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Sweet QuaDreams or Nightmare 
before Christmas? 

Dissecting an iOS 0-Day Attack

Bill Marczak, The Citizen Lab

Christine Fossaceca, Microsoft



Notes:

• We’re talking about an attack from 2021

• We’re not dropping CVEs on stage!

• Have shared technical details with Apple
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CVE-Whatever: Perpetual 

Safari/WebKit Exploit

iPhone Initial Access

Target: Ahmed Mansoor

UAE Human Rights Activist
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CVE-2021-30860: Integer 

overflow in CoreGraphics

CVE-2023-41064: Buffer 

overflow in ImageIO

CVE-2023-41990: Issue in 

FontParser

iPhone Initial Access with Zero Clicks
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Samples

Attribution: Sometimes 
it's Easy!

Static & Dynamic 
Reversing of the Sample

A Theory of the Exploit
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Log Analysis

Top-down:

Analyze a spyware sample, understand 

what forensic traces it leaves behind, 

then look for these in the phone's logs.

Bottom-up:

Look for implausible artifacts in the 

phone's logs, and then try to attribute 

them.

Can detect unknown spyware this way!



Examples of "Implausible Artifacts"

• Evidence that a non-iOS-update binary ran from:
/private/var/db/com.apple.xpc.roleaccountd.staging/

• Evidence that any binary ran from /tmp

• Evidence that a binary consumed mobile data that is 

"not supposed to" (e.g., BackupAgent)



An implausible artifact ITW...

Get yer' phones checked here!!!



An implausible artifact ITW...

Several phones showed a binary had run:
/private/var/db/com.apple.xpc.roleaccountd.staging/subridged

Phones negative for Pegasus!!!

Get yer' phones checked here!!!
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Microsoft Threat Intelligence is constantly tracking ITW threats

...meanwhile at Microsoft

Microsoft had found a sample with this hard-coded path:

/private/var/db/com.apple.xpc.roleaccountd.staging/subridged



Yo Citizen Lab, we have a 
sample matching your IOCs...

Tell us more...
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Carmine Tsunami

Private Sector Offensive Actor 

(PSOA) 

• A company that sells 

hacking tools

• Often exclusively to 

governments

In this case, QuaDream!



The Mercenary Spyware Industry



The Industry in the News
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Central Asia

Europe

North America

Southeast AsiaMiddle East

Victim Locations
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Sample Capabilities

• Device Info

• Wi-Fi

• Airplane Mode

• Carrier Info

• iOS version

• Spying

• Records audio

• Takes pictures

• Tracks location



Sample Capabilities

• Exfiltrates and deletes 

keychain items

• Exfiltrates and deletes other 

files on disk

• NO persistence mechanism!



iOS Secure Boot Chain

Apple WWDC 2016
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Subverting iCloud 2FA

• /usr/libexec/adid (Anisette) process is responsible

• This is “hard” to reverse (FairPlay DRM)

• So, they treat it like a black box!

• Dylib injection to inject code into adid, then function 

hooking to generate codes

• How does this work?



Dylib Injection

//lib injection code (thanks newosxbook.com) 

//grab the task port for the target pid

task_t remoteTask; 

task_for_pid(mach_task_self(), pid, &remoteTask);

//allocate memory

mach_vm_allocate( remoteTask, &remoteMem64, MEM_SIZE, VM_FLAGS_ANYWHERE);

 

//write shellcode into memory

mach_vm_write(remoteTask, remoteMem64, ptr_to_shellcode,len);

//make memory executable

vm_protect(remoteTask, remoteMem64, SIZE, FALSE,VM_PROT_READ|VM_PROT_EXECUTE);
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Dylib Injection

//lib injection code (thanks newosxbook.com) 

//grab the task port for the target pid

task_t remoteTask; 

task_for_pid(mach_task_self(), pid, &remoteTask);

//allocate memory

mach_vm_allocate( remoteTask, &remoteMem64, MEM_SIZE, VM_FLAGS_ANYWHERE);

 

//write shellcode into memory

mach_vm_write(remoteTask, remoteMem64, ptr_to_shellcode,len);

//make memory executable

vm_protect(remoteTask, remoteMem64, SIZE, FALSE,VM_PROT_READ|VM_PROT_EXECUTE);

make executable



Dylib Injection

//lib injection code continued

//shellcode contains dlopen pointer callback

uint64_t addrOfDlopen = (uint64_t) dlopen; 

//dylib is on disk

*path_to_dylib = “/path/to/mydylib”

//when remote thread executes

callBackFunction(*addrOfDlopen, *path_to_dylib) 
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//shellcode contains dlopen pointer callback

uint64_t addrOfDlopen = (uint64_t) dlopen; 

//dylib is on disk

*path_to_dylib = “/path/to/mydylib”

//when remote thread executes

callBackFunction(*addrOfDlopen, *path_to_dylib) 

Shellcode sets up a stack frame 
for a call to DLOPEN



Dylib Injection

//lib injection code continued

//shellcode contains dlopen pointer callback

uint64_t addrOfDlopen = (uint64_t) dlopen; 

//dylib is on disk

*path_to_dylib = “/path/to/mydylib”

//when remote thread executes

callBackFunction(*addrOfDlopen, *path_to_dylib) 

Target binary loads dylib in its own 
context, arbitrary code execution 
achieved 



Subverting iCloud 2FA

• Codes are TOTP (i.e., solely determined 

by secret key material & wall-clock time)

• Hooks gettimeofday to "fool" adid about 

the current time

• Can generate 2FA codes valid for 

arbitrary future times!!!

• Plug & chug a ton of times into the 

injected adid ... profit!!
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• Proxy (T/F)

• Third-party Jailbreak (T/F)

• Device Attached (T/F)

• Battery Charging (T/F)

• Screen Locked (T/F)

• Battery Percentage (int)

• Battery Temp. Range (float)

• CPU Utilization (float)

• Located in Country (list)



Complex Predicate Language

• VPN Connected (T/F)

• Proxy (T/F)

• Third-party Jailbreak (T/F)

• Device Attached (T/F)

• Battery Charging (T/F)

• Screen Locked (T/F)

• Battery Percentage (int)

• Battery Temp. Range (float)

• CPU Utilization (float)

• Located in Country (list)

• Connectivity (Mobile 

Data/WiFi)

• Data Uploaded in Duration 

Exceeds Threshold

• Traveled to New Country

• Location within radius of 

coordinates

• Threatening process

• AND/OR/NOT/PIPE



Cleanup C&C Command...

DELETE FROM CalendarItemChanges WHERE record IN (SELECT 
owner_id FROM ParticipantChanges WHERE email = "%s");

DELETE FROM ParticipantChanges WHERE email = "%s";

DELETE FROM Identity WHERE ROWID IN (SELECT DISTINCT 
identity_id FROM Participant WHERE email = "%s");

• Step 1: Open Calendar.sqlitedb

• Step 2: Run queries, where %s is supplied by C&C:

• Step 3: Vacuum the DB
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Static & Dynamic 
Reversing of the Sample

A Theory of the Exploit





Event added >6 months 
after it ended – backdated!



Event added >6 months 
after it ended – backdated!

Closing and opening 
"CDATA" tags!!!!!!!!!



CDATA who???

<?xml version="1.0" encoding="utf-8"?>
[...]
 <d:calendar-data><![CDATA[

 BEGIN:VCALENDAR
 [...]
 DESCRIPTION]]>:

<lmao>parsed by the phone as XML</lmao>

 ATTENDEE<![CDATA[:Notes
]]></d:calendar-data>
 [...]



Hold up, does this really work?
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• Yes. Parsed by NSXMLParser (libxml2 SAX mode)



Hold up, does this really work?

• Yes. Parsed by NSXMLParser (libxml2 SAX mode)

• Hook the SAX callback when an element is found:

-[CoreDAVXMLElementGenerator 
parser:didStartElement:namespaceURI:qualifiedName:attributes:]



Phone's iCalendar Parser Only Saw CDATA!

<?xml version="1.0" encoding="utf-8"?>
[...]
 <d:calendar-data><![CDATA[

 BEGIN:VCALENDAR
 [...]
 DESCRIPTION]]>:x

<foo>escaped CDATA here!</foo>

 ATTENDEE<![CDATA[:Notes
]]></d:calendar-data>
 [...]



Can We Test Against a Server?
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• Server rejects ]]> and <![CDATA[ in 

values (right of the ":") but accepts them 

in keys (left of the ":")



Can We Test Against a Server?

• Server rejects ]]> and <![CDATA[ in 

values (right of the ":") but accepts them 

in keys (left of the ":")

• Attacker can "update" to remove any XML 

escape

• DESCRIPTION]]>: <lmao>XML</lmao>
• DESCRIPTION]]>: x



Oh yeah, updated once!





Conclusions



Conclusions

Collaboration and information sharing is important: include civil 

society too!



Conclusions

Cloud services as new vector, beyond the classics.



Conclusions

Build the wall broader, not just taller in one place.



Conclusions

Features like Lockdown Mode are great, but optional.



Questions?

bill@citizenlab.ca

cfossaceca@microsoft.com



#BHEU @BlackHatEvents

Black Hat Sound Bytes

• Key Takeaway 1: Be careful with software dev; did you introduce a 

new feature or a new bug? 
 

• Key Takeaway 2: Keep your devices up to date!

• Key Takeaway 3: Consider additional protections like Defender, 

Lockdown Mode, etc.
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