
Practically-exploitable Cryptographic Vulnerabilities in Matrix

https://nebuchadnezzar-megolm.github.io/

Martin Albrecht martin.albrecht@kcl.ac.uk

Sof́ıa Celi cherenkov@riseup.net

Benjamin Dowling b.dowling@sheffield.ac.uk

Dan Jones dan.jones.2020@live.rhul.ac.uk

1

https://nebuchadnezzar-megolm.github.io/


Outline

New phone, who dis?

Cryptography in Matrix

Attacks

Take Home Message

2



Matrix?

3



Matrix!

• Matrix = standard for federated, decentralised, real-time

group messaging

• Element = glossy flagship client

• End-to-end encryption is enabled by default

• Threat model: servers are the adversary

• Contrasts with Slack, MS Teams, Zulip, Mattermost, . . .

4



Matrix!

Element has over 60 million users. Matrix’ users include

5



Architecture

• In Matrix, each User account can have

many Devices.

• Each User has an account on a

particular Homeserver.

• Homeservers maintain the link between

a User account and its Devices.

• Messages are distributed by the

Homeservers.

• A Room is a collection of Devices that

communicate in a single conversation.

6



Outline

New phone, who dis?

Cryptography in Matrix

Attacks

Take Home Message

7



Core Functionalities

kAB , kAC , kAD

kAB , kBC , kBD kAC , kBC , kCD

kAD , kBD , kCD

c1
c2

c3

kA

kA kA

kA

c1
c1

c1

Device/Entity Authentication

(Cross-Signing Framework)

Session Establishment

(pairwise Olm channels)

Session Communication

(group Megolm channels)

8



Entity Authentication via Cross-Signing Framework

Each User sets up an account with a particular Homeserver, which allocates a User

identifier, A.

The User, then, generates their User Secrets, used to establish ≊ web-of-trust.

• The master key (mpkA) serves as their long-term identity.

• The user-signing key (upkA) signs other User’s master keys.

• The self-signing key (spkA) signs a User’s own Device keys.

Alice Bob
mpkA

spkA upkA

(dpkA,1, ipkA,1)
· · ·

(dpkA,n, ipkA,n)

mpkB

spkBupkB

(dpkB,1, ipkB,1)
· · ·
(dpkB,m, ipkB,m)

m
sk
A

m
sk

A

dsk
A

dsk
A

m
sk

Bm
sk
B

dsk
B

dsk
B

uskA
uskB

9



Device Authentication via Cross-Signing Framework

When a new Device logs in with account

credentials, Homeserver allocates a device

identifier DA,i .

The Device then generates keys for this

Device and registers it with the Homeserver:

1. Long-term Device Keys,

authenticates Olm Key

Bundle.

2. Olm Key Bundle, used to

establish the pairwise channel,

Olm.

10



Session Establishment via Olm

• Bob gets Alice’s public key from

Homeserver

• Bob does triple Diffie-Hellman (3DH) to

produce a symmetric master secret.

• Bob uses Double Ratchet protocol to

derive message keys.

• Bob encrypts Megolm Session State under

these keys, and sends Session State to

Alice.

Alice Bob

Identity Keys

One-Time Keys

Ratchet Key

idpkA idkB

otpkA otkB

pms0

pms1

pms2

pms0∥pms1∥pms2

KDF

ms

rck0B

KDF pms4

rk0 ck00

KDF

ck10 mk10

11



Megolm Session

Megolm Session State allows the Sender to

encrypt messages to the Megolm channel

(resp. a Receiver to decrypt).

(gsk, gpk)← SIG.Gen

R
$← R

Sgpk ← (0,R , gpk)

Sgpk

A Megolm session consists of the current message index, the internal ratchet state, and

the group signing key.

outbound session Sgsk = (j ,R, gsk) is kept in the device and used to encrypt

messages for the room.

inbound session Sgpk = (j ,R, gpk) allows other devices in the room to authenticate

and decrypt these messages.

12



Megolm Ratchet

At its core, Megolm is a symmetric

ratcheting scheme:

• it derives a new key for each message

• so that compromise of the current

state cannot be used to recover

previous encryption state

Ri−1

KDF

Ri K ki

KDF

Ri+1 K ki+1

13



Megolm Encryption

1. Sender generates a fresh symmetric key from R,

2. encrypts the message under this key, and

3. signs it to provide authentication.

Enc(k,m) = c c

c

c

c

This ciphertext is distributed by the Homeserver to other devices in the Group.

14



“Pursue your dreams but have a backup plan”

Backup Functionalities:

backup and recover User and Megolm secret values via Homeservers.

C

C

D1 D2

1. KeyRequest D2 2. mgpk

3. C

4. C

(rpk, σ)

(rpk, σ)

(epk, c)

User Secret Backups

(Secure Secret Storage

and Sharing (SSSS))

Online Session Recovery

(KeyRequest protocol)

Offline Session Recovery

(Server-Side Megolm

Backups)

• backup master

(cross-signing) secret

keys to server

• allows a user’s devices can

share Megolm session

information with each other

• as a hybrid of both,

backup Megolm

sessions to server
15



Outline

New phone, who dis?

Cryptography in Matrix

Attacks

Take Home Message

16



Q: “Who to encrypt to?”

Group membership is managed through events:

Alice A Homeserver H Bob B

m.room.member(invite,A,B,G )

m.room.member(invite,A,B,G ) m.room.member(invite,A,B,G )

m.room.member(join,B,A,G )

m.room.member(join,B,A,G ) m.room.member(join,B,A,G )

17



A: “Don’t worry, the server will let you know.”

Group membership is managed through unauthenticated events:

Alice A Homeserver H Bob B

m.room.member(invite,A,B,G ) m.room.member(invite,A,B,G )

m.room.member(join,B,A,G ) m.room.member(join,B,A,G )

18



Q: “What are Alice’s devices?” A: “Don’t worry . . . ”

• To send a message to a user, clients need a list of their devices.

• This list is provided by the homeserver and, hence, can be forged.

19



Damage

Breaks confidentiality: Attackers can eavesdrop on conversations

with some indication in (Element’s) user interface.

20



Status

Neither of these two are fixed, but a remediation (signed group membership messages) is

in the planning stage.

• Matrix’ previous rational: Element client shows list of users for a room, so users can

inspect, i.e. burden on users.

• Matrix post-disclosure: “many in the cryptography community consider this a

serious misdesign. Eitherway, it’s avoidable behaviour and we’re ramping up work

now to address it by signing room memberships so the clients control membership

rather than the server.”

21



Take Home Message

There is no confidentiality without authentication.

22



Attack on Out-of-Band Verification

How to ensure connection is not being MITM-ed? Out-of-band verification!

Short Authentication String (SAS) protocol ≈

1. Key exchange to generate a shared secret.

2. Compare the shared secret out-of-band

(using short strings of emojis).

If they don’t match, then abort!

3. Send correct cryptographic identities to each other over a secure channel

(constructed using the shared secret).

The homeserver tricks devices into sharing a homeserver-controlled identity.

23



Attack on Out-of-Band Verification

• Two types of verification:

1. Between two users

2. Between two devices of the same user

• Each party sends the other a message
containing a “key identifier” field:

1. For two users, this field contains the

fingerprint of their master

cross-signing key, mpk .

2. For two devices, this field contains

their device identifier.

Attack:

• Homeserver assigns the target a device

identifier that is also a master

cross-signing key fingerprint that the

homeserver generated.

• When the target sends a verification

request message with their device

identifier, the receiving device

interprets it as a cross-signing key

fingerprint and signs it!

24



Damage

Breaks confidentiality: Attackers can eavesdrop on conversations

and authentication: Attackers can impersonate users

with no indication in (Element’s) user interface!

25



Take Home Message

Domain separate all the things!

26



Alice: . . . , Bob: “Here are the keys for Charley”, Alice: “Ta!”

When a user adds a new device, they’d like that device to be able to decrypt messages

previously sent to that user via the KeyRequest protocol.

Element and other clients limited who they sent secrets to

but not who they accepted secrets from.

Attack:

DA,1 Homeserver H DH

(S′
gsk ,S

′
gpk , σmg)

← Megolm.Init(1λ)Olm.Enc(m.forwarded room key(DB,1, gpk
′,S′

gpk))

Accept S′
gpk

as DB,1’s session

27



Damage

Semi-trusted

Impersonation Attack

Breaks authentication:

Attackers can

impersonate users

with some indication in

(Element’s) user interface.

28



Layering Attacks for Full Impersonation

Megolm session setup:

Megolm.Init

(Sgsk ,Sgpk , σmg)

c0 = Olm.Encrypt(kAB , (Sgpk , σmg))

c1 = Olm.Encrypt(kAC , (Sgpk , σmg))

What if we could send (Sgpk , σmg) over Megolm instead of Olm?

Could we send it over a Megolm session placed via previous impersonation attack?

29



Layering Attacks for Full Impersonation

Device DH impersonates DB,1 to DA,1:

DA,1 Homeserver H DH

(S′
gsk ,S

′
gpk , σ

′
mg)

← Megolm.Init(1λ)Olm.Enc(m.forwarded room key(DB,1, gpk
′,S′

gpk))

Accept S′
gpk

as DB,1’s sessionS
em

i-
T
ru
st
ed

Im
p
er
so
n
at
io
n

(S∗
gsk ,S

∗
gpk , σ

∗
mg)

← Megolm.Init(1λ)Megolm.Encrypt(S′
gsk , m.room key(S∗

gpk , σ
∗
mg))

Accept S∗
gpk

as DB,1’s session

(not forwarded)

30



Damage

Semi-trusted

Impersonation Attack

Breaks authentication:

Attackers can

impersonate users

with some indication in

(Element’s) user interface.

Fully-trusted

Impersonation Attack

Breaks authentication:

Attackers can

impersonate users

with no indication in

(Element’s) user interface.

31



More Layers: Authentication to Confidentiality Break

When a user verifies their new device, it will use SSSS to request User Secrets from the

user’s existing devices.

This includes the recovery key used for Megolm Backups, i.e.

DA,1 Homeserver H DA,2

Out-of-band Verification

m.secret.requests(m.megolm backup.v1)

1. DA,1 verified

as Alice’s device?Olm.Enc(m.secret.send(m.megolm backup.v1, rk))

1. DA,2 verified

as Alice’s device?

2. Did I request

this secret?

Accept rk. 32



Damage

Semi-trusted

Impersonation Attack

Breaks authentication:

Attackers can

impersonate users

with some indication in

(Element’s) user interface.

Fully-trusted

Impersonation Attack

Breaks authentication:

Attackers can

impersonate users

with no indication in

(Element’s) user interface.

Authentication to

Confidentiality Break

Breaks confidentiality:

Attackers can eavesdrop

on conversations

with no indication in

(Element’s) user interface.

Together: complete break of confidentiality and authentication!

33



Take Home Messages

• There is no confidentiality without authentication.

• Put all cryptographic code in one small core.1

1Element checked authentication at display time, rather than at receipt time and thus those checks

were not run for messages that are not displayed.

34



Theoretical Confidentiality Break

Attack:

• Bug where the “initialisation vector” used in encryption is not integrity protected.

• Enables theoretical confidentiality break

Take home message:

• There is no confidentiality without integrity.2

2Corollary: The CIA triad – confidentiality, integrity, availability – is nonsense.

35



Recap & Status

1. Trivial confidentiality breaks not yet fixed

2. Attack on out-of-band verification CVE-2022-39250; reportedly mitigated

3. Impersonation CVE-2022-39246, CVE-2022-39249 and CVE-2022-39257;3

reportedly mitigated

4. Full impersonation CVE-2022-39248, CVE-2022-39251 and CVE-2022-39255;

reportedly mitigated

5. Impersonation to confidentiality break same CVEs as above; reportedly mitigated

6. Theoretical confidentiality attack not yet fixed

3In their review of the ecosystem the Matrix developers discovered further clients vulnerable to variants

of our attack and assigned CVE-2022-39252, CVE-2022-39254 and CVE-2022-39264.

36

https://nvd.nist.gov/vuln/detail/CVE-2022-39250
https://nvd.nist.gov/vuln/detail/CVE-2022-39246
https://nvd.nist.gov/vuln/detail/CVE-2022-39249
https://nvd.nist.gov/vuln/detail/CVE-2022-39257
https://nvd.nist.gov/vuln/detail/CVE-2022-39248
https://nvd.nist.gov/vuln/detail/CVE-2022-39251
https://nvd.nist.gov/vuln/detail/CVE-2022-39255
https://nvd.nist.gov/vuln/detail/CVE-2022-39252
https://nvd.nist.gov/vuln/detail/CVE-2022-39254
https://nvd.nist.gov/vuln/detail/CVE-2022-39264


Outline

New phone, who dis?

Cryptography in Matrix

Attacks

Take Home Message

37



Difficult Problems!

Matrix aims to solve some difficult problems:

1. Secure (Group) Messaging

. . . in a multi-device setting,

. . . that is scalable to thousands of devices in a single group.

2. Backups and history sharing.

3. Authentication and identity verification

. . . cross-signing to reduce user burden of out-of-band verification.

4. Federation.

5. Supporting a variety of clients across many platforms.

38



Cryptography is not a dark art

“Crypto is hard!”

39



Cryptography is not a dark art

“Crypto is hard!”

Of course, cryptography is hard, so is any

other science.

39



Cryptography is not a dark art

“Crypto is hard!”

Modern cryptography gives us the tools to

reason about cryptographic protocols to rule

out the sort of issues we found here.

39



Cryptography is not a dark art

“Crypto is hard!”

“Cryptography needs security models and

proofs!”

39



Cryptography is not a dark art

40



Fin

Thank you! Questions?

Never trust a cryptographic protocol without a formal proof

of security.4

https://nebuchadnezzar-megolm.github.io/

4Yes, these have limitations. No, whitepapers and audits do not suffice.

40

https://nebuchadnezzar-megolm.github.io/

	New phone, who dis?
	Cryptography in Matrix
	Attacks
	Take Home Message

