk
with their user-signing key usk. This process is referred to as
cross-signing.

Together, these enable pairs of users to verify each other’s
identities, then rely on the other user to verify each of their
own devices. See Fig. 3.

In this work, the term sender identity refers to the combi-
nation of the user’s cross-signing keys and a set of long-term
device keys (𝑎𝑝𝑘, 𝑖𝑝𝑘).

Key Description

msk𝐴 mpk𝐴 Master signing key for user A
usk𝐴 upk𝐴 User signing key for user A
ssk𝐴 spk𝐴 Self-signing key for user A
𝑎𝑠𝑘𝐴,𝑖 𝑎𝑝𝑘𝐴,𝑖 Fingerprint/signing key for A’s 𝑖th device
isk𝐴,𝑖 ipk𝐴,𝑖 Olm identity key for A’s 𝑖th device
esk𝐴,𝑖 epk𝐴,𝑖 Olm ephemeral pre-keys for A’s 𝑖th device
fsk𝐴,𝑖 fpk𝐴,𝑖 Olm fallback keys for A’s 𝑖th device

Fig. 2: Summary of the keys used in Matrix.

D. Out-of-band Verification

The Matrix standard defines an out-of-band verification frame-
work allowing users to verify themselves [1]. This functional-
ity enables users to ensure that the cryptographic identity they
are communicating with correctly maps to the intended user.
This is intended to prevent mallory-in-the-middle attacks in
cases of first use in contrast to a trust-on-first-use approach.

Matrix defines multiple out-of-band verification protocols
within this framework. Element defaults to using the QR Code
Verification Protocol when the device has a camera, and
a Short Authentication String (SAS) protocol in all other
cases. In this work, we refer to users and devices that have
gone through this process as having been verified.

Short Authentication String Protocol: We briefly describe
Matrix’ SAS protocol, focusing on the parts relevant to our
attack in Section IV. The SAS protocol builds upon the ZRTP
key agreement handshake [29]. It uses an ephemeral X25519
key exchange to compute a shared secret. Any attempts to
modify the connection between the two parties should result
in them computing different shared secrets. To detect this, the
parties compare their shared secrets through an authenticated
out-of-band channel. They then share their cryptographic
identities, using the shared secret for verification. A detailed
description of the protocol can be found in Figures 11 and 12.

Once the shared secret has been generated, each party
compiles a list of the keys they wish to have signed into an
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Fig. 3: An example of the long-term key hierarchy for two
users, Alice and Bob, and each of their devices [1]. Each
arrow denotes a signature. Dashed arrows denote signatures
resulting from an out-of-band verification between Alice and
Bob. Dotted arrows denote signatures resulting from an out-of-
band verification between a user cross-signing session and a
device (self-verification). Since the cross-signing session exists
on the first device where cross-signing is enabled, the first
device identity signed by each user is not the result of an out-
of-band verification. Diagram based on [1, #cross-signing].

m.key.verification.mac message (Fig. 4). The shared
secret is used to compute a message authentication code
(MAC) for each key, calculated over its public part and details
from the SAS protocol execution. A second MAC is computed
over a list of key identifiers, corresponding to the list of keys
for which MACs have been included. These MACs are added
to the message, and ensure that only parties in possession of
the shared secret can request keys for signing.

Out-of-band verification is used in two cases. (1) Two users
are verifying each other: The protocol is executed between
a device from each user (each of which holds the user’s
secret cross-signing keys), and each include their master
cross-signing key mpk in the m.key.verification.mac,
which the other device will sign using their user signing
key usk. (2) A user is verifying one of their own devices:
The protocol is executed between the verifying device (which
holds the cross-signing secret keys) and the new device. The
device being verified uses the m.key.verification.mac
message to send their device identity key 𝑎𝑝𝑘 to the verifying
device. The verifying device uses the device self-signing key
ssk to sign the new device’s identity key 𝑎𝑝𝑘 and Olm identity
key ipk.

E. Secure Secret Storage and Sharing

The Secure Secret Storage and Sharing (SSSS) module en-
ables devices to share secrets with the user’s other trusted
devices [1]. It provides two sets of functionality: (1) Backup
secret key material to the server, encrypted symmetrically
using a key generated from a master passphrase. (2) Distribute

these secrets to other devices via a request-response protocol,
similar to the Key Request protocol described in Section II-H.

This module is used to backup user cross-signing secrets and
the recovery key for server-side Megolm keys to the server,
as well as to distribute them between a user’s devices.

We briefly describe the secret sharing functionality of SSSS.
Upon completion of self-verification, the newly verified device
will request copies of the user’s secret cross-signing keys and
secret Megolm backup recovery key from the verifying device.
An unencrypted m.secret.request message is sent for
each secret they are requesting. When the verifying device
receives the request, it will check that the requesting device’s
identity is verified, then reply with the requested secret in an
Olm encrypted, to-device m.secret.send message. When
receiving m.secret.send messages, matrix-js-sdk
requires that the response is encrypted and that the Olm
identity key 𝑖𝑝𝑘 used for encryption matches the device
identifier they sent the request to.

F. Megolm Sessions

Megolm sessions consist of the following components:
(a) Group signing and verification keys (𝑔𝑠𝑘, 𝑔𝑝𝑘) using
Ed25519; (b) Megolm ratchet 𝑅 and (c) Megolm ratchet index
𝑖. While the nature of the ratchet in Megolm deviates from
Olm and Signal, and is one of the innovations of the Megolm
protocol, its details do not matter for our purposes. Thus, we
may simply think of (𝑖, 𝑅) as some symmetric key material.
The group verification key 𝑔𝑝𝑘 is used as the unique identifier
for sessions. As such, it is also referred to as the session iden-
tifier. Megolm sessions are also referred to as the room key. A
Megolm session is split into an outbound and inbound session.
The inbound session allows the holder to decrypt and verify
messages that were encrypted and signed by the outbound ses-
sion. The outbound session contains 𝔖𝑔𝑠𝑘 B (𝑖, 𝑅, 𝑔𝑠𝑘) while
the inbound session contains 𝔖𝑔𝑝𝑘 B (𝑖, 𝑅, 𝑔𝑝𝑘). Messages
are encrypted using AES in CBC mode with HMAC applied to
the ciphertext, so it is a encrypt-then-MAC construction. This
authenticated ciphertext is then signed with 𝑔𝑠𝑘 and the result
sent to the homeserver for distribution. Figure 10 describes
how Megolm sessions are initiated, as well as how they are
used to encrypt and decrypt new messages.

G. Distributing Megolm Sessions

When a session is created, the inbound session is distributed
to the other devices in the room. It is first encrypted and then
signed with the group signing key 𝑔𝑠𝑘 , wrapped inside an
m.room_key message, and then sent over separate pairwise
Olm channels between the session creator and each receiving
device. To distribute these Olm ciphertexts to individual de-
vices, their wrapper is formatted as a to-device message which
the homeserver will deliver to the correct device.

Since the Megolm session has been sent over an Olm
channel, the receiving device is able to cryptographically link



the Olm identity (see below) of the sending device with the
session. When a message is verified, decrypted and displayed,
participants use these keys (associated with the Megolm ses-
sion used to decrypt it) to identify the cryptographic identity
of the sender.

H. Key Request Protocol

There are cases where a device should have access to an
inbound Megolm session, but missed its initial distribution.
For example, when an existing member of the room adds a
new device, the latter should be given access to all Megolm
sessions created since the device joined that room.

To solve this, the Matrix standard defines a Key Request
protocol, which allows devices in a group to request inbound
Megolm sessions they need (the secret keys they are missing),
and for devices to share them; where permitted.

The protocol starts by the requesting client send-
ing a m.room_key_request to-device message to
each device they are requesting from. When receiving
m.room_key_request messages, each device must de-
termine whether it should share the key with the requesting
device. Devices may only share Megolm sessions with other
devices of the same user or, (if they are the session owner)
to devices which they have sent the session to in the past.
Additionally, when sharing sessions with devices of the same
user, those with cross-signing enabled may only share sessions
with other verified devices. To fulfill a request, the sharing
device packages their copy of the inbound Megolm session in
session sharing format [3] (without the signature 𝜎mg) inside
an Olm encrypted, to-device m.forwarded_room_key
message [1].

I. Server-side Megolm Backups

The Matrix standard provides a mechanism for devices to
backup copies of inbound Megolm sessions to the server.
These backups are shared across different devices of the same
user, enabling new devices to access Megolm sessions when
the user’s other devices are not online (and are, thus, unable
to forward session keys through the Key Request protocol).

A backup configuration, specifying the backup scheme and
key to use, is stored on the homeserver. Clients will trust this
configuration if the field signifying the key to use has been
signed with the user’s master cross-signing key msk, or if the
client already has a copy of the secret part of the key.

1) Asymmetric Megolm Key Backups: For setup, the client
generates an X25519 [30] recovery key pair. The secret part of
the recovery key pair is either generated from a user-supplied
passphrase, or encrypted and backed up to the server using
SSSS (described in Section II-E). The public key is signed by
the user’s master cross-signing master key msk, then uploaded
to the homeserver as part of the backup configuration.

To backup a Megolm session, each device fetches the

backup configuration from the homeserver. Clients trust the
configuration if they possess the private part of the key, or if
the public key has been signed by msk. Next, they generate
a shared secret by performing DH key exchange with the
recovery key and an ephemeral X25519 key pair. This shared
secret is fed into HKDF-SHA-256 to generate an IV and
key material for authenticated encryption using AES-CBC
followed by HMAC-SHA-256, used to encrypt the inbound
Megolm session. The resulting ciphertext is uploaded to the
homeserver (with the public part of the ephemeral key).

An asymmetric encryption scheme such as this does not
authenticate the party that has created the backup [31]. This
opens clients to a impersonation attack (detailed in Ap-
pendix B).

2) Symmetric Megolm Backups: MSC 3270 [31] intro-
duces an alternative scheme for encrypting server-side backups
that does not have such a shortcoming. The scheme uses
a shared secret to encrypt backups, since only devices in
possession of the secret can create and decrypt such backups.
Thus, clients do not necessarily mark sessions they receive
through symmetric server-side backups as untrusted.

For setup, the client generates a secret from either a user-
supplied passphrase or a secret stored with SSSS.

To backup a Megolm session, each device fetches the
backup configuration from the homeserver. Clients trust the
configuration if they possess the key, or if the key has been
signed by msk. To encrypt the session, the shared secret is
fed into HKDF-SHA-256 to generate key material for au-
thenticated encryption using AES-CTR and HMAC-SHA-256
(using a randomly generated IV).

Whilst the asymmetric scheme remains the default method
of encrypting Megolm backups (at the time of writing), a
client will use this scheme if directed to by a trusted backup
configuration.

III. Homeserver Control of Room Membership

In this section we consider the control that the homeserver
has over metadata such as room membership, and the device
list of a user. We consider two attacks that compromise
confidentiality guarantees. The attacks in this section are trivial
because no cryptographic protection exists by design.

A. Room Members

The Matrix standard allows roles and permissions to be
assigned to users in a room. Amongst other things, these roles
and permissions control which users are allowed to manage
the room membership. However, room management messages
(even in end-to-end encrypted rooms) are neither encrypted,
checked for integrity nor cryptographically authenticated. A
malicious homeserver can forge room management messages
to appear as if they are from users with permission to change
room membership, simulating the process of a new user

https://mailarchive.ietf.org/arch/msg/cfrg/-9LEdnzVrE5RORux3Oo_oDDRksU/


being invited then joining the room. Thus, the homeserver has
control of the member list also for encrypted rooms.

While the specification does not require mitigations, the
Element client exhibits some behaviour meant to mitigate such
attacks. That is, when a user is added to a room, this will be
displayed as an event in the timeline, and is thus detectable
by users. However, we stress that such a detection requires
careful manual membership list inspection from users and
that to participants, this event appears as a legitimate group
membership event. In particular, in sufficiently big rooms such
an event is likely to go unnoticed by users. This immediately
compromises the confidentiality of the room.

In environments where cross-signing and verification are
enabled, adding a new unverified user adds a warning to the
room to indicate that unverified devices are present. However,
it is possible for a homeserver to add a verified user to rooms
without changing the security properties of the room. This
allows a colluding homeserver and verified user to eavesdrop
on rooms not intended for them. In other words, the warning
regarding unverified devices is independent to whether the
device is intended to participate in the specific room. Finally
we note that users may, of course, simply ignore warnings.

B. Device List
Each user has a list of devices associated with their account.
This list is controlled by the homeserver. It exists in parallel
to (and independently of) the cross-signing/verification system,
which provides a cryptographically controlled list of devices
for a user.

A malicious homeserver may create their own device that
can then be added to the device list of an existing user in a
room they wish to eavesdrop in. Whenever a device in the
room next sends a message, they will share their Megolm
session with the homesever-controlled device. The homeserver
will then be able to decrypt future messages.

Again, the Element client exhibits some behaviour meant
to mitigate such attacks. In environments where cross-signing
and verification are enabled, adding an unverified device to
the user’s list of devices will alert their existing sessions to
start the verification process. To avoid the notification, the
homeserver can present two different versions of the device
list depending on the user requesting it. When a user requests
their own device list, the homeserver does not include the
unverified device. When a different user requests the list, the
homeserver includes an unverified device that they control. The
target users’ devices will not be aware that a new, unverified
device has been added to their account. Therefore, their clients
will not present the verification dialog.

Nevertheless, adding an unverified device to the room will
add a warning indicator to the room. But the same caveats as
in Section III-A for this control apply.

C. Remediation
At the time of public disclosure, the Matrix developers plan
to mitigate the homeserver’s control of the device list by

implementing a per-room local setting to prevent sharing keys
with unverified devices.6 This high-assurance setting will stop
the attack described in Section III-B, since clients will refuse
to interact with the unverified devices added by a malicious
homeserver.

In the long-term, the Matrix developers plan to require all
devices to be verified before a user can participate in end-
to-end encrypted conversations. This will be accompanied by
a trust-on-first-use (TOFU) scheme that allows users to trust
a user’s master cross-signing key on their first interaction
(without out-of-band verification). The user’s cross-signing
identity is then fixed by the client and cannot be overwritten
by the homeserver.

The developers consider the fact that the homeserver con-
trols room membership as a risk they accept as part of
their threat model. Whilst they do not plan to include any
countermeasures for this attack at the time of disclosure, they
are developing a solution to target this stronger threat model. A
brief summary of their design follows. When inviting a user to
join the room, the inviting user must include the master cross-
signing key of the new user in a signed message. In doing
this, the transcript of invites form a tree of signatures, rooted
in the room’s creation event. This solution is currently in the
design phase.7 The rollout of such a solution will be made
practical by the long-term fixes for the device list attack.

IV. Key/Device Identifier Confusion in SAS

In this section we describe an attack against the SAS protocol
for out-of-band verification. In this attack, a malicious home-
server tricks parties executing the SAS protocol into signing
cross-signing identities it controls, rather than their own. This
enables the homeserver to perform an active MITM attack
against users.

A. Vulnerability

In the SAS protocol, two parties compute a shared secret,
then compare this shared secret through an authenticated
out-of-band channel. Once established, the shared secret is
used as the MAC key for an m.key.verification.mac
message, containing the cryptographic identities for the other
party to sign. In our attack, the homeserver is able to trick
each party into including a homeserver controlled key inside
their message. In effect, requesting the other device to sign a
homeserver controlled identity, rather than their own.

Recall that in the context of cross-signing, out-of-
band verification is used in two cases. First, where two
users’ devices verify each other; and, second, where a
user verifies a new device (self-verification). However,

6Element provides a setting to “Never send encrypted messages to unveri-
fied sessions from this session”. We suggest this is made the default behaviour.
However, this does not prevent attacks against authentication.

7In [32] a solution to a similar problem is detailed (with the additional
requirement that the membership list is kept private).



the SAS.SendMAC (Fig. 12) algorithm, which generates
m.key.verification.mac messages (Fig. 4), does not
distinguish between these two cases. It always sends both keys.

{"mac": {"ed25519:<device_id>":
SAS.CalcMAC(k, apk, c || "ed25519:<device_id>"),

"ed25519:<mpk>":
SAS.CalcMAC(k, mpk, c || "ed25519:<mpk>"),},

"keys": SAS.CalcMAC}(
k, sort("ed25519:<device_id>", "ed25519:<mpk>"),
c || "KEY_IDS")

Fig. 4: The format of an m.key.verification.mac
message for a user with cross-signing setup.

{"mac": {"ed25519:<mpk'>":
SAS.CalcMAC(k, apk, c || "ed25519:<mpk'>"),
"ed25519:<mpk>":
SAS.CalcMAC(k, mpk, c || "ed25519:<mpk>"),},

"keys": SAS.CalcMAC(
k, sort("ed25519:<mpk'>", "ed25519:<mpk>"),
c || "KEY_IDS")}

Fig. 5: An m.key.verification.mac message gener-
ated by a user with cross-signing master verification key
𝑚𝑝𝑘 , long-term device key 𝑎𝑝𝑘 and device identifier 𝑚𝑝𝑘 ′

(which is also the master verification key of a homeserver
controlled cross-signing identity). Whilst the two entries in
the mac dictionary could be distinguished by the differing
second argument given to SAS.CalcMAC, SAS.VerifyMAC
interprets the first entry as a device, and then passes it
to SAS.SignDevice which interprets it as a cross-signing
identity.

1) Cross-signing keys as devices: Within
matrix-js-sdk and Synapse, cross-signing identities
are sometimes treated as devices. The same is true in the SAS
protocol, as noted in the Client-Server API specification [1].8

Thus, in some cases the string 𝑥 in ed25519:<x> is
interpreted as a device identifier, and in others it is interpreted
as a cross-signing master verification key.

Since the homeserver allocates device identifiers, it is able
to generate a string that is both a valid device identifier and
a valid cross-signing master verification key. In this attack,
the homeserver generates a cross-signing identity for the user
they would like to impersonate, then sets this as the device
identifier for the user’s first device. Figure 5 demonstrates the
format of such a message.

2) Processing of m.key.verification.mac: When
processing m.key.verification.mac messages,

8“Verification methods can be used to verify a users master key by using
the master public key, encoded using unpadded base64, as the device ID, and
treating it as a normal device. For example, if Alice and Bob verify each
other using SAS, Alices m.key.verification.mac message to Bob may include
“ed25519:alices+master+public+key”: “alices+master+public+key” in the mac
property. Servers therefore must ensure that device IDs will not collide with
cross-signing public keys.”

matrix-js-sdk handles the aforementioned ambiguity
inconsistently.

Referring to Fig. 5, 𝑚𝑝𝑘 ′ is both a valid device identifier
and cross-signing master verification key. However, the MAC
that has been calculated includes the device identity key of
the device it maps to. It can only pass the MAC verification
as a device, not as a cross-signing master keys.

When verifying the MACs in the message, SAS.VerifyMAC
(Fig. 12) first checks if the string is a device identifier, then
checks if it maps to a cross-signing identity. The entry for
𝑚𝑝𝑘 ′ passes verification as if it were a request for a device
to be verified.

When fulfilling the signing request, SAS.SignDevice
(Fig. 12) first checks if the string maps to a cross-signing
identity, then checks whether it is a device identifier. If the
processing device has an entry for 𝑚𝑝𝑘 ′ in its cross-signing
directory, it will sign the user and cross-signing identity then
upload it to the homeserver.

B. Attack

Consider a setting with two users: Alice 𝐴 and Bob 𝐵, each
with device 𝐷𝐴,1 and 𝐷𝐵,1 respectively. Additionally, they
are both registered to a malicious homeserver, whose aim is
to compromise their out-of-band verification with the SAS
protocol. The attack proceeds as follows:
1) When Alice 𝐴 registers their account with the homeserver,
the homeserver generates a parallel cross-signing identity with
verification keys (mpk′𝐴, spk′𝐴, upk′𝐴).
2) When Alice 𝐴 logs in for the first time, the homeserver
sets the device identifier 𝐷𝐴,1 ← mpk′𝐴.
3) When Bob 𝐵 logs in for the first time, the homeserver sets
𝐷𝐵,1 as normal.
4) Alice and Bob each setup their own cross-signing
identities with verification keys (mpk𝐴, spk𝐴, upk𝐴) and
(mpk𝐵, spk𝐵, upk𝐵) respectively. They upload these to the
homeserver.
5) The homeserver proceeds to present two versions of the
cross-signing state:
a) When Alice requests their own cross-signing informa-

tion, they are presented with the version they uploaded
(mpk𝐴, spk𝐴, upk𝐴).

b) When Bob requests Alice’s cross-signing information, they
are presented with the version generated by the malicious
homeserver (mpk′𝐴, spk′𝐴, upk′𝐴).

6) Alice and Bob perform an out-of-band verification
using the SAS protocol. At the end, they exchange
m.key.verification.mac messages containing their
cryptographic identity (for signing). Figure 5 shows the struc-
ture of the message Alice sends. 𝐷𝐵,1 processes it as follows:
a) SAS.VerifyMAC interprets the entry for mpk′𝐴 as a request

for device verification. It fetches the expected device
identity key 𝑎𝑝𝑘𝐴,1, then calculates a matching MAC.
The device identity key pulled from the homeserver is
legitimate, and matches the one used by Alice’s device to



generate the MAC. Thus, the message passes verification.
b) SAS.SignDevice interprets the entry for mpk′𝐴 as a re-

quest for cross-signing verification. This is because the
homeserver has led Bob’s client to believe that Alice’s
cross-signing identity is mpk′𝐴.

7) Bob cross-signs the homeserver controlled identity for
Alice, and uploads the signature to the homeserver to distribute
to their other devices.

We implemented this attack and report that it succeeds
in practice. We expect that this attack can be performed
in parallel against Bob, such that Alice signs a homeserver
controlled cross-signing identity for Bob (mpk′𝐵, spk′𝐵, upk′𝐵).
From this point onwards, the homeserver can generate their
own device identities. These device identities can create Olm
connections with Alice as if they were a verified device of
Bob, and vice versa. This results in a compromise of all Olm
sessions between the two users (for which compromise of
Megolm sessions follows).

C. Limitations

This attack exploits a specific issue with cross-signing between
users’ devices and does not work when a user is verifying two
of their own devices. This means that a malicious homeserver
cannot compromise Olm connections between devices of the
same user.

D. Remediation

Alongside public disclosure, the Matrix developers will ensure
that master cross-signing keys and device identifiers are not
confused for one another. To do this, they plan to consistently
process identifiers, checking whether they are key or device
identifier in the same order throughout the codebase. We
recommend that this order is formalised in the Matrix specifi-
cation (with the security implications of a mistake explained).

The attack is made possible due to a lack of domain
separation between device identifiers and cross-signing keys.
In the long-term, the Matrix developers plan to separate the
format for device identifiers and Ed25519 keys.

Additionally, we recommend that the use of device identi-
fiers in m.key.verification.mac messages during self-
verification is not necessary. Replacing these with the device’s
identity key would serve the same purpose, and reduce the
need to include homeserver-controlled information during the
processing of these messages.

V. Semi-trusted Impersonation against Megolm
Authentication

In this section we describe an attack that allows a malicious
device and homeserver to impersonate other (target) devices.
The malicious device and the target devices may or may
not belong to the same user. Whilst this attack causes a

warning to be shown next to the message, messages sent using
legitimately forwarded room keys display the same warning,
thus this attack achieves the same level of trust as legitimately
forwarded room keys. In Section VI-B we will build on
this attack to achieve an impersonation that produces trusted
messages.

A. Vulnerability

Clients using matrix-js-sdk will accept valid encrypted
m.forwarded_room_key messages regardless of whether
they requested the keys.9 Further, whilst the key sharing
restrictions mentioned in Section II-H are implemented on
the sharing side, they are not implemented on the receiving
side of the protocol: clients will accept forwarded room keys
from any device as long as the message is encrypted.10 This
enables a malicious device to push Megolm sessions to other
devices (potentially even overwriting a legitimate session with
an illegitimate one).

Unlike sessions received via m.room_key messages, those
received via m.forwarded_room_key messages do not
have a cryptographic link between the session owner and
the session. Instead, they have a cryptographic link be-
tween the forwarding party and the session. To track the
trust level a device has in a particular Megolm session,
the Key Request protocol associates the session with a
list of Olm identity keys that have forwarded it (through
the forwarding_curve25519_key_chain field of the
message, which contains a list of Curve25519 keys through
which this session was forwarded). Whenever a device receives
a Megolm session through a m.forwarded_room_key
message, they append the Olm identity key and long-term
fingerprint key associated with it to its forwarding key chain.
This allows for a key to be forwarded from, for example,
Alice’s first phone to a second one, and from the latter to a
third, and so on. Provided the initial device trusts every other
device in the list to honestly forward sessions, they can trust
the Megolm session.

No such check is implemented.11 When a message
is decrypted by a Megolm session with a non-empty
forwarding_curve25519_key_chain list, it is dis-
played with the same warning message regardless of which
device forwarded it.

B. Attack

Consider a setting with three users: Alice 𝐴, Bob 𝐵 and Claire
𝐶. Each user has a single logged-in device: 𝐷𝐴,1, 𝐷𝐵,1, and

9MegolmDecryption.onRoomKeyEvent in matrix-js-sdk
(commit #4721aa1) does not check whether a matching room key request
has been made before processing a m.forwarded_room_key message.

10MegolmDecryption.onRoomKeyEvent in matrix-js-sdk
(commit #4721aa1) uses event.senderKey to ensure the message was
encrypted. However, it will accept m.forwarded_room_key messages
from any user or device.

11See getEventEncryptionInfo in matrix-js-sdk
(#4721aa1).

https://github.com/matrix-org/matrix-js-sdk/blob/4721aa1d241a46601601259ec7ca6db9ff1bb5fb/src/crypto/algorithms/megolm.ts#L1428
https://github.com/matrix-org/matrix-js-sdk/blob/4721aa1d241a46601601259ec7ca6db9ff1bb5fb/src/crypto/algorithms/megolm.ts#L1449
https://github.com/matrix-org/matrix-js-sdk/blob/4721aa1d241a46601601259ec7ca6db9ff1bb5fb/src/crypto/index.ts#L2485


𝐷𝐶,1. Let 𝐺 = room_id identify a room consisting of Alice
and Bob’s devices. To impersonate Bob 𝐷𝐵,1 to Alice 𝐷𝐴,1
in 𝐺, Claire 𝐷𝐶,1 can:

1) Generate a new Megolm session inbound/outbound pair
(𝑖, 𝑅, 𝑔𝑝𝑘), (𝑖, 𝑅, 𝑔𝑠𝑘), for which 𝐷𝐶,1 keeps the outbound
session.
2) Construct an m.forwarded_room_key event to
share the Megolm session, and set sender_key and
sender_claimed_ed25519_key to the Olm identity
key and long-term fingerprint key of 𝐷𝐵,1 respectively.
3) Setup an Olm channel between Claire 𝐷𝐶,1
and Alice 𝐷𝐴,1. Use the channel to encrypt the
m.forwarded_room_key message.
4) The ciphertext is wrapped with metadata and formatted as
a to-device message, to be sent to Alice’s device 𝐷𝐴,1.

Alice Homeserver Claire

Olm.KGen(1𝑛) $→
(isk𝐶,1, ipk𝐶,1, · · ·
esk𝐶,1, epk𝐶,1)

Olm.KGen(1𝑛) $→
(isk𝐴,1, ipk𝐴,1, · · ·

esk𝐴,1, epk𝐴,1) (ipk𝐴,1, epk𝐴,1) (ipk𝐶,1, epk𝐶,1)

(ipk𝐶,1, epk𝐶,1) (ipk𝐴,1, epk𝐴,1)

Megolm.Init(1𝑛) $→
(𝔖𝑔𝑠𝑘 ,𝔖𝑔𝑝𝑘 , 𝜎mg);

Olm.IKE(· · · , 𝑚0)
→ (𝜋olm, 𝑐0);

S2DWrapOlm(
𝐴, 𝐷𝐴,1, · · · ,
t=0, 𝑐0)
→ 𝑐′′0 ;𝑐′0

𝑐′0

Fig. 6: The impersonation attack described in
Section V-B. The function S2DWrapOlm wraps an
Olm encrypted ciphertext with the appropriate metadata
to be sent as a to-device message. We let 𝑚0 be
m.forwarded_room_key(𝐺, 𝑔𝑝𝑘, 𝑣𝑒𝑟, 𝑖, 𝑅, ipk𝐵,1, 𝑎𝑝𝑘𝐵,1).

We give the attack flow in Fig. 6. When Alice’s 𝐷𝐴,𝑖 device
receives this message, it will accept the forwarded key and
store it associated with the Olm identity key ipk𝐵,1 and long-
term fingerprint key 𝑎𝑝𝑘𝐵,1 of 𝐷𝐵,1. Additionally, it will add
the Olm identity key of 𝐷𝐶,1 to the forwarded key chain
associated with this session.

At the end of this process, Claire’s device 𝐷𝐶,1 knows the
𝑔𝑠𝑘 of a Megolm session, i.e. knows the outbound session
secrets for an inbound session, that Alice’s device 𝐷𝐴,1
believes is owned by Bob’s device 𝐷𝐵,1. Using this session,
𝐷𝐶,1 may send messages to 𝐷𝐴,1 that will be displayed in the
user interface as having come from 𝐷𝐵,1.

When determining the user that sent a message, each device
starts by looking at the sender field of the ciphertext wrap-
per. The device then ensures that the cryptographic identity
used to send the message matches the value in this field. The
sender field is set by the homeserver when a device uploads
a new message, using the user identifier associated with that

device. This attack, therefore, requires a colluding homeserver
to forge the sender field of Megolm messages.

The messages will be semi-trusted, displayed with a warn-
ing message. However, as mentioned above, this message is
also displayed alongside messages decrypted with legitimately
forwarded Megolm sessions. We implemented this attack and
report that is succeeds in practice.

C. Remediation

At the time of public disclosure, clients will only process
m.forwarded_room_key messages in response to previ-
ously issued requests. Since client’s correctly request keys
from trusted device’s only, this aims to ensure that they only
accept them from trusted devices, as well.12

In the long-term, the Matrix developers plan to discontinue
the use of m.forwarded_room_key messages, replacing
all instances with m.room_key. This will ensure that the
inbound Megolm session being shared is always bound to 𝑔𝑠𝑘
with a signature.

Further, clients will further restrict the devices they will ac-
cept forwarded room keys from to only those beging forwarded
by verified devices of the same user. This is an additional
restriction over the current policy, whereby the owner of the
session may also share it regardless of their verification status.

VI. Trusted Impersonation and Confidentiality
Breaks against Megolm

In this section we describe two attacks that, together, compro-
mise the authenticity and confidentiality of Megolm channels.
In Section II, we described how pairwise Olm channels are
used by the Megolm and Key Request protocols, as well as the
SSSS modules’s secret sharing functionality. These protocols
maintain their security by relying on the Olm protocol and its
connection to user’s cross-signing identities. However, a lack
of verification in the implementation allows such messages to
also be sent over Megolm. The following two attacks send
protocol messages intended to be sent over Olm channels,
over semi-trusted Megolm sessions instead (using the attack
described in Section V). In doing so, the attacker is able to
impersonate a trusted device in order to place secrets on the
target device.

A. Vulnerability

1) Protocol confusion: The Matrix and Megolm specifi-
cations requires that m.room_key and m.secret.send
messages are sent over encrypted Olm channels. Whilst

12Matrix optionally allows sharing room history with new members. This
is implemented by sharing previous inbound Megolm sessions with the new
member. The fix described will not apply to such messages, though the
resulting sessions will be marked as untrusted in the code and user interface.
The Matrix developers are working on a long-term countermeasure with
stronger guarantees.



{"messages": {
"<receiver_user_id>": {
"<receiver_device_id>": {
"algorithm": "m.megolm.v1.aes-sha2",
"sender_key": sender_ipk, "session_id": gpk,
"room_id": room_id, "ciphertext": ciphertext}}}

(a) Message sent by the device.

{"type": "m.room.encrypted",
"sender": sender_user_id
"content": {
"algorithm": "m.megolm.v1.aes-sha2",
"sender_key": sender_ipk, "session_id": gpk,
"room_id": room_id, "ciphertext": ciphertext}}

(b) Message as forwarded by homeserver.

Fig. 7: Figure 7a shows the format of a Megolm encrypted to-device message as it is sent to the homeserver (the message type,
m.room.encrypted, is encoded in the URL). The homeserver will split up to-device messages, collate them by device,
then redistribute them as a list of messages in the format seen in Figure 7b. Synapse does not preserve the room_id field
of messages when converting between the two formats shown here, and thus requires a colluding homeserver to enable the
protocol confusion. The sender field is added by the homeserver and, similarly, requires collusion from the homeserver to
set it to the attacker’s desired value. sender_key and session_id are used by the receiving device to locate the Megolm
session with which to decrypt the ciphertext.

the specifications do not include this requirement for
m.forwarded_room_key messages, we believe this is the
intended behaviour. These messages are used for sending key
material in the Megolm, Key Request, SSSS secret sharing
protocols (respectively). However, whilst the handler for these
incoming messages ensures they have been encrypted, it does
not explicitly check which algorithm they were encrypted with.
It is therefore possible to encrypt m.room_key messages
using Megolm rather than Olm, provided they are distributed
via to-device messaging (cf. Fig. 7).

2) Inheriting sender identity: When Megolm messages are
decrypted, they inherit the sender identity associated with the
Megolm session used for decryption. Similarly, when Megolm
sessions are received through an m.room_key message,
they inherit the sender identity of the encrypted channel they
were sent over. In the expected case, this will be the sender
identity of the Olm channel it was sent over. When sending
m.room_key messages over a Megolm session, it will inherit
the sender identity that the Megolm session inherited (inherited
from the encrypted channel where it was sent).

B. Trusted Impersonation Attack against Megolm
Authentication

We describe an attack that allows a malicious device and
colluding homeserver to impersonate any device. The attacker
uses the forwarded Megolm session from the attack in Sec-
tion V to deliver a second Megolm session to the target device
that is indistinguishable from a legitimate session (as sent via
an m.room_key message). No warning is shown alongside
messages encrypted with the second Megolm session, i.e. its
messages are trusted.

The inheritance strategy described above (Section VI-A2)
maintains the cryptographic link between the Olm channel first
used to send a Megolm session, and any subsequent Megolm
sessions sent over it.

However, m.forwarded_room_key messages allow at-
tackers to insert Megolm sessions with an associated sender
identity that does not have this (or any) cryptographic link.

If the adversary then sends an m.room_key message over
the forwarded Megolm session, this latest session inherits the
presumed sender identity, regardless of whether that sender
identity has been cryptographically verified or not. Thus, such
a message “upgrades” the presumed validation of the key
material from unknown to verified.

The attack starts after the attack in Section V-B has con-
cluded, where Claire’s device 𝐷𝐶,𝑘 has forwarded the Megolm
session 𝔖𝑔𝑝𝑘 to Alice’s device 𝐷𝐴,𝑖 in order to impersonate
Bob’s device 𝐷𝐵, 𝑗 . Claire’s device 𝐷𝐶,𝑘 proceeds as follows:
1) Generate a new Megolm session pair, 𝔖′𝑔𝑝𝑘 , 𝔖′𝑔𝑠𝑘 , for
which 𝐷𝐶,𝑘 keeps the outbound session: 𝔖′𝑔𝑠𝑘 .
2) Construct an m.room_key message (Fig. 9a) to share the
inbound session 𝔖′𝑔𝑝𝑘 .
3) Encrypt the m.room_key message using the previously
constructed outbound Megolm session, 𝔖𝑔𝑠𝑘 , from Sec-
tion V-B.
4) Construct a Megolm encrypted, to-device message wrapper
(Fig. 9b) to distribute the ciphertext from the previous step to
Alice’s device 𝐷𝐴,𝑖 .

Alice Homeserver Claire
(𝔖′𝑔𝑠𝑘 , 𝑔𝑝𝑘 ′, 𝜎′mg) ←$ Megolm.Init(1𝑛)
𝑚1 ← m.room_key(𝐺, 𝑔𝑝𝑘, 𝑣𝑒𝑟 ∥ 𝔖′𝑔𝑝𝑘 ∥ 𝜎′mg, 𝑖

′)
(𝑖, 𝑅, 𝑔𝑠𝑘, 𝑐1) ← Megolm.Encrypt(𝔖𝑔𝑠𝑘 , 𝑚1)
𝑐′1 ← S2DWrapMegolm(𝐴, 𝐷𝐴,𝑖 , ipk𝐵, 𝑗 ,

𝑔𝑝𝑘 ′, 𝐷𝐵, 𝑗 , 𝑐1, 𝐺)𝑐′1

𝑐′1

Fig. 8: The impersonation attack described Section VI-B.
This diagram continues on from the sequence diagram
in Fig. 6, which itself describes the attack in Section V-B.
The function m.room_key generates a message of the
same name (Fig. 9a describes its structure). The function
S2DWrapMegolm wraps a Megolm encrypted ciphertext with
the appropriate metadata to be sent as a to-device message
(Fig. 9b describes its structure).

We illustrate this attack in Fig. 8. When Alice’s device 𝐷𝐴,𝑖

receives the second Megolm session 𝔖′𝑔𝑝𝑘 , the new session



will be saved as if it were sent via an Olm channel with Bob’s
device 𝐷𝐵,𝑖 sender identity.

Claire’s device 𝐷𝐶,𝑘 now has control over 𝑔𝑠𝑘 ′ of an
outbound Megolm session that Alice’s device 𝐷𝐴,𝑖 believes
is owned by Bob’s device 𝐷𝐵, 𝑗 . In contrast with the attack
in Section V-B, there is no evidence presented to the receiver
that this Megolm session was forwarded.

𝐷𝐶,𝑘 may send messages to 𝐷𝐴,𝑖 using this session that
will be displayed in the user interface as coming from 𝐷𝐵, 𝑗

(without any warnings in the user interface). As before,
this requires collaboration with the homeserver to forge the
sender field of the Megolm messages. We implemented this
attack and report that it succeeds in practice.

C. Adversary Controlled Megolm Backup Key

We now describe an attack whereby a malicious homeserver
is able to set the secret key used by target devices when
encrypting inbound Megolm sessions for backup on the home-
server. This enables the homeserver decrypt the backups,
compromising the confidentiality of messages sent in those
sessions.

In brief, the attack proceeds as follows. When newly verified
devices request a copy of the Megolm backup key through
SSSS secret sharing, the homeserver impersonates a trusted
device (using the Olm/Megolm protocol confusion) and re-
sponds with an attacker-controlled backup key. From this point
onwards, the target device will backup their inbound Megolm
sessions to the homeserver, encrypted with a homeserver
controlled key. Thus, this attack extends the authentication
attack of Section V-B to additionally break confidentiality.

It is expected that m.secret.send messages are en-
crypted with the Olm protocol; however, as in Section VI-B,
it is possible to send a to-device m.secret.send message
encrypted with Megolm. When the receiving client decrypts
the message, it will inherit the Olm identity key 𝑖𝑝𝑘 associated
with the Megolm session.13

In this attack, the adversary generates and sends a Megolm
session using a m.forwarded_room_key message with
the claimed Olm device identity of a verified device belonging
to the same user as the target device. The adversary then uses
this Megolm session to send a m.secret.send with secrets
they control.

Consider a setting with a homeserver 𝐻 that controls a
colluding user account Bob 𝐵 and device 𝐷𝐵,1. The target
user Alice 𝐴, has two devices 𝐷𝐴,1 and 𝐷𝐴,2. 𝐷𝐴,1 is the
first of Alice’s devices, and thus possesses both the cross-
signing secrets (msk𝐴, usk𝐴, ssk𝐴) and a key for server-side
Megolm backups. Alice’s second device, 𝐷𝐴,2, is the result
of a recent login from a new client. Whilst it has received
a copy of Alice’s public cross-signing identity through the
homeserver, it does not yet have access to the cross-signing

13getEventEncryptionInfo in matrix-js-sdk (commit
#4721aa1) uses event.senderKey both to ensure the message was
encrypted and to check the identity of the sender.

secrets. The attack proceeds as follows:
1) 𝐻 generates a symmetric key 𝑘𝐻 ←$ {0, 1}256. It constructs
a backup configuration signifying the use of symmetric server-
side key backups14 with key 𝑘𝐻 (the key is not signed). The
homeserver will present this backup configuration to Alice’s
second device, 𝐷𝐴,2.
2) Due to the lack of signature, 𝐷𝐴,2 will not trust this key
and will not enable backups.
3) Alice completes out-of-band verification between 𝐷𝐴,1 and
𝐷𝐴,2.
4) 𝐷𝐴,2 sends an m.secret.request message to 𝐷𝐴,1
requesting the key for server-side Megolm backups.
5) 𝐻 does not distribute this request message to 𝐷𝐴,1.
6) 𝐻 and 𝐷𝐵,1 perform the attack in Section V-B against
𝐷𝐴,2, giving them control over a Megolm session that 𝐷𝐴,2
believes originally came from 𝐷𝐴,1.
7) 𝐻 uses this Megolm session to respond to 𝐷𝐴,2’s re-
quest, sending an m.secret.send message containing the
attacker-controlled 𝑘𝐻 .
8) 𝐷𝐴,2 receives and decrypts the message, storing 𝑘𝐻 as the
secret key for server-side Megolm backups.
9) 𝐷𝐴,2 will now trust the homeserver’s backup configuration,
since 𝐷𝐴,2’s private Megolm backup key matches the key
identifier in the configuration.
10) 𝐷𝐴,2 will enable server-side Megolm backups, uploading
inbound Megolm sessions to the homeserver 𝐻 (encrypted
using the homeserver-controlled key 𝑘𝐻 ).

D. Remediation

At the time of public disclosure, clients will ensure that
encrypted to-device messages use the Olm protocol only. Such
a fix should prevent the exploited protocol confusion.

However, we remark that this protocol confusion is aided
by the overall layout of the Matrix SDK where cryptographic
functionality is spread across different sub-libraries rather than
being contained in a small, easily auditable core.

In particular, Element currently implements verification of
message authentication not at decryption time but at display
time. However, for messages that are never displayed but
silently affect the state of the client this means that no
verification of the sender is ever triggered. This makes it
impossible for clients to establish the level of trust they have
in different parts of their state.

VII. Discussion

We presented six attacks that together invalidate the fundamen-
tal security promises made by Matrix’ end-to-end encryption
against a malicious server. In particular, the version of Matrix
as implemented in Element and analysed here neither provides
confidentiality nor authentication against such an attacker.

14We tested this attack against the symmetric backup scheme, but we expect
it to also work against the asymmetric scheme.

https://github.com/matrix-org/matrix-js-sdk/blob/4721aa1d241a46601601259ec7ca6db9ff1bb5fb/src/crypto/index.ts#L2473


{"type": "m.room_key",
"room_id": room_id,
"content": {
"algorithm": "m.megolm.v1.aes-sha2",
"room_id": room_id, "session_id": gpk',
"session_key":
ver || i' || R' || gpk' || \
sign(gsk', ver || i' || R' || gpk'),
"chain_index": i'}}

(a) Plaintext message.

{"messages": {
"<alice_user_id>": {
"<alice_device_id>": {
"algorithm": "m.megolm.v1.aes-sha2",
"sender_key": bob_ipk,
"session_id": gpk,
"device_id": bob_device_id,
"ciphertext": ciphertext,
"room_id": room_id}}}}}

(b) To-device message wrapper.

Fig. 9: This message allows Claire 𝐷𝐴,𝑖 to impersonate Bob 𝐷𝐵, 𝑗 to Alice 𝐷𝐴,𝑖 . It works by placing a Megolm session into
Alices device using an existing Megolm session that is already associated with Bobs sender identity. The plaintext in Figure 9a
is encrypted using the forwarded Megolms session from the previous attack 𝔖𝑔𝑝𝑘 . In Figure 9b, the session identifier is 𝑔𝑝𝑘
to match the session used for encryption, not the session we are sending. This allows the second Megolm session to be sent
using an m.room_key message, without being marked as a forwarded session.

On the one hand, some of our attacks highlight a rich
attack surface by “chaining” different attacks to achieve their
goals. In particular, we compose (1) the “weak” authentication
break in Section V which exploits missing verifications, (2) a
stronger authentication break in Section VI-B which exploits a
protocol confusion aided by the design choice to check cryp-
tographic properties at display rather than receiving time, and
(3) a MITM attack that breaks confidentiality by convincing
a target to use an adversary controlled key as backup in Sec-
tion VI-C. On the other hand, our attacks are well distributed
across the different parts of the overall cryptographic core
of the Matrix protocol and implementation. In particular, we
show (1) that Matrix offers no confidentiality guarantees by
design against a malicious homeserver which may trivially
add new users and devices to a room in Section III, (2) that
an identifier confusion in a separate protocol allows to break
authentication and thus confidentiality even for the lowest level
Olm channels in Section IV, and (3) that the key backup
scheme in yet another subsystem does not achieve formal
IND-CCA security in Appendix A.

Besides the observed implementation and specification er-
rors, these vulnerabilities highlight a lack of a unified and
formal approach to security guarantees in Matrix. Rather, the
specification and implementations seem to have grown “organ-
ically” with new sub-protocols adding new functionalities and
thus inadvertently subverting the security guarantees of the
core protocol. This suggests that, besides fixing the specific
vulnerabilities reported here, Matrix/Megolm will need to
receive a formal security analysis to establish confidence in
the design.

We finish by reiterating a point already made in the intro-
duction, namely that our attacks are against a setting where
Matrix aims to provide the strongest guarantees, i.e. where
every device and user have performed out-of-band verification.
If this condition is not satisfied, even for one device or user,
then “all bets are off” and e.g. impersonation becomes trivial.
While Element already supports the option of refusing to send
messages to unverified devices it does not reject messages
from such devices. Thus, unless the client-side option is
provided to reject all communication from unverified devices

or rooms with such devices within them, Matrix will not
provide a secure chat environment regardless of cryptographic
guarantees provided for verified devices.
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Appendix

A. IND-CCA Attack on Backups
Here we break the formal IND-CCA security of symmetric
Megolm Key Backups and the Secure Secret Storage and
Sharing protocol.

Megolm.Init(1𝑛)
𝑖 ← 0
𝑅 ← {0, 1}1024

(𝑔𝑠𝑘, 𝑔𝑝𝑘) ← Ed25519.KGen(1𝑛)
ver← 0x03

𝜎mg ← Ed25519.Sign(𝑔𝑠𝑘, (ver, 𝑖, 𝑅, 𝑔𝑝𝑘))
𝔖𝑔𝑠𝑘 ← (ver, 𝑖, 𝑅, 𝑔𝑠𝑘)
𝔖𝑔𝑝𝑘 ← (ver, 𝑖, 𝑅, 𝑔𝑝𝑘)
return 𝔖𝑔𝑠𝑘 ,𝔖𝑔𝑝𝑘 , 𝜎mg

Megolm.Encrypt(𝔖𝑔𝑠𝑘 , 𝑚)
(ver, 𝑖, 𝑅, 𝑔𝑠𝑘) ← 𝔖𝑔𝑠𝑘

𝑘𝑒 ∥ 𝑘ℎ ∥ 𝑘𝑖𝑣 ← HKDF(0, 𝑅, “MEGOLM_KEYS”, 80)
𝑐 ← AES-CBC(𝑘𝑒, 𝑘𝑖𝑣 , 𝑚)
𝜏 ← HMAC(𝑘ℎ , (ver, 𝑖, 𝑐)) [0 : 8]
𝜎 ← Ed25519.Sign(𝑔𝑠𝑘, (ver, 𝑖, 𝑐, 𝜏))
𝑐′ ← (ver, 𝑖, 𝑐, 𝜏, 𝜎)
𝑖, 𝑅 ← MegolmRatchet.Advance(𝑖, 𝑅)
𝔖𝑔𝑠𝑘 ← (ver, 𝑖, 𝑅, 𝑔𝑠𝑘)
return (𝔖𝑔𝑠𝑘 , 𝑐

′)

Megolm.Decrypt(𝔖𝑔𝑝𝑘 , 𝑐)
(ver, 𝑖, 𝑅, 𝑔𝑝𝑘) ← 𝔖𝑔𝑝𝑘

(ver′, 𝑖′, 𝑐′, 𝜏, 𝜎) ← 𝑐

if !Ed25519.Verify(𝑔𝑝𝑘, 𝜎, (ver, 𝑖′, 𝑐′, 𝜏)) then
return (𝔖𝑔𝑝𝑘 ,⊥)
(𝑖, 𝑅) ← MegolmRatchet.Advance𝑖

′−𝑖 (𝑖, 𝑅)
𝑘𝑒 ∥ 𝑘ℎ ∥ 𝑘𝑖𝑣 ← HKDF(0, 𝑅′, “MEGOLM_KEYS”, 80)
if 𝜏 ≠ HMAC(𝑘ℎ , (ver, 𝑖, 𝑐′) [0 : 8] then

return (𝔖𝑔𝑝𝑘 ,⊥)
𝑚 ← AES-CBC .Dec(𝑘𝑒, 𝑘𝑖𝑣 , 𝑐′)
𝔖𝑔𝑝𝑘 ← (ver, 𝑖, 𝑅, 𝑔𝑝𝑘)
return (𝔖𝑔𝑝𝑘 , 𝑚)

Fig. 10: The Megolm protocol consists of three al-
gorithms, Megolm = (Megolm.Init, Megolm.Encrypt,
Megolm.Decrypt). The MegolmRatchet.Advance(𝑖, 𝑅) al-
gorithm takes the Megolm ratchet 𝑅 and index 𝑖, and sym-
metrically advances it.

1) Vulnerability: Matrix uses an encrypt-then-MAC encryp-
tion scheme composing AES-CTR with HMAC-SHA-256.
Recall that AES-CTR proceeds by encrypting a series of
blocks 𝑖𝑣, 𝑖𝑣 ⊕ 1, 𝑖𝑣 ⊕ 2, . . . and XORing the result onto the
message blocks 𝑚𝑖 to produce the ciphertext blocks 𝑐𝑖 . The
full ciphertext is 𝑖𝑣∥𝑐0∥𝑐1∥ . . .. However, the 𝑖𝑣 is not covered
by the authentication tag produced by HMAC-SHA-256.15

15A similar issue exists for attachments which are shared out of band in
encrypted form [1, #sending-encrypted-attachments]. Here the hash shared
over Megolm (which takes the role of the MAC) does not include the 𝑖𝑣 . Since
the 𝑖𝑣 itself is also shared over Megolm and thus implicitly authenticated, we
do not see a way to exploit this behaviour.
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2) Attack: The IND-CCA attack proceeds as follows: Let
𝑐∗ be some challenge ciphertext for either some message 𝑚0
or 𝑚1 of length 128 bits:

𝑐∗ B 𝑖𝑣∥ AES(𝑘0, 𝑖𝑣) ⊕ 𝑚𝑏 ∥ HMAC(𝑘1,AES(𝑘0, 𝑖𝑣) ⊕ 𝑚𝑏).
The adversary requests an encryption of zero from the encryp-
tion oracle and receives

𝑐 B 𝑖𝑣′∥ AES(𝑘0, 𝑖𝑣
′) ⊕ 0∥ HMAC

(
𝑘1,AES(𝑘0, 𝑖𝑣

′) ⊕ 0
)

for some 𝑖𝑣′. Finally, the adversary requests a decryption of

𝑐+ B 𝑖𝑣∥ AES(𝑘0, 𝑖𝑣
′) ⊕ 0∥ HMAC

(
𝑘1,AES(𝑘0, 𝑖𝑣

′) ⊕ 0
)

from the decryption oracle. Note that the MAC verifies cor-
rectly, and so the adversary will receive ‘𝑡 B AES(𝑘0, 𝑖𝑣

′) ⊕
AES(𝑘0, 𝑖𝑣) ⊕ 0. Given that the adversary already knows
AES(𝑘0, 𝑖𝑣

′) it can now recover ‘ AES(𝑘0, 𝑖𝑣) = 𝑡 ⊕
AES(𝑘0, 𝑖𝑣

′)‘ and thus decrypt the challenge 𝑐∗.

3) Limitations: In principle, in the Matrix setting, forward-
ing keys to the target and observing the resulting backups
on the homeserver provides an encryption oracle. Similarly,
modifying a backup on the homeserver then requesting the
resulting key provides a decryption oracle.

However, in practice, this attack is not exploitable as far as
we can see for two reasons. First, the use of per-session keys
means the scope of the decryption oracle is limited to the
per-session key of sessions the attacker already has access to.
Second, any modified ciphertexts will likely be invalid JSON
structures and fail to parse correctly (preventing the decryption
oracle from sharing the plaintext with the adversary).

4) Remediation: The Matrix developers plan to include the
iv alongside the ciphertext when calculating the MAC. Simi-
larly, clients will include the 𝑖𝑣 of encrypted attachments inside
Megolm ciphertexts alongside their SHA-256 and encryption
key. Since this issue is not currently practically exploitable in
Matrix, these fixes will not be made available at the time of
disclosure.

B. Attacks enabled by the Asymmetric Megolm
Backup scheme

Since this scheme does not authenticate the party that creates
the backups, it provides an alternative means to perform a
semi-trusted impersonation attack. In this attack, a malicious
homeserver can generate Megolm sessions under their control,
encrypt them for the recovery key and share them with a target
user as backups [31].

For this reason, sessions acquired through asymmetric
server-side backups are marked as untrusted internally, and
messages decrypted using such sessions are accompanied with
a warning. This issue is inherent to the design of the scheme
and is a known issue to the protocol designers [31], motivating
the development of the symmetric scheme described in Sec-
tion II-I2.

Nonetheless, we note that this attack provides an alternative
first step in performing the attacks described in Section VI.

C. Megolm Protocol

We give the main algorithms used in Megolm in Fig. 10.

D. Short Authentication String (SAS) Protocol

Figures 11 and 12 describe the SAS protocol for out-of-
band verification. When clients source keys from their home-
server, we represent this through a call to the algorithm
HS.QueryKey. It takes as input a string representing the key
type, followed by a series of indices to identify the partic-
ular key. For example, HS.QueryKey("apk", 𝐴, 𝑖) returns
𝑎𝑝𝑘𝐴,𝑖 .



𝐷𝐴,𝑖 ∈ D𝑖𝑑 𝐷𝐵, 𝑗 ∈ D𝑖𝑑

𝑎𝑝𝑘𝐵. 𝑗 ← HS.QueryKey(”apk”, 𝐵, 𝑗)
𝑡←$ {0, 1}8×32 start(𝑡)

𝑎𝑝𝑘𝐴,𝑖 ← HS.QueryKey(”apk”, 𝐴, 𝑖)
𝑠𝑘𝐵, 𝑝𝑘𝐵 ← X25519.KGen(1𝑛)
𝑐𝑜𝑚 ← SHA-256(𝑝𝑘𝐵)accept(𝑡, 𝑐𝑜𝑚)

𝑠𝑘𝐴, 𝑝𝑘𝐴← X25519.KGen(1𝑛) key(𝑡, 𝑝𝑘𝐴)

key(𝑡, 𝑝𝑘𝐵)
(abort if ≠ SHA-256(𝑝𝑘𝐵) ≠ 𝑐𝑜𝑚)

𝑘 ← 𝑠𝑘𝐴 × 𝑝𝑘𝐵 𝑘 ← 𝑠𝑘𝐵 × 𝑝𝑘𝐴
𝑐 ← "MATRIX_KEY_VERIFICATION_SAS" 𝑐 ← "MATRIX_KEY_VERIFICATION_SAS"

∥𝐴 ∥ 𝐷𝐴,𝑖 ∥ 𝑝𝑘𝐴 ∥ 𝐵 ∥ 𝐷𝐵, 𝑗 ∥ 𝑝𝑘𝐵 ∥ 𝑡 ∥𝐴 ∥ 𝐷𝐴,𝑖 ∥ 𝑝𝑘𝐴 ∥ 𝐵 ∥ 𝐷𝐵, 𝑗 ∥ 𝑝𝑘𝐵 ∥ 𝑡
𝑠𝑎𝑠𝐴← HKDF-SHA-256(0, 𝑘, 𝑐, 32) 𝑠𝑎𝑠𝐵 ← HKDF-SHA-256(0, 𝑘, 𝑐, 32)

Alice and Bob compare 𝑠𝑎𝑠𝐴
and 𝑠𝑎𝑠𝐵 out-of-band.

(abort if 𝑠𝑎𝑠𝐴 ≠ 𝑠𝑎𝑠𝐵)

𝑚𝑎𝑐𝐴← SAS.SendMAC(𝐴, 𝐷𝐴,𝑖 , 𝐵, 𝐷𝐵, 𝑗 ,
𝑚𝑝𝑘𝐴, 𝑎𝑝𝑘𝐴,𝑖 , 𝑘, 𝑡) mac(𝑡, 𝑚𝑎𝑐𝐴)

𝑚𝑎𝑐𝐵 ← SAS.SendMAC(𝐵, 𝐷𝐵, 𝑗 , 𝐴, 𝐷𝐴,𝑖 ,
𝑚𝑝𝑘𝐵, 𝑎𝑝𝑘𝐵, 𝑗 , 𝑘, 𝑡)mac(𝑡, 𝑚𝑎𝑐𝐵)

𝑣 ← SAS.VerifyMAC(𝐴, 𝐷𝐴,𝑖 , 𝐵, 𝐷𝐵, 𝑗 , 𝑚𝑎𝑐𝐵, 𝑘, 𝑡) 𝑣 ← SAS.VerifyMAC(𝐵, 𝐷𝐵, 𝑗 , 𝐴, 𝐷𝐴,𝑖 , 𝑚𝑎𝑐𝐴, 𝑘, 𝑡)
for (𝑈, 𝐷) in 𝑣 : SAS.SignDevice(𝑈, 𝐷) for (𝑈, 𝐷) in 𝑣 : SAS.SignDevice(𝑈, 𝐷)

Fig. 11: A sequence diagram summarising the SAS protocol. The contents of m.key.verification.mac are described
in Fig. 4, while pseudocode descriptions of SAS.SendMAC, SAS.VerifyMAC and SAS.SignDevice are in Fig. 12. Message
types in the above diagram have had the prefix m.key.verification. removed.



SAS.CalcMAC(𝑘, 𝑚, 𝑐)
𝑘 ′ ← HKDF-SHA-256(0, 𝑘, 𝑐, 32)
𝑚𝑎𝑐 ← HMAC-SHA-256(𝑘 ′, 𝑚)
return 𝑚𝑎𝑐

SAS.SendMAC(𝑈, 𝐷,𝑈 ′, 𝐷 ′, 𝑚𝑝𝑘, 𝑎𝑝𝑘, 𝑘, 𝑡)
𝑐 ← "MATRIX_KEY_VERIFICATION_SAS" \

∥ 𝑈 ∥ 𝐷 ∥ 𝑈 ′ ∥ 𝐷 ′ ∥ 𝑡
𝑖𝑑dev ← "ed25519:" ∥ 𝐷
𝑚𝑎𝑐dev ← SAS.CalcMAC(𝑘, 𝑎𝑝𝑘, 𝑐 ∥ 𝑖𝑑dev)
𝑖𝑑cs ← "ed25519:" ∥ 𝑚𝑝𝑘

𝑚𝑎𝑐cs ← SAS.CalcMAC(𝑘, 𝑚𝑝𝑘, 𝑐 ∥ 𝑖𝑑cs)
𝑚𝑠← ((𝑖𝑑dev, 𝑚𝑎𝑐dev), (𝑖𝑑cs, 𝑚𝑎𝑐cs))
𝑘𝑠← SAS.CalcMAC(𝑘, sort(𝑖𝑑dev, 𝑖𝑑cs), 𝑐 ∥ "KEY_IDS")
return (𝑚𝑠, 𝑘𝑠)

SAS.SignDevice(𝑈, 𝐷)
// Check whether 𝐷 is a cross-signing identity

mpk← HS.QueryKey(”mpk”,𝑈)
if 𝐷 = mpk then

return UserVerified(𝑈,mpk)
// Otherwise, 𝐷 refers to a device

else
return DeviceVerified(𝑈, 𝐷)

SAS.VerifyMAC(𝑈, 𝐷,𝑈 ′, 𝐷 ′, 𝑚𝑎𝑐, 𝑘, 𝑡)
((𝑖𝑑dev, 𝑚𝑎𝑐dev), (𝑖𝑑cs, 𝑚𝑎𝑐cs), 𝑘𝑠) ← 𝑚𝑎𝑐

𝑐 ← "MATRIX_KEY_VERIFICATION_SAS" \
∥ 𝑈 ′ ∥ 𝐷 ′ ∥ 𝑈 ∥ 𝐷 ∥ 𝑡

𝑘𝑠′ ← SAS.CalcMAC(𝑘, sort(𝑖𝑑dev, 𝑖𝑑cs), 𝑐 ∥ "KEY_IDS")
if (𝑘𝑠′ ≠ 𝑘𝑠) then

return ∅
𝑣 ← ∅
for (𝑖𝑑, 𝑚𝑎𝑐) in ((𝑖𝑑dev, 𝑚𝑎𝑐dev), (𝑖𝑑cs, 𝑚𝑎𝑐cs))
"ed25519:" ∥ 𝐷 ′ ← 𝑖𝑑

// Check if this is a device verification request

𝑎𝑝𝑘 ← HS.QueryKey("apk",𝑈 ′, 𝐷 ′)
if 𝑎𝑝𝑘 ≠ ⊥ then

𝐷 ′′ ← 𝑥

if 𝑚𝑎𝑐 = SAS.CalcMAC(𝑘, 𝑎𝑝𝑘, 𝑐 ∥ 𝑖𝑑) then
𝑣 ← 𝑣 ∪ {(𝑈 ′, 𝐷 ′′)}

// Check if this is a cross-signing verification request

elseif (𝑥 = HS.QueryKey(”mpk”,𝑈)
∩ 𝑚𝑎𝑐 = SAS.CalcMAC(𝑘, 𝑥, 𝑐 ∥ 𝑖𝑑)) then

𝑚𝑝𝑘 ← 𝑥

𝑣 ← 𝑣 ∪ {(𝑈 ′, 𝑚𝑝𝑘)}
return 𝑣

Fig. 12: Algorithms to generate, verify and process m.key.verification.mac messages in the SAS protocol.
UserVerified signs the given user’s master cross-signing key with the current device’s user-signing key. Similarly,
DeviceVerified signs the given device’s fingerprint and Olm identity keys with the current device’s self-signing key. These
signatures are uploaded to the homeserver.
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