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Process Injection Background
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Process Injection Background
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Motivation




Motivation

Process injection techniques abuses legitimate
features of the OS

Can an EDR effectively distinguish a legitimate versus
a malicious use of a feature?

Is the current detection approach generic enough?




Detection




Detection Approach - Spotting Detection Focus
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Detection Approach -

CreateRemoteThread Injection

NtCreateThreadEx()

NtCreateThreadEx()




Detection Approach — APC Injection

NtQueueApcThread (REUEERLIEEDR)

NtQueueApcThread(XeleI NI =E )




Detection Approach — Summary

Allocate and write primitives are not detected

Detection is based on execution primitives

Execution primitives gets flag by inspection of
initiator and creator




rResearch Goals




Research Goals

Fully undetectable process
Injection techniques
= Applicable against all Windows processes




What Ifs

What if the execute primitive is built with write and
allocate primitives?

What if the execution primitive is disguised as a
legitimate action?




What Is a Thread Pool?

| wish these
boxes could be
sent in parallel

Lo ‘




What Is a Thread Pool?




How a Thread Pool Works?

Work Queue Worker Threads
\V/ > Worker

Worker




Why Thread Pool?

All processes have a thread pool by default

Work items and thread pools are represented by
structures

Multiple work item types are supported




200l Deep Dive

User-Mode Thread®™ Wy



User-Mode Thread Pool Architecture

Thread Pool
TP_POOL Task Queue Worker Threads
\/ TppWorkerThread

TP_POOL Timer Queue ‘E

@ TppWorkerThread

User mode

Kernel mode

I/O Completion Queue Worker Threads Manager

Worker Factory




Defining Attack Surface

Thread Pool
\/ TppWorkerThread
e
@ TppWorkerThread
User mode \/

Kernel mode I/0 Completion Queue Worker Threads Manager

Worker Factory




PoolParty State
No friends in the pool
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Worker Factories Introduction

: Who blocks?
i Whois active?
i Whois inactive?

-----------------------------------------

Worker Factory Object

Worker Threads

Manage Worker Threads e=—

i

Worker

0

Worker
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Worker




Worker Factories System Calls

NtCreateWorkerFactory Create

< g
NtShutdownWorkerFactory Shutdown
NtQuerylnformationWorkerFactory Query

< g
NtSetinformationWorkerFactory Set
NtWorkerFactoryWorkerReady Ready
NtWaitForWorkViaWorkerFactory < * Wait
NtReleaseWorkerFactoryWorker Release




Attacking Worker Factories

NTSTATUS NTAPI NtCreateWorkerFactory(
_Out_ PHANDLE WorkerFactoryHandleReturn,
_In_ ACCESS_MASK DesiredAccess,
_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,
_In_ HANDLE CompletionPortHandle,

_In_ HANDLE WorkerProcessHandle,
_In_ PVOID StartRoutine,

_In_opt_ PVOID StartParameter,
_In_opt_ ULONG MaxThreadCount,
_In_opt_ SIZE_T StackReserve,

_In_opt_ SIZE_T StackCommit
)



Attacking Worker Factories

C:\Users\User\Desktop\PoolParty>CreateWorkerFactoryByProcessName.exe explorer.exe
[+] target Process ID: U656

[+] Retrieved handle to the target process: 0xde

[+] Allocated shellcode memory in the target process: 00000008083018000

[+] Written shellcode to the target process
[+] Created Worker Factory I/0 completion port: @xcd
[-] NtCreateWorkerFactory failed: The parameter is incorrect.




Attacking Worker Factories

Ntoskrnl:: NtCreateWorkerFactory

NTSTATUS NTAPI NtCreateWorkerFactory(..., HANDLE WorkerProcessHandle, ...)
{
[snip]
KPROCESS * pWorkerProcessObject;
ObpReferenceObjectByHandleWithTag(WorkerProcessHandle, ..., &pWorkerProcessObject);
if ( KeGetCurrentThread()->ApcState.Process != pWorkerProcessObject)
{
return STATUS_INVALID_PARAMETER;
}
[snip]



Attacking Worker Factories

DuplicateHandle()

AttackerProcess

&

Duplicate Worker

Factory handle

v

Worker Factory

Victim Process




Attacking Worker Factories

Execute e——— WriteProcessMemory( Oxcafebabe)

Worker Factory Object

Start Routine

Oxcafebabe




Attacking Worker Factories

NTSTATUS NTAPI NtQueryInformationWorkerFactory(
_In_ HANDLE WorkerFactoryHandle,
_In_ QUERY_WORKERFACTORYINFOCLASS WorkerFactoryInformationClass,
_In_reads_bytes_(WorkerFactoryInformationLength) PVOID WorkerFactoryInformation,
_In_ ULONG WorkerFactoryInformationLength,

_Out_opt_ PULONG ReturnLength
)



Attacking Worker Factories

typedef enum _QUERY_WORKERFACTORYINFOCLASS
{

WorkerFactoryBasicInformation = 7,
} QUERY_WORKERFACTORYINFOCLASS, * PQUERY_WORKERFACTORYINFOCLASS;



Attacking Worker Factories

typedef struct _WORKER_FACTORY_BASIC_INFORMATION
{

[snip]

PVOID StartRoutine;
[snip]
} WORKER_FACTORY_BASIC_INFORMATION, * PWORKER_FACTORY_BASIC_INFORMATION;




Attacking Worker Factories

NTSTATUS NTAPI NtSetInformationWorkerFactory(
_In_ HANDLE WorkerFactoryHandle,
_In_ SET_WORKERFACTORYINFOCLASS WorkerFactoryInformationClass,
_In_reads_bytes_(WorkerFactoryInformationLength) PVOID WorkerFactoryInformation,
_In_ ULONG WorkerFactoryInformationLength,

)



Attacking Worker Factories

typedef enum _SET_WORKERFACTORYINFOCLASS
{

WorkerFactoryTimeout = 0,

WorkerFactoryRetryTimeout = 1,
WorkerFactoryIdleTimeout = 2,
WorkerFactoryBindingCount = 3,

WorkerFactoryThreadMinimum = 4,

WorkerFactoryThreadMaximum
WorkerFactoryPaused = 6,

5,

WorkerFactoryAdjustThreadGoal = 8,
WorkerFactoryCallbackType = 9,
WorkerFactoryStackInformation = 10,

WorkerFactoryThreadBasePriority = 11,
WorkerFactoryTimeoutWaiters = 12,
WorkerFactoryFlags = 13,
WorkerFactoryThreadSoftMaximum = 14
} SET_WORKERFACTORYINFOCLASS, * PSET_WORKERFACTORYINFOCLASS;



Attacking Worker Factories

Execute e————— NtSetinformationWorkerFactory(Running Threads Num + 1)

Worker Factory Object

Minimum Threads
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Worker Threads

<>

Worker

<>

Worker




Attacking Worker Factories

Worker Factory Object

Minimum Threads

3

Worker Threads

Create new worker thread o&———
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Worker
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Worker
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Attacking Worker Factories

NtQuerylnformationProcess()

AttackerProcess

&

Get handletable —

Start Routine

Victim Process
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Attacking Worker Factories

DuplicateHandle()

AttackerProcess

&

Duplicate
Worker Factory e——
handle

Start Routine

Victim Process
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Attacking Worker Factories

Get Worker

NtQueryInformationWorkerFactory( ) Factory info

Start Routine

AttackerProcess Victim Process
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Attacking Worker Factories

Write shellcode

WriteProcessMemory() to start routine

Start Routine

Victim Process

&

AttackerProcess

&



Attacking Worker Factories

Increase worker
NtSetWorkerFactorylnformation() factory minimum e—

threads

Start Routine

Victim Process

&

AttackerProcess

&



PoolParty State
First friend in the pool
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Why Thread Pool?

Goal Focus of analysis Assumptions
Insert work How work items  Accessto the
items to a target are inserted worker factory
process thread pools of the thread

pool




Attacking Thread Pools - Work

tem Types

Regular Work Items

Asynchronous Work Iltems

Timer Work Items

TP_WORK

TP_IO

TP_WAIT

TP_JOB

TP_ALPC

TP_TIMER




Attacking Thread Pools - Queue Types

Regular workitems

° » TP_POOL Task Queue
are queued here

Asynchronous work

. I/O Completion Queue
items are queued here ! >

Timer workitems are ___ TP POOL Timer Queue
queued here -




User-Mode Thread Pool - Helper Structures

Queue Helper Cleanup Group Structure

Structure
[ ]

Work Item Structure Work Item Callback

Cleanup Group Structure

Helper
Executes
Helper Structure Helper Structure Callback

A 4

Helper Callback




Attacking Thread Pools

Regular Work Items

Asynchronous Work Iltems

Timer Work Items

TP_WORK

TP_IO

TP_WAIT

TP_JOB

TP_ALPC

TP_TIMER




Attacking Thread Pools - TP_WORK

typedef struct _TP_WORK

{
_TPP_CLEANUP_GROUP_MEMBER CleanupGroupMember;

TP_TASK Task: : o ielper
Structure

TPP_WORK_STATE WorkState;
INT32 __PADDING__[1];
} TP_WORK, * PTP_WORK:



Attacking Thread Pools - TP_WORK

M  SubmitThreadpoolWork

kernel32 [ |
TpPostWork
DLL TppWorkPost
ntdl [

TpPostTask



Attacking Thread Pools - TP_WORK

Ntdll:: TpPostTask

NTSTATUS NTAPI TpPostTask(TP_TASK* TpTask, TP_POOL* TpPool, int CallbackPriority, ..)
{

[snip]

TPP_QUEUE* TaskQueue = &TpPool->TaskQueue[CallbackPriority];

InsertTaillList(&TaskQueue->Queue, &TpTask->ListEntry);

[snip]



Attacking Thread Pools - TP_WORK

Execute e——— TpPostTask()

Flink

TP_TASK Task Queue

Blink Head Tail

— Flink &—— Flihk ®&—— Flink *—

1| TP_TASK 2| TP_TASK 3| TP_TASK

|—'Blink +<— Blink «—= Blink <+—




Attacking Thread Pools - TP_WORK

Queue task e

Task Queue

Head Tail

— Flink &———> Flihk &——> Flink ®— Flink *—

1| TP_TASK 2| TP_TASK 3| TP_TASK 4 | TP_TASK

|—'Blink +«— Blink «—=o Blink «—=° Blink <+—




Attacking Thread Pools—- TP_WORK

0/

NtQuerylnformationProcess()

AttackerProcess

&

Get handle table &—

TP_POOL
Task
Queue

Victim Process

&




Attacking Thread Pools—- TP_WORK

DuplicateHandle()

AttackerProcess

&

Duplicate
Worker Factory e——
handle

TP_POOL
Task
Queue

Victim Process

&




Attacking Thread Pools—- TP_WORK

NtQueryInformationWorkerFactory( )

AttackerProcess

&

Get Worker
Factory info

TP_POOL
Task
Queue

Victim Process

&




Attacking Thread Pools—- TP_WORK

ReadProcessMemory()

AttackerProcess

&

Read TP_POOL o+——

TP_POOL
Task
Queue

Victim Process

&




Attacking Thread Pools—- TP_WORK

CreateThreadpoolWork()

TP_POOL
TP_WORK Task

@ Queue

Victim Process

AttackerProcess

&

&



Attacking Thread Pools—- TP_WORK

Allocate
VirtualAllocEx() TP_WORK &——
memory
TP_POOL
TP_WORK Task TP_WORK
Queue

Victim Process

AttackerProcess

&
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Attacking Thread Pools—- TP_WORK
’ ............ ‘ ’ ' ' ‘ o

Write
WriteProcessMemory() TP_WORK o—
memory

TP_POOL
Task
Queue

TP_WORK

AttackerProcess Victim Process

& @



Attacking Thread Pools—- TP_WORK
’ ............ ‘ ’ ' ' ‘ ‘ o

Insert

WriteProcessMemory() ig_\;VOOORLK 0

task queue

TP_POOL
Task
Queue

TP_WORK

AttackerProcess Victim Process
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PoolParty State
Second friend in the pool




Attacking Thread Pools

Regular Work Items

Asynchronous Work Iltems

Timer Work Items

TP_WORK

TP_IO

TP_WAIT

TP_JOB

TP_ALPC

TP_TIMER




/O Completion Ports Introduction

Completed
I I/O Operation
Completion Queue I/O Completion Queue
O— ®
Completion Queue Completion
Notification Notification Notification




/O Completion Queues System Calls

NtCreateloCompletion < * Create

NtOpenloCompletion < * Open

NtQueryloCompletion

NtQueryloCompletionEx Query
< L

NtSetloCompletion Set

NtSetloCompletionEx

NtRemoveloCompletion « e R

NtRemoveloCompletionEx emove




Attacking Thread Pools - TP_IO

typedef struct _TP_IO

{
_TPP_CLEANUP_GROUP_MEMBER CleanupGroupMember;

TP_DIRECT Direct; « , Helper
Structure

HANDLE File;

INT32 PendingIrpCount;

INT32 __PADDING__[1];
} TP_WORK, * PTP_WORK:



Attacking Thread Pools - TP_|O

CreateThreadpoollo

.DLL

kern_el32 I




Attacking Thread Pools - TP_IO

Ntdll:: TpBindFileToDirect

NTSTATUS NTAPI TpBindFileToDirect(HANDLE hFile, TP_DIRECT* TpDirect, TP_POOL* TpPool)
{

[snip]

FILE_COMPLETION_INFORMATION FileCompletionInfo{ 0 };

FileCompletionInfo.Key = TpDirect;
FileCompletionInfo.Port = TpPool->CompletionPort;

NtSetInformationFile(
hFile,
&IoStatusBlock,
&FileCompletionInfo,
sizeof (FILE_COMPLETION_INFORMATION),
FileCompletionInformation);

[snip]



Attacking Thread Pools - TP_IO

Execute &——

TpBindFileToDirect()

File Object

Completion Queue

NULL

Completion Key

NULL

I/O Completion Queue




Attacking Thread Pools - TP_IO

File Object

Completion Queue

I/O Completion Queue

TpPool->CompletionPort

o>—

Completion Key

Tplo->Direct




Attacking Thread Pools - TP_IO

Execute e—— WriteFile()

File Object

Completion Queue

I/O Completion Queue

O—
TpPool->CompletionPort

Completion Key

Tplo->Direct




Attacking Thread Pools - TP_IO

File Object

Completion Queue

I/O Completion Queue

TpPool->CompletionPort

o>—

Completion Key

Tplo->Direct

Queue
Notification

Completion Notification

\ 4

Tplo->Direct




Attacking Thread Pools - TP_IO

0/

NtQuerylnformationProcess()

AttackerProcess

&

Get

handle e
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Victim Process
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Attacking Thread Pools - TP_IO

DuplicateHandle()

AttackerProcess

&

Duplicate I/O
Completion o——
queue handle

1/O0 Completion
Queue

Victim Process

&



Attacking Thread Pools - TP_IO

AttackerProcess

&

1/0 Completion
Queue

Victim Process

&



Attacking Thread Pools - TP_IO

File

AttackerProcess

&

1/0 Completion
Queue

Victim Process

&



Attacking Thread Pools - TP_IO

VirtualAllocEx()

File

AttackerProcess

&

Allocate

TP_IO ®
memory

1/O0 Completion
Queue

TP_IO

Victim Process

&



Attacking Thread Pools - TP_IO

Write TP_IO 1/O0 Completion

WriteProcessMemory() memory Queue

File

Victim Process

&

AttackerProcess

&



Attacking Thread Pools - TP_IO
’ ............ ‘ ’ ' ' ‘ o

Associate
TP_IO with I/0 Completion
NtSetinformationFile() targetl/O o——m Queue
completion
I queue
File

Victim Process

&

AttackerProcess

&



Attacking Thread Pools - TP_IO
('. ............ "} ‘l’ ". ‘l’ ('. ") (J,

Queue
notification 3
WriteFile() to I/O — /0 CQ"L':’;'EI':“”
completion
I queue
File

Victim Process

&

AttackerProcess

&



Attacking Thread Pools - |10, ALPC, JOB, ...

Any TP_DIRECT notification queued to |/O completion queue gets
executed

Notifications can be queued by object operation completion
= File objects (TP_IO)

= ALPC port objects (TP_ALPC)

= Job objects (TP_JOB)

= Waitable objects— (TP_WAIT)

Notifications can be queued directly by NtSetloCompletion system
call




PoolParty State
Five new friends in the pool
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Attacking Thread Pools

Regular Work Items

Asynchronous Work Iltems

Timer Work Items

TP_WORK

TP_IO

TP_WAIT

TP_JOB

TP_ALPC

TP_TIMER




Attacking Thread Pools - TP_TIMER

No timer handleis supplied

PTP_TIMER NTAPI CreateThreadpoolTimer(
_In_ PTP_TIMER_CALLBACK TimerCallback,
_In_Opt PVOID TimerContext,
_In_Opt PTP_CALLBACK_ENVIRON TpCallbackEnviron
);

void NTAPI SetThreadpoolTimer (

_In_ PTP_TIMER_CALLBACK TimerCallback,
_In_Opt PFILETIME DueTime,
_In_ DWORD Period,

_In_ DWORD WindowLength
);



Attacking Thread Pools—- TP_TIMER

Execute & SetThreadpoolTimer()

Timer Work Item Timer Queue

Queue Link Queue

Timer Handle




Attacking Thread Pools—- TP_TIMER

Timer Work Item

Queue Link

Timer Queue

Queue

Timer Handle

Set Queue Timer &¥—




Attacking Thread Pools—- TP_TIMER

Execute Dequeuing
Function

Timer Work Item Timer Queue

Queue Link Queue

Timer Handle

Timer Is Expired e—




Attacking Thread Pools - TP_TIMER

typedef struct _TP_TIMER
{

[snip]
TPP_PH_LINKS WindowEndLinks;
TPP_PH_LINKS WindowStartLinks;

[snip]

} TP_TIMER, * PTP_TIMER;



Attacking Thread Pools - TP_TIMER

Ntdll:: TopEnqueueTimer

NTSTATUS NTAPI TppEnqueueTimer(TPP_TIMER_QUEUE* TimerQueue, TP_TIMER* TpTimer)

{

[snip]
TppPHInsert(&TimerQueue->WindowStart,

TppPHInsert(&TimerQueue->WindowEnd,

&TpTimer->WindowStartLinks);
&TpTimer->WindowEndLinks) ;

[snip]



Attacking Thread Pools—- TP_TIMER

Execute &———— TppEnqueueTimer()

Timer Queue Timer Work Item

Window Start Window StartLinks
NULL

Window End Window End Links
NULL




Attacking Thread Pools—- TP_TIMER

Timer Queue Timer Work Item

Window Start Window StartLinks

Timer->WindowStartLinks ¢

Window End Window End Links

Timer->WindowEndLinks T




Attacking Thread Pools- TP_TIMER
O

NtQuerylnformationProcess() Cet handle S ——
table
TP_POOL
Timer
Queue

AttackerProcess Victim Process

& @



Attacking Thread Pools- TP_TIMER

DuplicateHandle()

AttackerProcess

&

Duplicate
Worker Factory &——
handle

TP_POOL
Timer
Queue

Victim Process

&




Attacking Thread Pools- TP_TIMER

NtQueryInformationWorkerFactory( )

AttackerProcess

&

Get Worker
Factory
info

[ ——

TP_POOL
Timer
Queue

Victim Process

&




Attacking Thread Pools- TP_TIMER

ReadProcessMemory()

AttackerProcess

&

Read TP_POOL o——

TP_POOL
Timer
Queue

Victim Process

&




Attacking Thread Pools- TP_TIMER

CreateThreadpoolTimer()

TP_POOL
TP_TIMER Timer

Queue

Victim Process

AttackerProcess
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Attacking Thread Pools- TP_TIMER

Allocate
VirtualAllocEx() TP_TIMER o——
memory
TP_POOL
TP_TIMER Timer TP_TIMER
Queue

Victim Process

AttackerProcess
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Attacking Thread Pools- TP_TIMER
’ ............ ‘ ’ ' ' ‘ 0

Write
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AttackerProcess Victim Process
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Attacking Thread Pools- TP_TIMER

O O 0 0 0 0 6 O

WriteProcessMemory()

AttackerProcess
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Victim Process
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Attacking Thread Pools- TP_TIMER
’ ............ ‘ ’ ' ' ‘ ‘ ‘ o

Duplicate
DuplicateHandle() queue timer o&———
handle

TP_POOL
Timer
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TP_TIMER

AttackerProcess Victim Process
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Attacking Thread Pools- TP_TIMER
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PoolParty State
One new friend in the pool
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Introducing PoolParty — Supported Variants

Worker Factory Start Routine Overwrite

TP_WORK Insertion

TP_WAIT Insertion

TP_IO Insertion

TP_ALPC Insertion

TP_JOB Insertion

TP_DIRECT Insertion

0O N O O p WO DN =

TP_TIMER Insertion




Introducing PoolParty — Affected Products

Palo Alto Cortex %/, paloalto’

NNNNNNNN

SentinelOne EDR (i) Sentinelone

CrowdStrike Falcon NSROWDSTRIKE

Microsoft Defender

LAV
for Endpoint m= Microsoft

Cybereason EDR P cybereason

Figure 1: Magic Quadrant for Endpoint Protection Platforms

Source: Gartrer {December 2032




Introducing PoolParty - GitHub Repository

https://github.com/SafeBreach-Labs/PoolParty



Introducing PoolParty - Demo
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How It's going
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Process Injection Implications -
Evasive Credential Dumping
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Process Injection Implications -
Controlled Folder Access Bypass
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Takeaways

We need a generic detection approach for
processinjections

The impact of process injectionsis larger than we thought

Enhance your focus on detecting anomalies rather
than placing complete trustin processes based
solely on their identity




Q&A

https://github.com/SafeBreach-Labs/PoolParty

@_OxDeku

m https://il.linkedin.com/in/alonleviev

~— alon.leviev@safebreach.com
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