
Android parcels: the bad, the good and the better
Introducing Android’s Safer Parcel

Hao Ke
Bernardo Rufino

Yang Yang
Maria Uretsky



About Us 

Hao Ke (@haoOnBeat)
Security Engineer
Android Malware Research
Google

Bernardo Rufino
Software Engineer
Android Platform Security
Google

Yang Yang
Security Engineer
Android VRP
Google

https://twitter.com/haoOnBeat


Special thanks

Maria Uretsky
Tech Lead
Android VRP
Google

Kevin Deus
ISE Manager
Android VRP
Google



Agenda

● Parcel Mismatch problems 
● Bundle “FengShui” - Self changing Bundle 
● Bundle “FengShui” - Making it safe(r)
● CVE-2021-0928 (Novel in Android 12-beta) 
● CVE-2021-0928 - Making it safe(r) 
● Parcel Mismatch and Android VRP 
● Questions 



Parcel Mismatch problems: Parcel and Parcelable
● Parcel: A container for sending serialized (aka. parceled) data across binder 

IPCs.
● Parcelable: 

○ Sender Side: Objects serialized into the Parcel (writeToParcel)
○ Receiver Side:Reconstructed back into the original Object (createFromParcel)



Parcel Mismatch problems: Parcelable Containers
private void readListInternal(@NonNull List 

outVal, int N, @Nullable ClassLoader loader) {

        while (N > 0) {

            Object value = readValue(loader);

            outVal.add(value);

            N--;

        }

public final Object readValue(@Nullable 

ClassLoader loader) {

int type = readInt();

switch (type) {

case VAL_PARCELABLE:

            return readParcelable(loader);

…
case VAL_LIST:

   return readArrayList(loader);

}

…

● “A final class of methods are for writing and 
reading standard Java containers of arbitrary 
types.”

● Array, List, ArrayList, Map, SparseArray..

public final ArrayList readArrayList(@Nullable 

ClassLoader loader) {

    int N = readInt();

    …
    ArrayList l = new ArrayList(N);

    readListInternal(l, N, loader);

    return l;

}



Parcel Mismatch problems: Parcelable Containers: Cont’d
● Deserializes “everything” in the container

○ Other containers
○ Parcelables and Serializables
○ (Parcelables and Serializables in other containers)

● Of Arbitrary types
○ Deserializes Parcelables or Serializables of any type



Parcel Mismatch problems

Parcelable Write:
public void writeToParcel(Parcel parcel, int 
flags) {
   parcel.writeInt(f1);
   parcel.writeByteArray(f2);
}

Parcelable Read:
f1 = parcel.readInt();
if (f1 > 0) {
   parcel.readByteArray(f2);
}



Parcel Mismatch problems: Cont’d
● A parcelable write/read mismatch makes the next entry read be misaligned
● Then, the receiver deserializes the data in an unexpected way



Bundle “FengShui” - Self changing Bundle

● Bundle b = new Bundle()

// Fill b

Bundle c = new Bundle(b.writeToParcel())  

● b "!=" c => Self-changing bundle

Serialization

Deserialization Simulates sending b 
over processes (IPC)



Bundle “FengShui” - Self changing Bundle
● Vulnerable example 

● Leveraged in following cross-process 
flow:

○ A: Sends Bundle x to B
○ A: <x is serialized>
○ B: <x is deserialized>
○ B: Inpects x (TOC) and sends to C
○ B: <x is serialized>
○ C: <x is deserialized>
○ C: Uses x (TOU)

● Challenge: Hide item ("intent" => 42) 
in Bundle from B 

○ Item only appears to C
○ In Android 12



Bundle “FengShui” - Self changing Bundle
A     ===(PA)====>       B        ====(PB)===>  C 



Bundle “FengShui” - Self changing Bundle

Vulnerable

A     ===(PA)====>       B        ====(PB)===>  C 



Bundle “FengShui” - Self changing Bundle



Bundle “FengShui” - Self changing Bundle



Bundle “FengShui” - Self changing Bundle



Bundle “FengShui” - Self changing Bundle



Bundle “FengShui” - Self changing Bundle

Android 12/S



Bundle “FengShui” - Self changing Bundle: Exploits



Bundle “FengShui” - Self changing Bundle: Exploits



Bundle “FengShui” - Self changing Bundle: Exploits

Different!



Bundle “FengShui” - Self changing Bundle: Exploits
● Abuses AccountManagerService

○ Where KEY_INTENT check happens 
○ TOCTOU mismatch:

■ Bundle object ("self-")changed from deserialization to reserialization

● Triggers arbitrary Activity launching, from Settings app
○ Settings app (uid=1000 SYSTEM_UID) is privileged and can launch arbitrary 

activities
○ “LaunchAnyWhere”

● Knowingly used in Malware campaigns (not covered in this talk)
○ Silently install packages



Bundle “FengShui” - Making it safe(r)

● Fix the individual r/w mismatches
○ Yes, but doesn't scale

● Fix AccountManagerService 
○ Yes, but what about other code paths?

● Fix Bundle
○ Yes!
○ What's wrong with Bundle?
○ => Lazy Bundle



● Fix the individual r/w mismatches => Yes, but doesn't scale

Bundle “FengShui” - Making it safe(r)

…more



● Fix the individual r/w mismatches
○ Yes, but doesn't scale

● Fix AccountManagerService 
○ Yes, but what about other code paths?

● Fix Bundle
○ Yes!
○ What's wrong with Bundle?
○ => Lazy Bundle

Bundle “FengShui” - Making it safe(r)



● => Fix AccountManagerService? Yes

Between (6) and (7)
=> b2 = unparcel(parcel(bundle))
=> Verify 
b2.get(KEY_INTENT) "==" bundle.get(KEY_INTENT)
=> If not, fail and log

Bundle “FengShui” - Making it safe(r)



● Fix the individual r/w mismatches
○ Yes, but doesn't scale

● Fix AccountManagerService 
○ Yes, but what about other code paths?

● Fix Bundle
○ Yes!
○ What's wrong with Bundle?
○ => Lazy Bundle

Bundle “FengShui” - Making it safe(r)



● Fix Bundle
○ Yes!
○ What's wrong with Bundle?

■ Structure implicitly defined by the items and their payloads
■ Eager deserialization upon first retrieval/query

○ => Lazy Bundle

Bundle “FengShui” - Making it safe(r)



● What's wrong with Bundle?
○ Structure implicitly defined by the items and their payloads

○ If there is a r/w mismatch, the next read is affected 

b.putParcelable("1", p1)

b.putParcelable("2", p2)

b.getParcelable("1")

b.getParcelable("2")

Bundle “FengShui” - Making it safe(r)



● What's wrong with Bundle?
○ Structure implicitly defined by the items and their payloads 
○ Prefix item length 

Bundle “FengShui” - Making it safe(r)

b.putParcelable("1", p1)

b.putParcelable("2", p2)

b.getParcelable("1")

b.getParcelable("2")



● What's wrong with Bundle?
○ Eager deserialization upon first retrieval/query
○ To read an item => read all previous items (in practice we read all the bundle)

b.putParcelable("1", p1)

b.putParcelable("2", p2)

// b.getParcelable("1")

b.getParcelable("2")

Bundle “FengShui” - Making it safe(r)



● What's wrong with Bundle?
○ Eager deserialization upon first retrieval/query
○ With length prefix, we can skip items => only read (custom) items when queried
○ => Lazy bundle

b.putParcelable("1", p1)

b.putParcelable("2", p2)

Bundle “FengShui” - Making it safe(r)

// b.getParcelable("1")

b.getParcelable("2")



● What's wrong with Bundle?
○ Lazy bundle: More resilient against system crashes / DoS

Bundle b = 
  getIntent().getExtras()  // Parcelled form

b.getParcelable(k1)

b                          // Map form

Bundle “FengShui” - Making it safe(r)



● What's wrong with Bundle?
○ Lazy bundle: More resilient against system crashes / DoS

Bundle b = 
  getIntent().getExtras()  // Parcelled form

b.getParcelable(k1)

b                          // Map form

Bundle “FengShui” - Making it safe(r)

Parcelled form

Map form



● What's wrong with Bundle?
○ Lazy bundle: More resilient against system crashes / DoS

Bundle b = 
  getIntent().getExtras()  // Parcelled form

b.getParcelable(k1)

b                          // Map form

Bundle “FengShui” - Making it safe(r)

X



● What's wrong with Bundle?
○ Lazy bundle: More resilient against system crashes / DoS

Bundle b = 
  getIntent().getExtras()  // Parcelled form

b.getParcelable(k1)

b                          // Map form

Bundle “FengShui” - Making it safe(r)



● What's wrong with Bundle?
○ Lazy bundle: More resilient against system crashes / DoS

Bundle b = 
  getIntent().getExtras()  // Parcelled form

b.getParcelable(k1)

b                          // Map form

Bundle “FengShui” - Making it safe(r)



CVE-2021-0928 (Novel in Android 12-beta)

● Arbitrary code execution in any app’s process (including system app process 
UID:1000)

○ Different exploit technique than Bundle FengShui
○ Fixed in Android 12’s official release
○ Reported and PoC-ed by Michał Bednarski (@BednarTildeOne)

https://twitter.com/BednarTildeOne


CVE-2021-0928 - Background: Broadcast

What happens when an app calls sendBroadcast(intent) ?



Background Cont’d: Broadcast - ActivityInfo
Arbitrary code execution via tampering the ActivityInfo value.

● ActivityThread (in app’s process) calls handleReceiver and eventually uses the 
applicationInfo object (within ActivityInfo) to create a LoadedApk instance.

● The LoadedApk object assigns the applicationInfo object’s sourceDir value to its 
appdir, which is eventually used to to create the application’s classLoader.

● Hence controlling the sourceDir value, the attacker application can make the 
victim process load an attacker-controlled APK and execute arbitrary code from 
there.

https://cs.android.com/android/platform/superproject/+/master:frameworks/base/core/java/android/app/ActivityThread.java;drc=f53e23b917aa0f6a6310e46a233a29b6d6226b2c;l=3979
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/core/java/android/app/ActivityThread.java;drc=f53e23b917aa0f6a6310e46a233a29b6d6226b2c;l=2369
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/core/java/android/app/LoadedApk.java;l=429;drc=3e308c62708443e24ba44ecac683a7fe4d9a7ac2
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/core/java/android/app/LoadedApk.java;l=721;drc=3e308c62708443e24ba44ecac683a7fe4d9a7ac2


CVE-2021-0928 - The Mismatch

● When exceptions occurs:
○ The read stops before fully consuming the data
○ Exceptions caught gracefully

https://source.corp.google.com/sc-dev/frameworks/base/core/java/android/hardware/camera2/params/OutputConfiguration.java;l=832?q=OutputConfiguration&ss=piper%2FGoogle%2Fsc-dev


CVE-2021-0928: OutputConfiguration Deserialization
private OutputConfiguration(@NonNull Parcel source) 
{
   int rotation = source.readInt();
   int surfaceSetId = source.readInt();
   int surfaceType = source.readInt();
   int width = source.readInt();
   int height = source.readInt();
   …
   boolean isMultiResolutionOutput = 
source.readInt() == 1;
   ArrayList<Integer> sensorPixelModesUsed = new 
ArrayList<Integer>();
   source.readList(sensorPixelModesUsed, 
Integer.class.getClassLoader());
…
}



CVE-2021-0928: OutputConfiguration Deserialization
private OutputConfiguration(@NonNull Parcel source) 
{
   int rotation = source.readInt();
   int surfaceSetId = source.readInt();
   int surfaceType = source.readInt();
   int width = source.readInt();
   int height = source.readInt();
   …
   boolean isMultiResolutionOutput = 
source.readInt() == 1;
   ArrayList<Integer> sensorPixelModesUsed = new 
ArrayList<Integer>();
   source.readList(sensorPixelModesUsed, 
Integer.class.getClassLoader());
…
}



CVE-2021-0928



CVE-2021-0928



CVE-2021-0928
● system_server prepares the Parcel Object with Intent, 

ActivityInfo, other params
● Victim app reads the Parcel object:

○ Exception only triggers when victim app’s deserializing the 
Intent

○ Read stops before data fully consumed
○ Exception handled, deserialization continues
○ Intent’s deserialization finished before the full Intent object 

is read
○ Starts reading ActivityInfo, from the wrong offset, within 

the attacker-controlled  Intent object
○ ……

● Victim app execute the broadcast, using attacker controlled 
ActivityInfo

○ Arbitrary code execution



CVE-2021-0928 - Prerequisites
● Parcelable R/W mismatch via triggering exceptions

○ Read “less” than write, causing the next parameter read at the wrong offset
○ Exception only triggers in application’s process

● Build PoC in the Intent object
○ Embed (R/W Mismatched) Parcelable objects in Intent. (Only became 

available in Android 12(S)-beta)



CVE-2021-0928 - Prerequisites
● Parcelable R/W mismatch via triggering exceptions

○ Read “less” than write, causing the next parameter read at the wrong offset
○ Exception only triggers in application’s process

■ ClassNotFoundException with system_server specific class 
PackageManagerException

● Build PoC in the Intent object
○ Embed (R/W Mismatched) Parcelable objects in Intent. (Only became available in 

Android 12(S)-beta)



CVE-2021-0928 - Prerequisites
● Parcelable R/W mismatch via triggering exceptions

○ Read “less” than write, causing the next parameter read at the wrong offset
○ Exception only triggers in application’s process

● Build PoC in the Intent object
○ Embed (R/W Mismatched) Parcelable objects in Intent. (Only became 

available in Android 12(S)-beta)



CVE-2021-0928 - Prerequisites
Build PoC in the Intent object

● Embed (R/W Mismatched) Parcelable objects in Intent. (Only became available in 
Android 12(S)-beta)

splitDependencies = source.readSparseArray(null);

readSparseArray - Parcelable Container method



CVE-2021-0928 - Final PoC
Intent

● mClipData = ClipData
○ mItems.get(0).mActivityInfo = ActivityInfo

■ applicationInfo = ApplicationInfo
■ splitDependencies.get(0) = ZenPolicy // For Padding (Not covered in the talk)

■ mVisualEffects.get(0) = OutputConfiguration
■ mSensorPixelModesUsed.get(0) = WindowContainerTransaction

■ mHierarchyOps.get(0) = PackageManagerException 💣
■ mSensorPixelModesUsed.get(1) = Bundle

■ Wrapup ClipData
■ Wrapup Intent
■ Next params for scheduleReceiver (ActivityInfo, compatinfo,...)

○ Wrapup ClipData
● Wrapup Intent



CVE-2021-0928: Victim process’ read

👉: https://github.com/michalbednarski/ReparcelBug2

https://yaytext.com/emoji/backhand-index-pointing-right/
https://github.com/michalbednarski/ReparcelBug2/#fixes


CVE-2021-0928 - Making it safe(r) 

● Apply targeted fixes
● Lazy bundle doesn't help, can we prefix every Parcelable (or IPC parameter)?
● Not enough validation

○ In domain-specific code
○ In infrastructure code

● Manual serialization/deserialization is prone to mismatches



● Apply targeted fixes
○ Fix the mismatches: Exception swallowing

○ Fix the mismatch: readList() for int array

○ Remove ActivityInfo from ClipData

CVE-2021-0928 - Making it safe(r) 



● Lazy bundle doesn't help

CVE-2021-0928 - Making it safe(r) 

Bundle FengShui CVE-2021-0928 (Novel Exploit)



● Lazy bundle doesn't help
● Can we prefix every Parcelable or IPC parameter?

○ Not practical (backwards compatibility problems)
○ Performance :(

CVE-2021-0928 - Making it safe(r) 

IPC interface

Java generated code



CVE-2021-0928 - Making it safe(r) 

● Apply targeted fixes
● Lazy bundle doesn't help, can we prefix every Parcelable (or IPC parameter)?
● Not enough validation

○ In domain-specific code
○ In infrastructure code

● Manual serialization/deserialization is prone to mismatches



● Not enough validation:
○ In infrastructure code
○ Recap: Arbitrary deserialization Parcel container

Intent

● mClipData = ClipData

○ mItems.get(0).mActivityInfo = ActivityInfo

■ applicationInfo = ApplicationInfo

■ splitDependencies.get(0) = ZenPolicy                

■ mVisualEffects.get(0) = OutputConfiguration

■ mSensorPixelModesUsed.get(0) = WindowContainerTransaction

■ mHierarchyOps.get(0) = PackageManagerException 💣
■ mSensorPixelModesUsed.get(1) = Bundle

■ Wrapup ClipData
■ Wrapup Intent
■ Next params for scheduleReceiver (ActivityInfo, compatinfo,...)

○ Wrapup ClipData
● Wrapup Intent

ApplicationInfo.splitDependencies
is SparseArray<int[]> 
but attacker inserts ZenPolicy item

ZenPolicy.mVisualEffects
is ArrayList<Integer>  
but attacker inserts OutputConfiguration item

OutputConfiguration.mSensorPixelModesUsed 
is ArrayList<Integer>  
but attacker inserts WindowContainerTransaction item

…

CVE-2021-0928 - Making it safe(r) 



● Not enough validation:
○ In infrastructure code
○ Recap: Arbitrary deserialization Parcel container

Intent

● mClipData = ClipData

○ mItems.get(0).mActivityInfo = ActivityInfo

■ applicationInfo = ApplicationInfo

■ splitDependencies.get(0) = ZenPolicy                

■ mVisualEffects.get(0) = OutputConfiguration

■ mSensorPixelModesUsed.get(0) = WindowContainerTransaction

■ mHierarchyOps.get(0) = PackageManagerException 💣
■ mSensorPixelModesUsed.get(1) = Bundle

■ Wrapup ClipData
■ Wrapup Intent
■ Next params for scheduleReceiver (ActivityInfo, compatinfo,...)

○ Wrapup ClipData
● Wrapup Intent

ApplicationInfo.splitDependencies
is SparseArray<int[]> 
but attacker inserts ZenPolicy item

ZenPolicy.mVisualEffects
is ArrayList<Integer>  
but attacker inserts OutputConfiguration item

OutputConfiguration.mSensorPixelModesUsed 
is ArrayList<Integer>  
but attacker inserts WindowContainerTransaction item

…

Eg

CVE-2021-0928 - Making it safe(r) 



● Not enough validation:
○ In infrastructure code: Arbitrary deserialization Parcel container

In ApplicationInfo, we happily deserialize ZenPolicy as item

But we know splitDependencies only holds int[] items a priori

=> In the worst case, this enables attacks like this CVE
=> In the best case (non-malicious), this will cause exceptions later on

CVE-2021-0928 - Making it safe(r) 



● Not enough validation:
○ In infrastructure code: Arbitrary deserialization Parcel container

In ApplicationInfo, we happily deserialize ZenPolicy as item

But we know splitDependencies only holds int[] items a priori

Fix: validate splitDependencies item types before deserialization

CVE-2021-0928 - Making it safe(r) 



● Not enough validation:
○ In infrastructure code: Arbitrary deserialization Parcel container

Fix: validate splitDependencies item types before deserialization

=> New Parcel, Bundle & Intent replacement APIs that take an extra Class<T> parameter
=> Old APIs were @Deprecated

CVE-2021-0928 - Making it safe(r) 



● Not enough validation:
○ In infrastructure code: Arbitrary deserialization Parcel container
○ New Parcel, Bundle & Intent replacement APIs that take an extra Class<T> 

■ How to migrate 600+ call sites?
● Need to infer static type 
● Then, add inferred Class<T>

CVE-2021-0928 - Making it safe(r) 



● Not enough validation:
○ In infrastructure code: Arbitrary deserialization Parcel container
○ New Parcel, Bundle & Intent replacement APIs that take an extra Class<T> 

■ How to migrate 600+ call sites?
● Need to infer static type 
● Then, add inferred Class<T>
● => Use Android Lint!

CVE-2021-0928 - Making it safe(r) 



● Not enough validation:
○ In infrastructure code: Parcel EOF check in IPC interfaces.

■ We can't enforce boundaries in IPC parameters :( 
■ But we can verify that the parcel was fully consumed
■ Not strong mitigation, but

● Uncovers mismatch/security issues 
● Uncovers correctness/non-security bugs

CVE-2021-0928 - Making it safe(r) 



● Not enough validation:
○ In infrastructure code: Parcel EOF check in IPC interfaces.

Check

CVE-2021-0928 - Making it safe(r) 



● Not enough validation:
○ In infrastructure code: Parcel EOF check in IPC interfaces.

CVE-2021-0928 - Making it safe(r) 



● Manual serialization/deserialization is prone to mismatches
○ Mismatch detection at runtime
○ => Use the length prefix in Lazy Bundle

CVE-2021-0928 - Making it safe(r) 



CVE-2021-0928 - Making it safe(r) 

● Apply targeted fixes
● Not enough validation

○ In domain-specific code
○ In infrastructure code

■ New Parcel, Bundle & Intent APIs that take Class<?> 
■ Parcel EOF check in IPC interfaces

● Manual serialization/deserialization is prone to mismatches
○ Mismatch detection at runtime 



1st report in Sept, 2014 by Michal Bednarski (@BednarTildeOne)

28 exploitable Parcel Mismatch reports were submitted to the Android 
Vulnerability Rewards program (VRP).

Known to be abused by malware 
in the wild.

Parcel Mismatch Ecosystem Perspective 

Parcel mismatch reports distribution

10 6 6 6

Total VRP incoming 
reports

https://android.googlesource.com/platform/frameworks/base/+/f741c37%5E!/
https://twitter.com/BednarTildeOne


Android Vulnerability Rewards Program

VRP ingestion consists of multiple 
sources:   

 

Severity Risk Assessment 
Based on Android security model that measures 
Android user risk.



Parcel Mismatch Security Severity- High

According to the Android Severity Guidelines, exploitable Parcel Mismatch is 
rated as a High Security vulnerability: 

● "Local arbitrary code execution in a privileged context, the bootloader chain, THB, or 
the OS Kernel"

● Reason: parcel mismatch allows launching arbitrary activities as the Settings app with 
(SYSTEM_UID).  It can be used to achieve the following privileged actions:

○ Installing an arbitrary APK
○ Resetting the lock screen password



Exploit Reward Chain Program

On top of VRP, we also have an 
exploit chain reward program.

Michał Bednarski’s 
(@BednarTildeOne) novel exploit 
CVE-2021-0928 qualified as a Code 
Execution exploit chain in a 
Privileged Process

https://bughunters.google.com/about/rules/6171833274204160/android-and-google-devices-security-reward-program-rules


Life Cycle of a Vulnerability

● For potentially exploitable 
vulnerabilities, collaborate 
with Malware Team to add 
Play Store detection

● Collaborate with various 
security teams for in-depth 
remediation:
○ API/Platform hardening 
○ Continuous Fuzzing
○ Red team engagement

Bounty Payment

Release

Remediation

Triage & 
Assessment

01

05

04 03

02

Discovery



Once we know about it, we can fix it

bughunters.google.com



Questions?


