
#BHEU @BlackHatEvents

Sweet QuaDreams or Nightmare
before Christmas?

Dissecting an iOS 0-Day Attack

Bill Marczak, The Citizen Lab

Christine Fossaceca, Microsoft

Notes:

• We’re talking about an attack from 2021

• We’re not dropping CVEs on stage!

• Have shared technical details with Apple

About Christine

@x71n3

About Bill

About Bill

iPhone Initial Access

CVE-Whatever: Perpetual

Safari/WebKit Exploit

iPhone Initial Access

CVE-Whatever: Perpetual

Safari/WebKit Exploit

iPhone Initial Access

Target: Ahmed Mansoor

UAE Human Rights Activist

iPhone Initial Access with Zero Clicks

CVE-2021-30860: Integer

overflow in CoreGraphics

iPhone Initial Access with Zero Clicks

CVE-2021-30860: Integer

overflow in CoreGraphics

CVE-2023-41064: Buffer

overflow in ImageIO

iPhone Initial Access with Zero Clicks

CVE-2021-30860: Integer

overflow in CoreGraphics

CVE-2023-41064: Buffer

overflow in ImageIO

CVE-2023-41990: Issue in

FontParser

iPhone Initial Access with Zero Clicks

Our Definitions

0-day (ze·ro·day): an exploited vulnerability for
which there is no patch available

0-click (ze·ro·click): a remote vulnerability that
requires no user interaction (or “clicks”)

Our Definitions

0-day (ze·ro·day): an exploited vulnerability for
which there is no patch available

0-click (ze·ro·click): a remote vulnerability that
requires no user interaction (or “clicks”)

Our Definitions

0-day (ze·ro·day): an exploited vulnerability for
which there is no patch available

0-click (ze·ro·click): a remote vulnerability that
requires no user interaction (or “clicks”)

Our Definitions

0-day (ze·ro·day): an exploited vulnerability for
which there is no patch available

0-click (ze·ro·click): a remote vulnerability that
requires no user interaction (or “clicks”)

Apple Sandboxes IMTranscoderAgent with BlastDoor

Neener neener!

Apple Sandboxes IMTranscoderAgent with BlastDoor

Attack/Circumvent

BlastDoor

Find a Different

Attack Surface

BlastDoor: A Fork in the Road

BlastDoor: A Fork in the Road

Attack/Circumvent

BlastDoor

Find a Different

Attack Surface

BlastDoor: A Fork in the Road

Attack/Circumvent

BlastDoor

Find a Different

Attack Surface

Discovery of the Attack &

Samples

Attribution: Sometimes
it's Easy!

Static & Dynamic
Reversing of the Sample

A Theory of the Exploit

Discovery of the Attack &

Samples

Log Analysis

Log Analysis

Top-down:

Analyze a spyware sample, understand

what forensic traces it leaves behind,

then look for these in the phone's logs.

Log Analysis

Top-down:

Analyze a spyware sample, understand

what forensic traces it leaves behind,

then look for these in the phone's logs.

Bottom-up:

Look for implausible artifacts in the

phone's logs, and then try to attribute

them.

Can detect unknown spyware this way!

Examples of "Implausible Artifacts"

• Evidence that a non-iOS-update binary ran from:
/private/var/db/com.apple.xpc.roleaccountd.staging/

• Evidence that any binary ran from /tmp

• Evidence that a binary consumed mobile data that is

"not supposed to" (e.g., BackupAgent)

An implausible artifact ITW...

Get yer' phones checked here!!!

An implausible artifact ITW...

Several phones showed a binary had run:
/private/var/db/com.apple.xpc.roleaccountd.staging/subridged

Phones negative for Pegasus!!!

Get yer' phones checked here!!!

Microsoft Threat Intelligence is constantly tracking ITW threats

...meanwhile at Microsoft

Microsoft Threat Intelligence is constantly tracking ITW threats

...meanwhile at Microsoft

Microsoft Threat Intelligence is constantly tracking ITW threats

...meanwhile at Microsoft

Microsoft had found a sample with this hard-coded path:

/private/var/db/com.apple.xpc.roleaccountd.staging/subridged

Yo Citizen Lab, we have a
sample matching your IOCs...

Tell us more...

Discovery of the Attack &

Samples

Attribution: Sometimes
it's Easy!

Carmine Tsunami

Carmine Tsunami

Private Sector Offensive Actor

(PSOA)

• A company that sells

hacking tools

• Often exclusively to

governments

Carmine Tsunami

Private Sector Offensive Actor

(PSOA)

• A company that sells

hacking tools

• Often exclusively to

governments

In this case, QuaDream!

The Mercenary Spyware Industry

The Industry in the News

The Industry in the News

Central Asia

Europe

North America

Southeast AsiaMiddle East

Victim Locations

Discovery of the Attack &

Samples

Attribution: Sometimes
it's Easy!

Static & Dynamic
Reversing of the Sample

iOS System Protections

Protection Mechanism Bypassed?

ASLR and NX

Sandboxing

Entitlements

Codesigning + AMFI

PAC

PPL

iOS System Protections

Protection Mechanism Bypassed?

ASLR and NX

Sandboxing

Entitlements

Codesigning + AMFI

PAC

PPL

iOS System Protections

Protection Mechanism Bypassed?

ASLR and NX

Sandboxing

Entitlements

Codesigning + AMFI

PAC

PPL

iOS System Protections

Protection Mechanism Bypassed?

ASLR and NX

Sandboxing

Entitlements

Codesigning + AMFI

PAC

PPL

Sample Capabilities

• Device Info

• Wi-Fi

• Airplane Mode

• Carrier Info

• iOS version

• Spying

• Records audio

• Takes pictures

• Tracks location

Sample Capabilities

• Exfiltrates and deletes

keychain items

• Exfiltrates and deletes other

files on disk

• NO persistence mechanism!

iOS Secure Boot Chain

Apple WWDC 2016

Examples of iOS “persistence”

• Zecops Blog: “NoReboot”. Hook shutdown

mechanism to "fake" a reboot
(theoretical attack – not ITW)

Examples of iOS “persistence”

• Zecops Blog: “NoReboot”. Hook shutdown

mechanism to "fake" a reboot
(theoretical attack – not ITW)

• Re-infect on reboot examples:

• Pegasus in 2016: rtbuddyd –-early-boot.

Replace rtbuddyd w/ JSC, put JS exploit

in file called "--early-boot"

• Predator in 2021: iOS shortcut

automations

Examples of iOS “persistence”

• Zecops Blog: “NoReboot”. Hook shutdown

mechanism to "fake" a reboot
(theoretical attack – not ITW)

• Re-infect on reboot examples:

• Pegasus in 2016: rtbuddyd –-early-boot.

Replace rtbuddyd w/ JSC, put JS exploit

in file called "--early-boot"

• Predator in 2021: iOS shortcut

automations

Subverting iCloud 2FA

• /usr/libexec/adid (Anisette) process is responsible

• This is “hard” to reverse (FairPlay DRM)

• So, they treat it like a black box!

• Dylib injection to inject code into adid, then function

hooking to generate codes

• How does this work?

Dylib Injection

//lib injection code (thanks newosxbook.com)

//grab the task port for the target pid

task_t remoteTask;

task_for_pid(mach_task_self(), pid, &remoteTask);

//allocate memory

mach_vm_allocate(remoteTask, &remoteMem64, MEM_SIZE, VM_FLAGS_ANYWHERE);

//write shellcode into memory

mach_vm_write(remoteTask, remoteMem64, ptr_to_shellcode,len);

//make memory executable

vm_protect(remoteTask, remoteMem64, SIZE, FALSE,VM_PROT_READ|VM_PROT_EXECUTE);

Dylib Injection

//lib injection code (thanks newosxbook.com)

//grab the task port for the target pid

task_t remoteTask;

task_for_pid(mach_task_self(), pid, &remoteTask);

//allocate memory

mach_vm_allocate(remoteTask, &remoteMem64, MEM_SIZE, VM_FLAGS_ANYWHERE);

//write shellcode into memory

mach_vm_write(remoteTask, remoteMem64, ptr_to_shellcode,len);

//make memory executable

vm_protect(remoteTask, remoteMem64, SIZE, FALSE,VM_PROT_READ|VM_PROT_EXECUTE);

Find pid of adid

Dylib Injection

//lib injection code (thanks newosxbook.com)

//grab the task port for the target pid

task_t remoteTask;

task_for_pid(mach_task_self(), pid, &remoteTask);

//allocate memory

mach_vm_allocate(remoteTask, &remoteMem64, MEM_SIZE, VM_FLAGS_ANYWHERE);

//write shellcode into memory

mach_vm_write(remoteTask, remoteMem64, ptr_to_shellcode,len);

//make memory executable

vm_protect(remoteTask, remoteMem64, SIZE, FALSE,VM_PROT_READ|VM_PROT_EXECUTE);

allocate memory

Dylib Injection

//lib injection code (thanks newosxbook.com)

//grab the task port for the target pid

task_t remoteTask;

task_for_pid(mach_task_self(), pid, &remoteTask);

//allocate memory

mach_vm_allocate(remoteTask, &remoteMem64, MEM_SIZE, VM_FLAGS_ANYWHERE);

//write shellcode into memory

mach_vm_write(remoteTask, remoteMem64, ptr_to_shellcode,len);

//make memory executable

vm_protect(remoteTask, remoteMem64, SIZE, FALSE,VM_PROT_READ|VM_PROT_EXECUTE);

write shellcode

Dylib Injection

//lib injection code (thanks newosxbook.com)

//grab the task port for the target pid

task_t remoteTask;

task_for_pid(mach_task_self(), pid, &remoteTask);

//allocate memory

mach_vm_allocate(remoteTask, &remoteMem64, MEM_SIZE, VM_FLAGS_ANYWHERE);

//write shellcode into memory

mach_vm_write(remoteTask, remoteMem64, ptr_to_shellcode,len);

//make memory executable

vm_protect(remoteTask, remoteMem64, SIZE, FALSE,VM_PROT_READ|VM_PROT_EXECUTE);

make executable

Dylib Injection

//lib injection code continued

//shellcode contains dlopen pointer callback

uint64_t addrOfDlopen = (uint64_t) dlopen;

//dylib is on disk

*path_to_dylib = “/path/to/mydylib”

//when remote thread executes

callBackFunction(*addrOfDlopen, *path_to_dylib)

Dylib Injection

//lib injection code continued

//shellcode contains dlopen pointer callback

uint64_t addrOfDlopen = (uint64_t) dlopen;

//dylib is on disk

*path_to_dylib = “/path/to/mydylib”

//when remote thread executes

callBackFunction(*addrOfDlopen, *path_to_dylib)

Shellcode sets up a stack frame
for a call to DLOPEN

Dylib Injection

//lib injection code continued

//shellcode contains dlopen pointer callback

uint64_t addrOfDlopen = (uint64_t) dlopen;

//dylib is on disk

*path_to_dylib = “/path/to/mydylib”

//when remote thread executes

callBackFunction(*addrOfDlopen, *path_to_dylib)

Target binary loads dylib in its own
context, arbitrary code execution
achieved

Subverting iCloud 2FA

• Codes are TOTP (i.e., solely determined

by secret key material & wall-clock time)

• Hooks gettimeofday to "fool" adid about

the current time

• Can generate 2FA codes valid for

arbitrary future times!!!

• Plug & chug a ton of times into the

injected adid ... profit!!

Complex Predicate Language

Complex Predicate Language

• VPN Connected (T/F)

• Proxy (T/F)

• Third-party Jailbreak (T/F)

• Device Attached (T/F)

• Battery Charging (T/F)

• Screen Locked (T/F)

• Battery Percentage (int)

• Battery Temp. Range (float)

• CPU Utilization (float)

• Located in Country (list)

Complex Predicate Language

• VPN Connected (T/F)

• Proxy (T/F)

• Third-party Jailbreak (T/F)

• Device Attached (T/F)

• Battery Charging (T/F)

• Screen Locked (T/F)

• Battery Percentage (int)

• Battery Temp. Range (float)

• CPU Utilization (float)

• Located in Country (list)

• Connectivity (Mobile

Data/WiFi)

• Data Uploaded in Duration

Exceeds Threshold

• Traveled to New Country

• Location within radius of

coordinates

• Threatening process

• AND/OR/NOT/PIPE

Cleanup C&C Command...

DELETE FROM CalendarItemChanges WHERE record IN (SELECT
owner_id FROM ParticipantChanges WHERE email = "%s");

DELETE FROM ParticipantChanges WHERE email = "%s";

DELETE FROM Identity WHERE ROWID IN (SELECT DISTINCT
identity_id FROM Participant WHERE email = "%s");

• Step 1: Open Calendar.sqlitedb

• Step 2: Run queries, where %s is supplied by C&C:

• Step 3: Vacuum the DB

Discovery of the Attack &

Samples

Attribution: Sometimes
it's Easy!

Static & Dynamic
Reversing of the Sample

A Theory of the Exploit

Event added >6 months
after it ended – backdated!

Event added >6 months
after it ended – backdated!

Closing and opening
"CDATA" tags!!!!!!!!!

CDATA who???

<?xml version="1.0" encoding="utf-8"?>
[...]
 <d:calendar-data><![CDATA[

 BEGIN:VCALENDAR
 [...]
 DESCRIPTION]]>:

<lmao>parsed by the phone as XML</lmao>

 ATTENDEE<![CDATA[:Notes
]]></d:calendar-data>
 [...]

Hold up, does this really work?

Hold up, does this really work?

• Yes. Parsed by NSXMLParser (libxml2 SAX mode)

Hold up, does this really work?

• Yes. Parsed by NSXMLParser (libxml2 SAX mode)

• Hook the SAX callback when an element is found:

-[CoreDAVXMLElementGenerator
parser:didStartElement:namespaceURI:qualifiedName:attributes:]

Phone's iCalendar Parser Only Saw CDATA!

<?xml version="1.0" encoding="utf-8"?>
[...]
 <d:calendar-data><![CDATA[

 BEGIN:VCALENDAR
 [...]
 DESCRIPTION]]>:x

<foo>escaped CDATA here!</foo>

 ATTENDEE<![CDATA[:Notes
]]></d:calendar-data>
 [...]

Can We Test Against a Server?

Can We Test Against a Server?

Can We Test Against a Server?

• Server rejects]]> and <![CDATA[in

values (right of the ":") but accepts them

in keys (left of the ":")

Can We Test Against a Server?

• Server rejects]]> and <![CDATA[in

values (right of the ":") but accepts them

in keys (left of the ":")

• Attacker can "update" to remove any XML

escape

• DESCRIPTION]]>: <lmao>XML</lmao>
• DESCRIPTION]]>: x

Oh yeah, updated once!

Conclusions

Conclusions

Collaboration and information sharing is important: include civil

society too!

Conclusions

Cloud services as new vector, beyond the classics.

Conclusions

Build the wall broader, not just taller in one place.

Conclusions

Features like Lockdown Mode are great, but optional.

Questions?

bill@citizenlab.ca

cfossaceca@microsoft.com

#BHEU @BlackHatEvents

Black Hat Sound Bytes

• Key Takeaway 1: Be careful with software dev; did you introduce a

new feature or a new bug?

• Key Takeaway 2: Keep your devices up to date!

• Key Takeaway 3: Consider additional protections like Defender,

Lockdown Mode, etc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

