1he Pool Party You

Will Never Forget:

New Process Injection
Techniques Using
Windows Thread Pools

Alon Leviev

Security Researcher at SafeBreach

21 years old

Self-taught

OS internals, reverse engineering and
vulnerability research

Former BJJ world and european
champion

Agenda

Process Injection Background

Research Motivation & Questions

Detection Approach

Research Goals

User-mode Thread Pool Deep Dive

Introducing PoolParty

Process Injection Implications

Takeaways

Process Injectiong® oy

s3ackgrouno

.
-
Gedo;
) = 2 Siy smm— 5\

B

Process Injection Background

Allocate()
Write()

Execute()

AttackerProcess

&

Victim Process

&

Process Injection Background

VirtualAllocEx()

WriteProcessMemory()

CreateRemoteThread()

Victim Process

&

AttackerProcess

&

Motivation

Motivation

Process injection techniques abuses legitimate
features of the OS

Can an EDR effectively distinguish a legitimate versus
a malicious use of a feature?

Is the current detection approach generic enough?

Detection

Detection Approach - Spotting Detection Focus

=

VirtualAllocEx()
WriteProcessMemory()

CreateRemoteThread()

AttackerProcess

<

Victim Process

&

Detection Approach -

CreateRemoteThread Injection

NtCreateThreadEx()

NtCreateThreadEx()

Detection Approach — APC Injection

NtQueueApcThread (REUEERLIEEDR)

NtQueueApcThread(XeleI NI =E)

Detection Approach — Summary

Allocate and write primitives are not detected

Detection is based on execution primitives

Execution primitives gets flag by inspection of
initiator and creator

rResearch Goals

Research Goals

Fully undetectable process
Injection techniques
= Applicable against all Windows processes

What Ifs

What if the execute primitive is built with write and
allocate primitives?

What if the execution primitive is disguised as a
legitimate action?

What Is a Thread Pool?

| wish these
boxes could be
sent in parallel

Lo ‘

What Is a Thread Pool?

How a Thread Pool Works?

Work Queue Worker Threads
\V/ > Worker

Worker

Why Thread Pool?

All processes have a thread pool by default

Work items and thread pools are represented by
structures

Multiple work item types are supported

200l Deep Dive

User-Mode Thread®™ Wy

User-Mode Thread Pool Architecture

Thread Pool
TP_POOL Task Queue Worker Threads
\/ TppWorkerThread

TP_POOL Timer Queue ‘E

@ TppWorkerThread

User mode

Kernel mode

I/O Completion Queue Worker Threads Manager

Worker Factory

Defining Attack Surface

Thread Pool
\/ TppWorkerThread
e
@ TppWorkerThread
User mode \/

Kernel mode I/0 Completion Queue Worker Threads Manager

Worker Factory

PoolParty State
No friends in the pool

-actories

Attacking \/\/orker“

Worker Factories Introduction

: Who blocks?
i Whois active?
i Whois inactive?

Worker Factory Object

Worker Threads

Manage Worker Threads e=—

i

Worker

0

Worker

0

Worker

Worker Factories System Calls

NtCreateWorkerFactory Create

< g
NtShutdownWorkerFactory Shutdown
NtQuerylnformationWorkerFactory Query

< g
NtSetinformationWorkerFactory Set
NtWorkerFactoryWorkerReady Ready
NtWaitForWorkViaWorkerFactory < * Wait
NtReleaseWorkerFactoryWorker Release

Attacking Worker Factories

NTSTATUS NTAPI NtCreateWorkerFactory(
Out PHANDLE WorkerFactoryHandleReturn,
In ACCESS_MASK DesiredAccess,
_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,
In HANDLE CompletionPortHandle,

In HANDLE WorkerProcessHandle,
In PVOID StartRoutine,

_In_opt_ PVOID StartParameter,
_In_opt_ ULONG MaxThreadCount,
_In_opt_ SIZE_T StackReserve,

_In_opt_ SIZE_T StackCommit
)

Attacking Worker Factories

C:\Users\User\Desktop\PoolParty>CreateWorkerFactoryByProcessName.exe explorer.exe
[+] target Process ID: U656

[+] Retrieved handle to the target process: 0xde

[+] Allocated shellcode memory in the target process: 00000008083018000

[+] Written shellcode to the target process
[+] Created Worker Factory I/0 completion port: @xcd
[-] NtCreateWorkerFactory failed: The parameter is incorrect.

Attacking Worker Factories

Ntoskrnl:: NtCreateWorkerFactory

NTSTATUS NTAPI NtCreateWorkerFactory(..., HANDLE WorkerProcessHandle, ...)
{
[snip]
KPROCESS * pWorkerProcessObject;
ObpReferenceObjectByHandleWithTag(WorkerProcessHandle, ..., &pWorkerProcessObject);
if (KeGetCurrentThread()->ApcState.Process != pWorkerProcessObject)
{
return STATUS_INVALID_PARAMETER;
}
[snip]

Attacking Worker Factories

DuplicateHandle()

AttackerProcess

&

Duplicate Worker

Factory handle

v

Worker Factory

Victim Process

Attacking Worker Factories

Execute e——— WriteProcessMemory(Oxcafebabe)

Worker Factory Object

Start Routine

Oxcafebabe

Attacking Worker Factories

NTSTATUS NTAPI NtQueryInformationWorkerFactory(
In HANDLE WorkerFactoryHandle,
In QUERY_WORKERFACTORYINFOCLASS WorkerFactoryInformationClass,
_In_reads_bytes_(WorkerFactoryInformationLength) PVOID WorkerFactoryInformation,
In ULONG WorkerFactoryInformationLength,

_Out_opt_ PULONG ReturnLength
)

Attacking Worker Factories

typedef enum _QUERY_WORKERFACTORYINFOCLASS
{

WorkerFactoryBasicInformation = 7,
} QUERY_WORKERFACTORYINFOCLASS, * PQUERY_WORKERFACTORYINFOCLASS;

Attacking Worker Factories

typedef struct _WORKER_FACTORY_BASIC_INFORMATION
{

[snip]

PVOID StartRoutine;
[snip]
} WORKER_FACTORY_BASIC_INFORMATION, * PWORKER_FACTORY_BASIC_INFORMATION;

Attacking Worker Factories

NTSTATUS NTAPI NtSetInformationWorkerFactory(
In HANDLE WorkerFactoryHandle,
In SET_WORKERFACTORYINFOCLASS WorkerFactoryInformationClass,
_In_reads_bytes_(WorkerFactoryInformationLength) PVOID WorkerFactoryInformation,
In ULONG WorkerFactoryInformationLength,

)

Attacking Worker Factories

typedef enum _SET_WORKERFACTORYINFOCLASS
{

WorkerFactoryTimeout = 0,

WorkerFactoryRetryTimeout = 1,
WorkerFactoryIdleTimeout = 2,
WorkerFactoryBindingCount = 3,

WorkerFactoryThreadMinimum = 4,

WorkerFactoryThreadMaximum
WorkerFactoryPaused = 6,

5,

WorkerFactoryAdjustThreadGoal = 8,
WorkerFactoryCallbackType = 9,
WorkerFactoryStackInformation = 10,

WorkerFactoryThreadBasePriority = 11,
WorkerFactoryTimeoutWaiters = 12,
WorkerFactoryFlags = 13,
WorkerFactoryThreadSoftMaximum = 14
} SET_WORKERFACTORYINFOCLASS, * PSET_WORKERFACTORYINFOCLASS;

Attacking Worker Factories

Execute e————— NtSetinformationWorkerFactory(Running Threads Num + 1)

Worker Factory Object

Minimum Threads

2

Worker Threads

<>

Worker

<>

Worker

Attacking Worker Factories

Worker Factory Object

Minimum Threads

3

Worker Threads

Create new worker thread o&———

i

Worker

0

Worker

0

Worker

Attacking Worker Factories

NtQuerylnformationProcess()

AttackerProcess

&

Get handletable —

Start Routine

Victim Process

&

Attacking Worker Factories

DuplicateHandle()

AttackerProcess

&

Duplicate
Worker Factory e——
handle

Start Routine

Victim Process

&

Attacking Worker Factories

Get Worker

NtQueryInformationWorkerFactory() Factory info

Start Routine

AttackerProcess Victim Process

& @

Attacking Worker Factories

Write shellcode

WriteProcessMemory() to start routine

Start Routine

Victim Process

&

AttackerProcess

&

Attacking Worker Factories

Increase worker
NtSetWorkerFactorylnformation() factory minimum e—

threads

Start Routine

Victim Process

&

AttackerProcess

&

PoolParty State
First friend in the pool

Altacking
nread Pools

Why Thread Pool?

Goal Focus of analysis Assumptions
Insert work How work items Accessto the
items to a target are inserted worker factory
process thread pools of the thread

pool

Attacking Thread Pools - Work

tem Types

Regular Work Items

Asynchronous Work Iltems

Timer Work Items

TP_WORK

TP_IO

TP_WAIT

TP_JOB

TP_ALPC

TP_TIMER

Attacking Thread Pools - Queue Types

Regular workitems

° » TP_POOL Task Queue
are queued here

Asynchronous work

. I/O Completion Queue
items are queued here ! >

Timer workitems are ___ TP POOL Timer Queue
queued here -

User-Mode Thread Pool - Helper Structures

Queue Helper Cleanup Group Structure

Structure
[]

Work Item Structure Work Item Callback

Cleanup Group Structure

Helper
Executes
Helper Structure Helper Structure Callback

A 4

Helper Callback

Attacking Thread Pools

Regular Work Items

Asynchronous Work Iltems

Timer Work Items

TP_WORK

TP_IO

TP_WAIT

TP_JOB

TP_ALPC

TP_TIMER

Attacking Thread Pools - TP_WORK

typedef struct _TP_WORK

{
_TPP_CLEANUP_GROUP_MEMBER CleanupGroupMember;

TP_TASK Task: : o ielper
Structure

TPP_WORK_STATE WorkState;
INT32 __PADDING__[1];
} TP_WORK, * PTP_WORK:

Attacking Thread Pools - TP_WORK

M SubmitThreadpoolWork

kernel32 [|
TpPostWork
DLL TppWorkPost
ntdl [

TpPostTask

Attacking Thread Pools - TP_WORK

Ntdll:: TpPostTask

NTSTATUS NTAPI TpPostTask(TP_TASK* TpTask, TP_POOL* TpPool, int CallbackPriority, ..)
{

[snip]

TPP_QUEUE* TaskQueue = &TpPool->TaskQueue[CallbackPriority];

InsertTaillList(&TaskQueue->Queue, &TpTask->ListEntry);

[snip]

Attacking Thread Pools - TP_WORK

Execute e——— TpPostTask()

Flink

TP_TASK Task Queue

Blink Head Tail

— Flink &—— Flihk ®&—— Flink *—

1| TP_TASK 2| TP_TASK 3| TP_TASK

|—'Blink +<— Blink «—= Blink <+—

Attacking Thread Pools - TP_WORK

Queue task e

Task Queue

Head Tail

— Flink &———> Flihk &——> Flink ®— Flink *—

1| TP_TASK 2| TP_TASK 3| TP_TASK 4 | TP_TASK

|—'Blink +«— Blink «—=o Blink «—=° Blink <+—

Attacking Thread Pools—- TP_WORK

0/

NtQuerylnformationProcess()

AttackerProcess

&

Get handle table &—

TP_POOL
Task
Queue

Victim Process

&

Attacking Thread Pools—- TP_WORK

DuplicateHandle()

AttackerProcess

&

Duplicate
Worker Factory e——
handle

TP_POOL
Task
Queue

Victim Process

&

Attacking Thread Pools—- TP_WORK

NtQueryInformationWorkerFactory()

AttackerProcess

&

Get Worker
Factory info

TP_POOL
Task
Queue

Victim Process

&

Attacking Thread Pools—- TP_WORK

ReadProcessMemory()

AttackerProcess

&

Read TP_POOL o+——

TP_POOL
Task
Queue

Victim Process

&

Attacking Thread Pools—- TP_WORK

CreateThreadpoolWork()

TP_POOL
TP_WORK Task

@ Queue

Victim Process

AttackerProcess

&

&

Attacking Thread Pools—- TP_WORK

Allocate
VirtualAllocEx() TP_WORK &——
memory
TP_POOL
TP_WORK Task TP_WORK
Queue

Victim Process

AttackerProcess

&

&

Attacking Thread Pools—- TP_WORK
’ ‘ ’ ' ' ‘ o

Write
WriteProcessMemory() TP_WORK o—
memory

TP_POOL
Task
Queue

TP_WORK

AttackerProcess Victim Process

& @

Attacking Thread Pools—- TP_WORK
’ ‘ ’ ' ' ‘ ‘ o

Insert

WriteProcessMemory() ig_\;VOOORLK 0

task queue

TP_POOL
Task
Queue

TP_WORK

AttackerProcess Victim Process

& ®

PoolParty State
Second friend in the pool

Attacking Thread Pools

Regular Work Items

Asynchronous Work Iltems

Timer Work Items

TP_WORK

TP_IO

TP_WAIT

TP_JOB

TP_ALPC

TP_TIMER

/O Completion Ports Introduction

Completed
I I/O Operation
Completion Queue I/O Completion Queue
O— ®
Completion Queue Completion
Notification Notification Notification

/O Completion Queues System Calls

NtCreateloCompletion < * Create

NtOpenloCompletion < * Open

NtQueryloCompletion

NtQueryloCompletionEx Query
< L

NtSetloCompletion Set

NtSetloCompletionEx

NtRemoveloCompletion « e R

NtRemoveloCompletionEx emove

Attacking Thread Pools - TP_IO

typedef struct _TP_IO

{
_TPP_CLEANUP_GROUP_MEMBER CleanupGroupMember;

TP_DIRECT Direct; « , Helper
Structure

HANDLE File;

INT32 PendingIrpCount;

INT32 __PADDING__[1];
} TP_WORK, * PTP_WORK:

Attacking Thread Pools - TP_|O

CreateThreadpoollo

.DLL

kern_el32 I

Attacking Thread Pools - TP_IO

Ntdll:: TpBindFileToDirect

NTSTATUS NTAPI TpBindFileToDirect(HANDLE hFile, TP_DIRECT* TpDirect, TP_POOL* TpPool)
{

[snip]

FILE_COMPLETION_INFORMATION FileCompletionInfo{ 0 };

FileCompletionInfo.Key = TpDirect;
FileCompletionInfo.Port = TpPool->CompletionPort;

NtSetInformationFile(
hFile,
&IoStatusBlock,
&FileCompletionInfo,
sizeof (FILE_COMPLETION_INFORMATION),
FileCompletionInformation);

[snip]

Attacking Thread Pools - TP_IO

Execute &——

TpBindFileToDirect()

File Object

Completion Queue

NULL

Completion Key

NULL

I/O Completion Queue

Attacking Thread Pools - TP_IO

File Object

Completion Queue

I/O Completion Queue

TpPool->CompletionPort

o>—

Completion Key

Tplo->Direct

Attacking Thread Pools - TP_IO

Execute e—— WriteFile()

File Object

Completion Queue

I/O Completion Queue

O—
TpPool->CompletionPort

Completion Key

Tplo->Direct

Attacking Thread Pools - TP_IO

File Object

Completion Queue

I/O Completion Queue

TpPool->CompletionPort

o>—

Completion Key

Tplo->Direct

Queue
Notification

Completion Notification

\ 4

Tplo->Direct

Attacking Thread Pools - TP_IO

0/

NtQuerylnformationProcess()

AttackerProcess

&

Get

handle e
table

1/O0 Completion
Queue

Victim Process

&

Attacking Thread Pools - TP_IO

DuplicateHandle()

AttackerProcess

&

Duplicate I/O
Completion o——
queue handle

1/O0 Completion
Queue

Victim Process

&

Attacking Thread Pools - TP_IO

AttackerProcess

&

1/0 Completion
Queue

Victim Process

&

Attacking Thread Pools - TP_IO

File

AttackerProcess

&

1/0 Completion
Queue

Victim Process

&

Attacking Thread Pools - TP_IO

VirtualAllocEx()

File

AttackerProcess

&

Allocate

TP_IO ®
memory

1/O0 Completion
Queue

TP_IO

Victim Process

&

Attacking Thread Pools - TP_IO

Write TP_IO 1/O0 Completion

WriteProcessMemory() memory Queue

File

Victim Process

&

AttackerProcess

&

Attacking Thread Pools - TP_IO
’ ‘ ’ ' ' ‘ o

Associate
TP_IO with I/0 Completion
NtSetinformationFile() targetl/O o——m Queue
completion
I queue
File

Victim Process

&

AttackerProcess

&

Attacking Thread Pools - TP_IO
('. "} ‘l’ ". ‘l’ ('. ") (J,

Queue
notification 3
WriteFile() to I/O — /0 CQ"L':’;'EI':“”
completion
I queue
File

Victim Process

&

AttackerProcess

&

Attacking Thread Pools - |10, ALPC, JOB, ...

Any TP_DIRECT notification queued to |/O completion queue gets
executed

Notifications can be queued by object operation completion
= File objects (TP_IO)

= ALPC port objects (TP_ALPC)

= Job objects (TP_JOB)

= Waitable objects— (TP_WAIT)

Notifications can be queued directly by NtSetloCompletion system
call

PoolParty State
Five new friends in the pool

P

‘
l \b v

o |
_ e .

Attacking Thread Pools

Regular Work Items

Asynchronous Work Iltems

Timer Work Items

TP_WORK

TP_IO

TP_WAIT

TP_JOB

TP_ALPC

TP_TIMER

Attacking Thread Pools - TP_TIMER

No timer handleis supplied

PTP_TIMER NTAPI CreateThreadpoolTimer(
In PTP_TIMER_CALLBACK TimerCallback,
_In_Opt PVOID TimerContext,
_In_Opt PTP_CALLBACK_ENVIRON TpCallbackEnviron
);

void NTAPI SetThreadpoolTimer (

In PTP_TIMER_CALLBACK TimerCallback,
_In_Opt PFILETIME DueTime,
In DWORD Period,

In DWORD WindowLength
);

Attacking Thread Pools—- TP_TIMER

Execute & SetThreadpoolTimer()

Timer Work Item Timer Queue

Queue Link Queue

Timer Handle

Attacking Thread Pools—- TP_TIMER

Timer Work Item

Queue Link

Timer Queue

Queue

Timer Handle

Set Queue Timer &¥—

Attacking Thread Pools—- TP_TIMER

Execute Dequeuing
Function

Timer Work Item Timer Queue

Queue Link Queue

Timer Handle

Timer Is Expired e—

Attacking Thread Pools - TP_TIMER

typedef struct _TP_TIMER
{

[snip]
TPP_PH_LINKS WindowEndLinks;
TPP_PH_LINKS WindowStartLinks;

[snip]

} TP_TIMER, * PTP_TIMER;

Attacking Thread Pools - TP_TIMER

Ntdll:: TopEnqueueTimer

NTSTATUS NTAPI TppEnqueueTimer(TPP_TIMER_QUEUE* TimerQueue, TP_TIMER* TpTimer)

{

[snip]
TppPHInsert(&TimerQueue->WindowStart,

TppPHInsert(&TimerQueue->WindowEnd,

&TpTimer->WindowStartLinks);
&TpTimer->WindowEndLinks) ;

[snip]

Attacking Thread Pools—- TP_TIMER

Execute &———— TppEnqueueTimer()

Timer Queue Timer Work Item

Window Start Window StartLinks
NULL

Window End Window End Links
NULL

Attacking Thread Pools—- TP_TIMER

Timer Queue Timer Work Item

Window Start Window StartLinks

Timer->WindowStartLinks ¢

Window End Window End Links

Timer->WindowEndLinks T

Attacking Thread Pools- TP_TIMER
O

NtQuerylnformationProcess() Cet handle S ——
table
TP_POOL
Timer
Queue

AttackerProcess Victim Process

& @

Attacking Thread Pools- TP_TIMER

DuplicateHandle()

AttackerProcess

&

Duplicate
Worker Factory &——
handle

TP_POOL
Timer
Queue

Victim Process

&

Attacking Thread Pools- TP_TIMER

NtQueryInformationWorkerFactory()

AttackerProcess

&

Get Worker
Factory
info

[——

TP_POOL
Timer
Queue

Victim Process

&

Attacking Thread Pools- TP_TIMER

ReadProcessMemory()

AttackerProcess

&

Read TP_POOL o——

TP_POOL
Timer
Queue

Victim Process

&

Attacking Thread Pools- TP_TIMER

CreateThreadpoolTimer()

TP_POOL
TP_TIMER Timer

Queue

Victim Process

AttackerProcess

&

&

Attacking Thread Pools- TP_TIMER

Allocate
VirtualAllocEx() TP_TIMER o——
memory
TP_POOL
TP_TIMER Timer TP_TIMER
Queue

Victim Process

AttackerProcess

&

&

Attacking Thread Pools- TP_TIMER
’ ‘ ’ ' ' ‘ 0

Write
WriteProcessMemory() TP_TIMER o—
memory

TP_POOL
Timer
Queue

TP_TIMER

AttackerProcess Victim Process

& @

Attacking Thread Pools- TP_TIMER

O O 0 0 0 0 6 O

WriteProcessMemory()

AttackerProcess

&

Insert
TP_TIMERto
TP_POOL
timer queue

TP_POOL
Timer
Queue

TP_TIMER

Victim Process

&

Attacking Thread Pools- TP_TIMER
’ ‘ ’ ' ' ‘ ‘ ‘ o

Duplicate
DuplicateHandle() queue timer o&———
handle

TP_POOL
Timer
Queue

TP_TIMER

AttackerProcess Victim Process

& @

Attacking Thread Pools- TP_TIMER
’ ‘ ’ ' ' ‘ ‘ ‘ ‘ o

Set queue
NtSetTimer2() timer to —
expire

TP_POOL
Timer TP_TIMER

Queue

Victim Process

AttackerProcess

& @

PoolParty State
One new friend in the pool

Niroaducing
P 00lParty

Introducing PoolParty — Supported Variants

Worker Factory Start Routine Overwrite

TP_WORK Insertion

TP_WAIT Insertion

TP_IO Insertion

TP_ALPC Insertion

TP_JOB Insertion

TP_DIRECT Insertion

0O N O O p WO DN =

TP_TIMER Insertion

Introducing PoolParty — Affected Products

Palo Alto Cortex %/, paloalto’

NNNNNNNN

SentinelOne EDR (i) Sentinelone

CrowdStrike Falcon NSROWDSTRIKE

Microsoft Defender

LAV
for Endpoint m= Microsoft

Cybereason EDR P cybereason

Figure 1: Magic Quadrant for Endpoint Protection Platforms

Source: Gartrer {December 2032

Introducing PoolParty - GitHub Repository

https://github.com/SafeBreach-Labs/PoolParty

Introducing PoolParty - Demo

= B CAWindows\system32\cmd.e:
Hacker View Tools Users Help
% Refresh (3 Options | #8 Find handles or DLLs 5& System information | [] [% Search Processes (Ctri+K)
Processes Services Netwok Disk C:\Users\Alon\Desktop:
MName PID Username Description
[&] svchost.exe 6408 Host Process for Windows Ser.
] Isass.exe 1100 Local Security Authority Proce.
[fontdrvhost.exe 1256 Usermode Font Driver Host
] cerss.exe. 708 Client Server Runtime Process
~ @] winlogon.exe 832 Windows Logon Application
[fontdrvhost.exe 1248 Usermode Font Driver Host
[dwm.exe 1480 Desktop Window Manager
Ve explorer.exe 3796 ALON-DESKTOP2\Alen Windows Explorer
1% ProcessHacker.exe 2876 ALON-DESKTOPZ\Alen Process Hacker
v B cmd.exe 6012 ALON-DESKTOPZ\Alen Windows Command Processor
[E¥ conhost.exe 6640 ALON-DESKTOPZ\Alon Console Window Host
~ B cmd.exe 10032 ALON-DESKTOPZ\Alon Windows Command Processor
B¥ conhost.exe 1844 ALON-DESKTOPZ\Alon Console Window Host
Notepad.exe 6004 ALON-DESKTOP2\Alon
) GoogleCrashHandler.exe 738 Google Crash Handler
1L GoogleCrashHandlertd.exe 7856 Google Crash Handler
@ SecurityHealthSystray.exe 1508 ALON-DESKTOP2\Alon Windows Security notification..
&) vmtoolsd.exe 8744 ALON-DESKTOPZ\Alon VMware Tools Core Service
& OneDrive.exe 8852 ALON-DESKTOPZ\Alen Microsoft OneDrive
CPU Usage: 1.90% Physical memory: 3,14 GB (39.32%) Processes: 157
E untitled % +
File Edit View
Ln1, Col 100¢ w lows (CRLF) UTF-8

328 AM
A DD s

How It's going

“rocess Inj
mplicatior

:
; o
o > - o

B

Process Injection Implications -
Evasive Credential Dumping

o @ Fle Edt View VM Tbs Hep || 5 9 o H=X s} Windows 11 Palo Alto
File Qptions Yiew Process Fnd Help
mlex
CPU| Prvte Bytes | Wioking Set Compary Name Prtecson
W Viidgets exe. Microsoft Comeration
& vetcohd exe Mware Todka Core Service Vhimare. nc
2 vmtoctsd exe wave Tocks Coe Servce Viware. Inc

Muare SVGA Helper Service. Viware. inc:

Mware Guest Athertico . \Mmare. e

0 Host Process for Windows T Merosak Comaration
s

M

Commit Charge: 36.23% Processes: 147 Physical Usage: 41.36%

Dumps X +

Nex

Dumps

> Home

@ OneDrive

@ Desitop

L0 4

Decuments
1R Pictures

B Mus

[video:

Process Injection Implications -
Controlled Folder Access Bypass

8 Desitop

L Downloads
I Pictures

B Music

1 videos
@ OneDrive
8 This pC

o DVD Drive (0)

© Fle Est View VM Tabs Hep | |l - &

This PC > Documents

background checks

budget_spreadsheets.pptx

competitive _anslysis.xisx

8] ntellectual_proper

al_documents

nd Users Help

CPU| P Bres | Wibing S
0384K TIEBK

20 Hom Process for Windows S Merosaht Copormen
Moot Coporton
Moo Copoeaton
Mcrosoh Coporaton

‘Moo Coporton

Morosoh Comoraion

Proce

o & Windows 11 MS Defender

~Q Qe

210 A

Takeaways

We need a generic detection approach for
processinjections

The impact of process injectionsis larger than we thought

Enhance your focus on detecting anomalies rather
than placing complete trustin processes based
solely on their identity

Q&A

https://github.com/SafeBreach-Labs/PoolParty

@_OxDeku

m https://il.linkedin.com/in/alonleviev

~— alon.leviev@safebreach.com

	Slide 1: The Pool Party You Will Never Forget: New Process Injection Techniques Using Windows Thread Pools
	Slide 2: Alon Leviev
	Slide 3: Agenda
	Slide 4: Process Injection Background
	Slide 5: Process Injection Background
	Slide 6: Process Injection Background
	Slide 7: Motivation
	Slide 8: Motivation
	Slide 9: Detection Approach
	Slide 10: Detection Approach – Spotting Detection Focus
	Slide 11: Detection Approach – CreateRemoteThread Injection
	Slide 12: Detection Approach – APC Injection
	Slide 13: Detection Approach – Summary
	Slide 14: Research Goals
	Slide 15: Research Goals
	Slide 16: What Ifs
	Slide 17: What Is a Thread Pool?
	Slide 18: What Is a Thread Pool?
	Slide 19: How a Thread Pool Works?
	Slide 20: Why Thread Pool?
	Slide 21: User-Mode Thread Pool Deep Dive
	Slide 22: User-Mode Thread Pool Architecture
	Slide 23: Defining Attack Surface
	Slide 24: No friends in the pool
	Slide 25: Attacking Worker Factories
	Slide 26: Worker Factories Introduction
	Slide 27: Worker Factories System Calls
	Slide 28: Attacking Worker Factories
	Slide 29: Attacking Worker Factories
	Slide 30: Attacking Worker Factories
	Slide 31: Attacking Worker Factories
	Slide 32: Attacking Worker Factories
	Slide 33: Attacking Worker Factories
	Slide 34: Attacking Worker Factories
	Slide 35: Attacking Worker Factories
	Slide 36: Attacking Worker Factories
	Slide 37: Attacking Worker Factories
	Slide 38: Attacking Worker Factories
	Slide 39: Attacking Worker Factories
	Slide 40: Attacking Worker Factories
	Slide 41: Attacking Worker Factories
	Slide 42: Attacking Worker Factories
	Slide 43: Attacking Worker Factories
	Slide 44: Attacking Worker Factories
	Slide 45: First friend in the pool
	Slide 46: Attacking Thread Pools
	Slide 47: Why Thread Pool?
	Slide 48: Attacking Thread Pools - Work Item Types
	Slide 49: Attacking Thread Pools - Queue Types
	Slide 50: User-Mode Thread Pool - Helper Structures
	Slide 51: Attacking Thread Pools
	Slide 52: Attacking Thread Pools - TP_WORK
	Slide 53: Attacking Thread Pools - TP_WORK
	Slide 54: Attacking Thread Pools - TP_WORK
	Slide 55: Attacking Thread Pools - TP_WORK
	Slide 56: Attacking Thread Pools - TP_WORK
	Slide 57: Attacking Thread Pools – TP_WORK
	Slide 58: Attacking Thread Pools – TP_WORK
	Slide 59: Attacking Thread Pools – TP_WORK
	Slide 60: Attacking Thread Pools – TP_WORK
	Slide 61: Attacking Thread Pools – TP_WORK
	Slide 62: Attacking Thread Pools – TP_WORK
	Slide 63: Attacking Thread Pools – TP_WORK
	Slide 64: Attacking Thread Pools – TP_WORK
	Slide 65: Second friend in the pool
	Slide 66: Attacking Thread Pools
	Slide 67: I/O Completion Ports Introduction
	Slide 68: I/O Completion Queues System Calls
	Slide 69: Attacking Thread Pools - TP_IO
	Slide 70: Attacking Thread Pools - TP_IO
	Slide 71: Attacking Thread Pools - TP_IO
	Slide 72: Attacking Thread Pools - TP_IO
	Slide 73: Attacking Thread Pools - TP_IO
	Slide 74: Attacking Thread Pools - TP_IO
	Slide 75: Attacking Thread Pools - TP_IO
	Slide 76: Attacking Thread Pools - TP_IO
	Slide 77: Attacking Thread Pools - TP_IO
	Slide 78: Attacking Thread Pools - TP_IO
	Slide 79: Attacking Thread Pools - TP_IO
	Slide 80: Attacking Thread Pools - TP_IO
	Slide 81: Attacking Thread Pools - TP_IO
	Slide 82: Attacking Thread Pools - TP_IO
	Slide 83: Attacking Thread Pools - TP_IO
	Slide 84: Attacking Thread Pools - IO, ALPC, JOB, …
	Slide 85: Five new friends in the pool
	Slide 86: Attacking Thread Pools
	Slide 87: Attacking Thread Pools - TP_TIMER
	Slide 88: Attacking Thread Pools – TP_TIMER
	Slide 89: Attacking Thread Pools – TP_TIMER
	Slide 90: Attacking Thread Pools – TP_TIMER
	Slide 91: Attacking Thread Pools - TP_TIMER
	Slide 92: Attacking Thread Pools - TP_TIMER
	Slide 93: Attacking Thread Pools – TP_TIMER
	Slide 94: Attacking Thread Pools – TP_TIMER
	Slide 95: Attacking Thread Pools – TP_TIMER
	Slide 96: Attacking Thread Pools – TP_TIMER
	Slide 97: Attacking Thread Pools – TP_TIMER
	Slide 98: Attacking Thread Pools – TP_TIMER
	Slide 99: Attacking Thread Pools – TP_TIMER
	Slide 100: Attacking Thread Pools – TP_TIMER
	Slide 101: Attacking Thread Pools – TP_TIMER
	Slide 102: Attacking Thread Pools – TP_TIMER
	Slide 103: Attacking Thread Pools – TP_TIMER
	Slide 104: Attacking Thread Pools – TP_TIMER
	Slide 105: One new friend in the pool
	Slide 106: Introducing PoolParty
	Slide 107: Introducing PoolParty – Supported Variants
	Slide 108: Introducing PoolParty – Affected Products
	Slide 109: Introducing PoolParty - GitHub Repository
	Slide 110: Introducing PoolParty - Demo
	Slide 111: How it started
	Slide 112: How it’s going
	Slide 113: Process Injection Implications
	Slide 114: Process Injection Implications – Evasive Credential Dumping
	Slide 115: Process Injection Implications – Controlled Folder Access Bypass
	Slide 116: Takeaways
	Slide 117: Takeaways
	Slide 118: Q & A

