
#BHEU @BlackHatEvents

Indirect Prompt Injection Into
LLMs Using Images and Sounds

Ben Nassi

#BHEU @BlackHatEvents

Hi, I am Ben

v BlackHat Board Member (Europe & Singapore)
v 5th BlackHat talk

v Indirect Prompt Injection Into LLMs Using Images and
Sounds @ BHEU’23

v Video-based Cryptanalysis @ BHUSA’23
v Pwnie Award 23 – Best Cryptographic Attack.

v The Little Seal Bug @ BHASIA’22
v The Motion Sensor Western @ BHASIA’21
v Lamphone @ BHUSA’20

v Postdoctoral researcher @ Cornell Tech
v Ph.D. in Security and Privacy @ BGU
v Freelancer consultant

LinkedIn

@ben_nassi

#BHEU @BlackHatEvents

About This Talk

Paper

https://arxiv.org/abs/2307.10490

#BHEU @BlackHatEvents

About This Talk

GitHub

https://github.com/ebagdasa/multimodal_injection

#BHEU @BlackHatEvents

About This Talk

1. No prior knowledge of LLMs is required to understand this talk.
2. Some details about the attack implementation aren’t covered in this

talk in order to keep it as simple as possible (you can find them in the
paper).

#BHEU @BlackHatEvents

A Brief History of LLMkind

#BHEU @BlackHatEvents

A Brief History of LLMkind

#BHEU @BlackHatEvents

A Brief History of LLMkind

#BHEU @BlackHatEvents

A Brief History of LLMkind

#BHEU @BlackHatEvents

A Brief History of LLMkind

#BHEU @BlackHatEvents

A Brief History of LLMkind

#BHEU @BlackHatEvents

A Brief History of LLMkind

#BHEU @BlackHatEvents

A Brief History of LLMkind

#BHEU @BlackHatEvents

A Brief History of LLMkind

#BHEU @BlackHatEvents

A Brief History of LLMkind

#BHEU @BlackHatEvents

A Brief History of LLMkind

Today, any tech company either:
1. Develops its own-proprietary LLM (e.g.,

Microsoft, Google, Amazon, Meta).

#BHEU @BlackHatEvents

A Brief History of LLMkind

Today, any tech company either:
1. Develops its own-proprietary LLM (e.g.,

Microsoft, Google, Amazon, Meta).
2. Integrates existing or fine-tuned open-

source LLM to their product/s (many
companies).

#BHEU @BlackHatEvents

A Brief History of LLMkind

Today, any tech company either:
1. Develops its own-proprietary LLM (e.g.,

Microsoft, Google, Amazon, Meta).
2. Integrates existing or fine-tuned open-

source LLM to their product/s (many
companies).

3. Thinking about how to integrate LLM into
their products (late adopters).

#BHEU @BlackHatEvents

A Brief History of LLMkind

Today, any tech company either:
1. Develops its own-proprietary LLM (e.g.,

Microsoft, Google, Amazon, Meta).
2. Integrates existing or fine-tuned open-

source LLM to their product/s (Salesforce,
and many other companies).

3. Thinking about how to integrate LLM into
their products (late adopters).

Great, but what about security?

#BHEU @BlackHatEvents

Prompt Injection

Prompt Injection: a collection of methods
intended to change the answer returned by
the chatbot (LLM).

#BHEU @BlackHatEvents

Prompt Injection

Prompt Injection: a collection of methods
intended to change the answer returned by
the chatbot (LLM).

Goal: Injecting an instruction (prompt) into a
query (sent to the LLM) that changes
(steers) the answer returned by the chatbot.

#BHEU @BlackHatEvents

Prompt Injection

How?

Prompt Injection: a collection of methods
intended to change the answer returned by
the chatbot (LLM).

Goal: Injecting an instruction (prompt) into a
query (sent to the LLM) that changes
(steers) the answer returned by the chatbot.

#BHEU @BlackHatEvents

Prompt Injection

#BHEU @BlackHatEvents

Prompt Injection

#BHEU @BlackHatEvents

Prompt Injection

#BHEU @BlackHatEvents

Prompt Injection

In response to prompt injections, some
guardrails were integrated to prevent users
from steering the conversation.

The user is the attacker

#BHEU @BlackHatEvents

Prompt Injection

In response to prompt injections, some
guardrails were integrated to prevent users
from steering the conversation.

Today, ChatGPT is immune to some of the
user attempts to directly inject a prompt using
text.

The user is the attacker

#BHEU @BlackHatEvents

Prompt Injection

In response to prompt injections, some
guardrails were integrated to prevent users
from steering the conversation.

Today, ChatGPT is immune to some of the
user attempts to directly inject a prompt using
text.

But what if the prompt is not injected by the user?
What if the prompt is injected indirectly by someone else?

The user is the attacker

#BHEU @BlackHatEvents

Indirect Prompt Injection

A review of threat models to apply
indirect prompt injection attacks.

#BHEU @BlackHatEvents

Indirect Prompt Injection

Chatbots are no longer considered close anymore.

Chatbots used (and will be used) to interpret
information retrieved in inference time from various
sources:
• Messages sent in emails and WhatsApp (by

dedicated assistants)
• Information appears in webpages (e.g., BingChat)
• Supplementary documents (dedicated summary

engines).

Prompts could be injected into these
sources by attackers.

A review of threat models to apply
indirect prompt injection attacks.

#BHEU @BlackHatEvents

Indirect Prompt Injection

Chatbots are no longer considered close anymore.

Chatbots used (and will be used) to interpret
information retrieved in inference time from various
sources:
• Messages sent in emails and WhatsApp (by

dedicated assistants)
• Information appears in webpages (e.g., BingChat)
• Supplementary documents (dedicated summary

engines).

Prompts could be injected into these
sources by attackers.

In direct prompt injection, the user is the attacker.
In indirect prompt injection, the user is the victim.

A review of threat models to apply
indirect prompt injection attacks.

#BHEU @BlackHatEvents

Indirect Prompt Injection

Arvind Narayanan’s Website

This text cannot be seen in Arvind’s webpage

#BHEU @BlackHatEvents

Indirect Prompt Injection

Arvind Narayanan’s Website

This text cannot be seen in Arvind’s webpage

#BHEU @BlackHatEvents

Research Question

Can we apply an indirect prompt
injection using non-textual inputs?

#BHEU @BlackHatEvents

Research Question

Can we apply an indirect prompt
injection using non-textual inputs?

Short answer: Yes.
But, we need to discuss Multi-modal
LLM first.

#BHEU @BlackHatEvents

Multi-Modal LLMs

• Advanced AI models that can “understand” connections of
various types of input data.

#BHEU @BlackHatEvents

Multi-Modal LLMs

• Advanced AI models that can “understand” connections of
various types of input data.

• Capable of processing various types of data (text, audio, image,
video)

#BHEU @BlackHatEvents

Multi-Modal LLMs

• Advanced AI models that can “understand” connections of
various types of input data.

• Capable of processing various types of data (text, audio, image,
video)

• Produce contextually rich responses

#BHEU @BlackHatEvents

Multi-Modal LLMs

• Advanced AI models that can “understand” connections of
various types of input data.

• Capable of processing various types of data (text, audio, image,
video)

• Produce contextually rich responses
• Capable of outputting

various types of data
(text, audio, image)

#BHEU @BlackHatEvents

Multi-Modal LLMs

• Multi-Modal LLMs encode the input data into one vector:
embedding layer.

#BHEU @BlackHatEvents

Multi-Modal LLMs

• Multi-Modal LLMs encode the input data into one vector:
embedding layer.

• Dedicated encoders encode the input data (e.g., CLIP,
ImageBind, etc.)

#BHEU @BlackHatEvents

Multi-Modal LLMs

• Multi-Modal LLMs encode the input data into one vector:
embedding layer.

• Dedicated encoders encode the input data (e.g., CLIP,
ImageBind, etc.)

• Dedicated decoders decode the output of the LLM to data

#BHEU @BlackHatEvents

Multi-Modal LLMs

• In this talk, we focus only on Multi-Modal LLMs that receive
(text, audio, and image) and output text

#BHEU @BlackHatEvents

Multi-Modal LLMs

• Multi-modal LLMs are
considered the next
generation of LLMs.

#BHEU @BlackHatEvents

Multi-Modal LLMs

Image
Text Audio

• Multi-modal LLMs are
considered the next
generation of LLMs.

• Some LLMs already
provide the multi-modal
functionality.

#BHEU @BlackHatEvents

Threat Model

1. Attacker’s Goal: To steer the conversation between a user and a
multi-modal chatbot using an image or audio sample sent as input to
the LLM.

#BHEU @BlackHatEvents

Threat Model

1. Attacker’s Goal: To steer the conversation between a user and a
multi-modal chatbot using an image or audio sample sent as input to
the LLM.

2. How: the image/audio sample is created especially to yield the desired
response from the chatbot (multi-modal LLM).

#BHEU @BlackHatEvents

Threat Model

1. Attacker’s Goal: To steer the conversation between a user and a
multi-modal chatbot using an image or audio sample sent as input to
the LLM.

2. How: the image/audio sample is created especially to yield the desired
response from the chatbot (multi-modal LLM).

3. Assumptions:
• The attacker has white-box access to the target LLM model.
• The compromised image/audio can be injected to the conversation with the user.

#BHEU @BlackHatEvents

The Method

• General idea: perturbating an
image iteratively for each word of
a desired output until the output is
completely encoded/embedded
into the image.

FGSM (Fast Gradient Sign Method) by Goodfellow et al.

BIM (Basic Iterative Method) by Kurakin et al.

#BHEU @BlackHatEvents

The Method

Inputs: desired_output = (w1, … ,wn) , picture* = picture, query = “can you describe the picture?”

Goal

Please visit www.pwned.com
for additional details

Em
be
dd

in
gs

LL
M Please visit www.pwned.com

for additional details

can you describe
the picture?

Text Encoder

Picture Encoder

Text Decoder

http://www.pwnd.com/
http://www.pwned.com/

#BHEU @BlackHatEvents

The Method

Inputs: desired_output = (w1, … ,wn) , picture* = picture, query = “can you describe the picture?”
tokens [] = Tokenizer.tokenize(desired_output) # convert to numeric representation

Please visit www.pwned.com for additional details 87, 20, 285, 18, 610, 88, 207, 86, 139, 23

http://www.pwned.com/

#BHEU @BlackHatEvents

The Method

Inputs: desired_output = (w1, … ,wn) , picture* = picture, query = “can you describe the picture?”
tokens [] = Tokenizer.tokenize(prompt) # convert to numeric representation

for (i = 0 to max_iterations) # limiting the number of iterations
for (j=0 to length(tokens)-1) # iterating each token

token = tokens [j]

87, 20, 285, 18, 610, 88, 207, 86, 139, 23

#BHEU @BlackHatEvents

The Method

Inputs: desired_output = (w1, … ,wn) , picture* = picture, query = “can you describe the picture?”
tokens [] = Tokenizer.tokenize(prompt) # convert to numeric representation

for (i = 0 to max_iterations) # limiting the number of iterations
for (j=0 to length(tokens)-1) # iterating each token

token = tokens [j]
predicted_tokens = LLM (query, picture, token) # performing inference

87, 20, 285, 18, 610, 88, 207, 86, 139, 23

Em
be
dd

in
gs

LL
M

can you describe
the picture?

Text Encoder

Picture Encoder

predicted_token

#BHEU @BlackHatEvents

The Method

Inputs: desired_output = (w1, … ,wn) , picture* = picture, query = “can you describe the picture?”
tokens [] = Tokenizer.tokenize(prompt) # convert to numeric representation

for (i = 0 to max_iterations) # limiting the number of iterations
for (j=0 to length(tokens)-1) # iterating each token

token = tokens [j]
predicted_tokens = LLM (query, picture, token) # performing inference

loss = cross_entropy (predicted_tokens[0:j-1], tokens [0:j-1]) # calculate loss

87, 20, 285, 18, 610, 88, 207, 86, 139, 23

Em
be
dd

in
gs

LL
M

can you describe
the picture?

Text Encoder

Picture Encoder

predicted_token

#BHEU @BlackHatEvents

The Method

Inputs: desired_output = (w1, … ,wn) , picture* = picture, query = “can you describe the picture?”
tokens [] = Tokenizer.tokenize(prompt) # convert to numeric representation

for (i = 0 to max_iterations) # limiting the number of iterations
for (j=0 to length(tokens)-1) # iterating each token

token = tokens [j]
predicted_tokens = LLM (query, picture, token) # performing inference

loss = cross_entropy (predicted_tokens[0:j-1], tokens [0:j-1]) # calculate loss

grads = compute_gradients (LLM, loss, picture) # compute a matrix of gradients w.r.t picture

87, 20, 285, 18, 610, 88, 207, 86, 139, 23

#BHEU @BlackHatEvents

The Method

Inputs: desired_output = (w1, … ,wn) , picture* = picture, query = “can you describe the picture?”
tokens [] = Tokenizer.tokenize(prompt) # convert to numeric representation

for (i = 0 to max_iterations) # limiting the number of iterations
for (j=0 to length(tokens)-1) # iterating each token

token = tokens [j]
predicted_tokens = LLM (query, picture, token) # performing inference

loss = cross_entropy (predicted_tokens[0:j-1], tokens [0:j-1]) # calculate loss

grads = compute_gradients (LLM, loss, picture) # compute a matrix of gradients w.r.t picture

sign = sign(grads) # returns matrix with three values {-1,0,1} which indicate the direction of the gradients

𝑝𝑖𝑐𝑡𝑢𝑟𝑒∗ = 𝑝𝑖𝑐𝑡𝑢𝑟𝑒∗ − 𝜀 × 𝑠𝑖𝑔𝑛 # perturbating picture* against the direction of the gradients

FGSM

87, 20, 285, 18, 610, 88, 207, 86, 139, 23

#BHEU @BlackHatEvents

The Method

Inputs: desired_output = (w1, … ,wn) , picture* = picture, query = “can you describe the picture?”
tokens [] = Tokenizer.tokenize(prompt) # convert to numeric representation

for (i = 0 to max_iterations) # limiting the number of iterations
for (j=0 to length(tokens)-1) # iterating each token

token = tokens [j]
predicted_tokens = LLM (query, picture, token) # performing inference

loss = cross_entropy (predicted_tokens[0:j-1], tokens [0:j-1]) # calculate loss

grads = compute_gradients (LLM, loss, picture) # compute a matrix of gradients w.r.t picture

sign = sign(grads) # returns matrix with three values {-1,0,1} which indicate the direction of the gradients

𝑝𝑖𝑐𝑡𝑢𝑟𝑒∗ = 𝑝𝑖𝑐𝑡𝑢𝑟𝑒∗ − 𝜀 × 𝑠𝑖𝑔𝑛 # perturbating picture* against the direction of the gradients

FGSM

87, 20, 285, 18, 610, 88, 207, 86, 139, 23

#BHEU @BlackHatEvents

The Method

Inputs: desired_output = (w1, … ,wn) , picture* = picture, query = “can you describe the picture?”
tokens [] = Tokenizer.tokenize(prompt) # convert to numeric representation

for (i = 0 to max_iterations) # limiting the number of iterations
for (j=0 to length(tokens)-1) # iterating each token

token = tokens [j]
predicted_tokens = LLM (query, picture, token) # performing inference

loss = cross_entropy (predicted_tokens[0:j-1], tokens [0:j-1]) # calculate loss

grads = compute_gradients (LLM, loss, picture) # compute a matrix of gradients w.r.t picture

sign = sign(grads) # returns matrix with three values {-1,0,1} which indicate the direction of the gradients

𝑝𝑖𝑐𝑡𝑢𝑟𝑒∗ = 𝑝𝑖𝑐𝑡𝑢𝑟𝑒∗ − 𝜀 × 𝑠𝑖𝑔𝑛 # perturbating picture* against the direction of the gradients

FGSM

87, 20, 285, 18, 610, 88, 207, 86, 139, 23

#BHEU @BlackHatEvents

The Method

Inputs: desired_output = (w1, … ,wn) , picture* = picture, query = “can you describe the picture?”
tokens [] = Tokenizer.tokenize(prompt) # convert to numeric representation

for (i = 0 to max_iterations) # limiting the number of iterations
for (j=0 to length(tokens)-1) # iterating each token

token = tokens [j]
predicted_tokens = LLM (query, picture, token) # performing inference

loss = cross_entropy (predicted_tokens[0:j-1], tokens [0:j-1]) # calculate loss

grads = compute_gradients (LLM, loss, picture) # compute a matrix of gradients w.r.t picture

sign = sign(grads) # returns matrix with three values {-1,0,1} which indicate the direction of the gradients

𝑝𝑖𝑐𝑡𝑢𝑟𝑒∗ = 𝑝𝑖𝑐𝑡𝑢𝑟𝑒∗ − 𝜀 × 𝑠𝑖𝑔𝑛 # perturbating picture* against the direction of the gradients

FGSM

87, 20, 285, 18, 610, 88, 207, 86, 139, 23

..................

#BHEU @BlackHatEvents

The Method

Inputs: desired_output = (w1, … ,wn) , picture* = picture, query = “can you describe the picture?”
tokens [] = Tokenizer.tokenize(prompt) # convert to numeric representation

for (i = 0 to max_iterations) # limiting the number of iterations
for (j=0 to length(tokens)-1) # iterating each token

token = tokens [j]
predicted_tokens = LLM (query, picture, token) # performing inference

loss = cross_entropy (predicted_tokens[0:j-1], tokens [0:j-1]) # calculate loss

grads = compute_gradients (LLM, loss, picture) # compute a matrix of gradients w.r.t picture

sign = sign(grads) # returns matrix with three values {-1,0,1} which indicate the direction of the gradients

𝑝𝑖𝑐𝑡𝑢𝑟𝑒∗ = 𝑝𝑖𝑐𝑡𝑢𝑟𝑒∗ − 𝜀 × 𝑠𝑖𝑔𝑛 # perturbating picture* against the direction of the gradients

FGSM

if (LLM (query, picture*) == desired_output)
return picture* # stop in case of success

return 0 # failed to find the needed perturbation

87, 20, 285, 18, 610, 88, 207, 86, 139, 23

#BHEU @BlackHatEvents

The Method

Inputs: desired_output = (w1, … ,wn) , picture* = picture, query = “can you describe the picture?”
tokens [] = Tokenizer.tokenize(prompt) # convert to numeric representation

for (i = 0 to max_iterations) # limiting the number of iterations
for (j=0 to length(tokens)-1) # iterating each token

token = tokens [j]
predicted_tokens = LLM (query, picture, token) # performing inference

loss = cross_entropy (predicted_tokens[0:j-1], tokens [0:j-1]) # calculate loss

grads = compute_gradients (LLM, loss, picture) # compute a matrix of gradients w.r.t picture

sign = sign(grads) # returns matrix with three values {-1,0,1} which indicate the direction of the gradients

𝑝𝑖𝑐𝑡𝑢𝑟𝑒∗ = 𝑝𝑖𝑐𝑡𝑢𝑟𝑒∗ − 𝜀 × 𝑠𝑖𝑔𝑛 # perturbating picture* against the direction of the gradients

FGSM

if (LLM (query, picture*) == desired_output)
return picture* # stop in case of success

return 0 # failed to find the needed perturbation

87, 20, 285, 18, 610, 88, 207, 86, 139, 23

About the same idea is also implemented for an audio sample.

#BHEU @BlackHatEvents

The Method

Inputs: desired_output = (w1, … ,wn) , picture* = picture, query = “can you describe the picture?”
tokens [] = Tokenizer.tokenize(prompt) # convert to numeric representation

for (i = 0 to max_iterations) # limiting the number of iterations
for (j=0 to length(tokens)-1) # iterating each token

token = tokens [j]
predicted_tokens = LLM (query, picture, token) # performing inference

loss = cross_entropy (predicted_tokens[0:j-1], tokens [0:j-1]) # calculate loss

grads = compute_gradients (LLM, loss, picture) # compute a matrix of gradients w.r.t picture

sign = sign(grads) # returns matrix with three values {-1,0,1} which indicate the direction of the gradients

𝑝𝑖𝑐𝑡𝑢𝑟𝑒∗ = 𝑝𝑖𝑐𝑡𝑢𝑟𝑒∗ − 𝜀 × 𝑠𝑖𝑔𝑛 # perturbating picture* against the direction of the gradients

FGSM

if (LLM (query, picture*) == desired_output)
return picture* # stop in case of success

return 0 # failed to find the needed perturbation

87, 20, 285, 18, 610, 88, 207, 86, 139, 23

Let discuss the two types of the attack

#BHEU @BlackHatEvents

Types of Attacks

Targeted-output Attack
• The image/audio is created against a desired

output/response from the chatbot (LLM).
Usecases:
• Phishing attacks (e.g., for more information

about the picture please visit <malicious-URL>.
• Bypassing censorship (e.g., hiding messages in

pictures that will be revealed by LLMs)
• Misinformation
• Distributing propaganda

#BHEU @BlackHatEvents

Types of Attacks

Dialog Poisoning
• The image is created against a desired

output/response from the chatbot (LLM) – e.g., from
now on mention cow in the response.

• Exploiting auto-regressiveness property. The future
queries that will be sent to the chatbot will take the
last k-responses into account (including from now on
act as a pirate) and will compromise/poison the
following responses to the user.

#BHEU @BlackHatEvents

Types of Attacks

Targeted Output Attack
• Used for one specific

output (a desired
response for the first
query).

Dialog Poisoning
• Used to steer the entire

responses of the
chatbot to the user.

• Exploit the auto-
regressiveness of the
chatbot (taking the last
k-responses into
account).

#BHEU @BlackHatEvents

Types of Attacks

Targeted Output Attack
• Used for one specific

output (a desired
response for the first
query).

Dialog Poisoning
• Used to steer the entire

responses of the
chatbot to the user.

• Exploit the auto-
regressiveness of the
chatbot (taking the last
k-responses into
account).Let’s discuss the alternatives that attackers

can encode the output into the picture

#BHEU @BlackHatEvents

Application of the Attack

Unconstrained attack Sticker

Only a few rows are perturbatedThe entire picture is perturbated

#BHEU @BlackHatEvents

Application of the Attack

Unconstrained attack Sticker

Only a few rows are perturbatedThe entire picture is perturbatedHow attackers can distribute the malicious
image/audio?

#BHEU @BlackHatEvents

Attack Vectors

1. Placing the compromised images/audio on a website/document

• Misinformation is returned when the compromised image on the page is
interpreted via a browser’s chatbot

Online LLM-
chatbot

BH Europe 23 will
be held in France.

#BHEU @BlackHatEvents

Attack Vectors

1. Placing the compromised images/audio on a website/document

• Misinformation is returned when the compromised image on the page is
interpreted via a browser’s chatbot

• Steganography - a piece of undetected information is embedded into a document
and bypasses deep content inspection mechanisms (e.g., to break censorship, to
exfiltrate secrets, etc.). The user decodes the secret information hidden in the
image by querying the LLM.

LLM The secret key is:……..

#BHEU @BlackHatEvents

Attack Vectors

2. Sending the compromised image/audio to an LLM-powered application which interprets content to the user.

• Phishing attempts – a link to a malicious website is returned
when the compromised image in the email is interpreted via an
LLM-powered application.

LLM-powered
email

application

50% discount for
tickets to
London Bridge at
www.pwned.com

#BHEU @BlackHatEvents

Experimental Setup

LLM#1 - LLaVA
• Weights: LLaVA-7B
• Inputs: Text, Image
• Output: Text
• Image Encoder: CLIP ViT-L/14
• Backbone chatbot: Vicuna

chatbot, which was trained by
fine-tuning LLaMA [20].

• LLaVA was trained on language-
image instruction-following data
generated by GPT-4.

• GitHub: https://llava-vl.github.io/

#BHEU @BlackHatEvents

Experimental Setup

LLM#2 - PandaGPT
• Weights: pandagpt7B
• Image Encoder: ImageBind
• Inputs: Text, Image, Video, Audio
• Output: Text
• Backbone chatbot: Vicuna chatbot.
• GitHub: https://panda-gpt.github.io/

#BHEU @BlackHatEvents

Evaluation – Targeted Attacks

A targeted phishing attack
against LLaVA for phishing

A targeted misinformation attack
against LLaVA for

#BHEU @BlackHatEvents

Evaluation – Dialog Poisoning Attacks
Original Audio Sample The Modified Audio Sample

A dialog poisoning attack against PandaGPT A dialog poisoning attack LLaVA

#BHEU @BlackHatEvents

Limitations & Future Research Directions

Our Attack
v White Box settings.

v Targets: LLaVA and PandaGPT.

v The attack requires a dedicated
perturbation for each LLM model.

v The perturbation may be visible to
the human eye.

v Audio/image compression may affect
the success of the attack.

Next Generation of the Attack
v Black-Box settings??

v Targets: ChatGPT? Bard?

v Universal perturbation??

v Invisible perturbation (L2)?

v Compression-resistant
perturbation.

#BHEU @BlackHatEvents

Takeaways

Insight#1: Prompts can be injected into audio samples and images in
order to indirectly attack LLMs.

Triggering toxic responses Acting as pirate Discussing Italian topics

#BHEU @BlackHatEvents

Takeaways

Supply chain attack (via Wikipedia) Direct interaction with the LLM agent

Insight#2: The risk associated with a threat may differ according to various
factors: e.g., the difficulty of distributing the compromised prompt, the

place/location of the LLM component in the chain of the LLM experience,
the existence of humans in the loop.

#BHEU @BlackHatEvents

Takeaways

Supply chain attack (via Wikipedia) Direct interaction with the LLM agent

Insight#3: I expect that the risk of threats associated with LLMs will
become a real concern in the near future due to the wide adoption of LLMs

in the wild

#BHEU @BlackHatEvents

Q&A

• Thank you very much for attending this talk.

LinkedIn

@ben_nassi

