
#BHEU @BlackHatEvents

Indirect Prompt Injection Into 
LLMs Using Images and Sounds

Ben Nassi



#BHEU @BlackHatEvents

Hi, I am Ben

v BlackHat Board Member (Europe & Singapore)
v 5th BlackHat talk

v Indirect Prompt Injection Into LLMs Using Images and 
Sounds @ BHEU’23

v Video-based Cryptanalysis @ BHUSA’23
v Pwnie Award 23 – Best Cryptographic Attack. 

v The Little Seal Bug @ BHASIA’22
v The Motion Sensor Western @ BHASIA’21
v Lamphone @ BHUSA’20

v Postdoctoral researcher @ Cornell Tech
v Ph.D. in Security and Privacy @ BGU
v Freelancer consultant

LinkedIn

@ben_nassi



#BHEU @BlackHatEvents

About This Talk

Paper

https://arxiv.org/abs/2307.10490
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GitHub

https://github.com/ebagdasa/multimodal_injection
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About This Talk

1. No prior knowledge of LLMs is required to understand this talk.
2. Some details about the attack implementation aren’t covered in this 

talk in order to keep it as simple as possible (you can find them in the 
paper).
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A Brief History of LLMkind

Today, any tech company either: 
1. Develops its own-proprietary LLM (e.g., 

Microsoft, Google, Amazon, Meta).
2. Integrates existing or fine-tuned open-

source LLM to their product/s (Salesforce, 
and many other companies).

3. Thinking about how to integrate LLM into 
their products (late adopters).

Great, but what about security?
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Prompt Injection

How?

Prompt Injection: a collection of methods 
intended to change the answer returned by 
the chatbot (LLM).

Goal: Injecting an instruction (prompt) into a 
query (sent to the LLM) that changes 
(steers) the answer returned by the chatbot.
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Prompt Injection

In response to prompt injections, some 
guardrails were integrated to prevent users 
from steering the conversation.

Today, ChatGPT is immune to some of the 
user attempts to directly inject a prompt using 
text.

But what if the prompt is not injected by the user?
What if the prompt is injected indirectly by someone else?

The user is the attacker
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Indirect Prompt Injection

A review of threat models to apply 
indirect prompt injection attacks.
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Indirect Prompt Injection

Chatbots are no longer considered close anymore.

Chatbots used (and will be used) to interpret 
information retrieved in inference time from various 
sources:
• Messages sent in emails and WhatsApp (by 

dedicated assistants)
• Information appears in webpages (e.g., BingChat)
• Supplementary documents (dedicated summary 

engines).

Prompts could be injected into these 
sources by attackers.

A review of threat models to apply 
indirect prompt injection attacks.
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Indirect Prompt Injection

Chatbots are no longer considered close anymore.

Chatbots used (and will be used) to interpret 
information retrieved in inference time from various 
sources:
• Messages sent in emails and WhatsApp (by 

dedicated assistants)
• Information appears in webpages (e.g., BingChat)
• Supplementary documents (dedicated summary 

engines).

Prompts could be injected into these 
sources by attackers.

In direct prompt injection, the user is the attacker. 
In indirect prompt injection, the user is the victim.

A review of threat models to apply 
indirect prompt injection attacks.
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Research Question

Can we apply an indirect prompt 
injection using non-textual inputs? 

Short answer: Yes.
But, we need to discuss Multi-modal 
LLM first.
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Multi-Modal LLMs 

• Advanced AI models that can “understand” connections of 
various types of input data. 

• Capable of processing various types of data (text, audio, image, 
video)

• Produce contextually rich responses 
• Capable of outputting 

various types of data 
(text, audio, image) 
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Multi-Modal LLMs 

• Multi-Modal LLMs encode the input data into one vector: 
embedding layer. 

• Dedicated encoders encode the input data (e.g., CLIP, 
ImageBind, etc.)

• Dedicated decoders decode the output of the LLM to data
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Multi-Modal LLMs 

• In this talk, we focus only on Multi-Modal LLMs that receive 
(text, audio, and image) and output text
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Multi-Modal LLMs 

Image
Text Audio

• Multi-modal LLMs are 
considered the next 
generation of LLMs.

• Some LLMs already 
provide the multi-modal 
functionality.
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Threat Model

1. Attacker’s Goal:  To steer the conversation between a user and a 
multi-modal chatbot using an image or audio sample sent as input to 
the LLM.

2. How: the image/audio sample is created especially to yield the desired 
response from the chatbot (multi-modal LLM).

3. Assumptions:
• The attacker has white-box access to the target LLM model.
• The compromised image/audio can be injected to the conversation with the user.
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The Method

• General idea: perturbating an 
image iteratively for each word of 
a desired output until the output is 
completely encoded/embedded 
into the image.

FGSM (Fast Gradient Sign Method) by Goodfellow et al.

BIM (Basic Iterative Method) by Kurakin et al.
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The Method

Inputs: desired_output = (w1, … ,wn) , picture* = picture, query = “can you describe the picture?” 

Goal

Please visit www.pwned.com
for additional details
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for additional details

can you describe 
the picture?

Text Encoder

Picture Encoder

Text Decoder

http://www.pwnd.com/
http://www.pwned.com/


#BHEU @BlackHatEvents

The Method

Inputs: desired_output = (w1, … ,wn) , picture* = picture, query = “can you describe the picture?” 
tokens [] = Tokenizer.tokenize(desired_output) # convert to numeric representation

Please visit www.pwned.com for additional details 87, 20, 285, 18, 610, 88, 207, 86, 139, 23 

http://www.pwned.com/
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token = tokens [j]
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The Method

Inputs: desired_output = (w1, … ,wn) , picture* = picture, query = “can you describe the picture?” 
tokens [] = Tokenizer.tokenize(prompt) # convert to numeric representation
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About the same idea is also implemented for an audio sample.
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The Method
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return picture* # stop in case of success

return 0 # failed to find the needed perturbation

87, 20, 285, 18, 610, 88, 207, 86, 139, 23 

Let discuss the two types of the attack
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Types of Attacks

Targeted-output Attack
• The image/audio is created against a desired 

output/response from the chatbot (LLM).
Usecases: 
• Phishing attacks (e.g., for more information 

about the picture please visit <malicious-URL>.
• Bypassing censorship (e.g., hiding messages in 

pictures that will be revealed by LLMs)
• Misinformation
• Distributing propaganda 
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Types of Attacks

Dialog Poisoning
• The image is created against a desired 

output/response from the chatbot (LLM) – e.g., from 
now on mention cow in the response.

• Exploiting auto-regressiveness property. The future 
queries that will be sent to the chatbot will take the 
last k-responses into account (including from now on 
act as a pirate) and will compromise/poison the 
following responses to the user. 
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Targeted Output Attack
• Used for one specific 

output (a desired 
response for the first 
query).

Dialog Poisoning
• Used to steer the entire 

responses of the 
chatbot to the user.

• Exploit the auto-
regressiveness of the 
chatbot (taking the last 
k-responses into 
account).
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Types of Attacks

Targeted Output Attack
• Used for one specific 

output (a desired 
response for the first 
query).

Dialog Poisoning
• Used to steer the entire 

responses of the 
chatbot to the user.

• Exploit the auto-
regressiveness of the 
chatbot (taking the last 
k-responses into 
account).Let’s discuss the alternatives that attackers 

can encode the output into the picture
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Application of the Attack

Unconstrained attack Sticker

Only a few rows are perturbatedThe entire picture is perturbated
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Application of the Attack

Unconstrained attack Sticker

Only a few rows are perturbatedThe entire picture is perturbatedHow attackers can distribute the malicious 
image/audio?
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Attack Vectors

1. Placing the compromised images/audio on a website/document

• Misinformation is returned when the compromised image on the page is 
interpreted via a browser’s chatbot

Online LLM-
chatbot

BH Europe 23 will 
be held in France.
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Attack Vectors

1. Placing the compromised images/audio on a website/document

• Misinformation is returned when the compromised image on the page is 
interpreted via a browser’s chatbot

• Steganography - a piece of undetected information is embedded into a document 
and bypasses deep content inspection mechanisms (e.g., to break censorship, to 
exfiltrate secrets, etc.). The user decodes the secret information hidden in the 
image by querying the LLM.

LLM The secret key is:…….. 
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Attack Vectors

2. Sending the compromised image/audio to an LLM-powered application which interprets content to the user. 

• Phishing attempts – a link to a malicious website is returned 
when the compromised image in the email is interpreted via an 
LLM-powered application.

LLM-powered 
email 

application

50% discount for 
tickets to 
London Bridge at 
www.pwned.com
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Experimental Setup

LLM#1 - LLaVA
• Weights: LLaVA-7B
• Inputs: Text, Image
• Output: Text
• Image Encoder: CLIP ViT-L/14
• Backbone chatbot: Vicuna 

chatbot, which was trained by 
fine-tuning LLaMA [20]. 

• LLaVA was trained on language-
image instruction-following data 
generated by GPT-4. 

• GitHub: https://llava-vl.github.io/
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Experimental Setup

LLM#2 - PandaGPT
• Weights: pandagpt7B
• Image Encoder: ImageBind
• Inputs: Text, Image, Video, Audio
• Output: Text
• Backbone chatbot: Vicuna chatbot. 
• GitHub: https://panda-gpt.github.io/
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Evaluation – Targeted Attacks

A targeted phishing attack 
against LLaVA for phishing 

A targeted misinformation attack 
against LLaVA for
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Evaluation – Dialog Poisoning Attacks
Original Audio Sample The Modified Audio Sample

A dialog poisoning attack against PandaGPT A dialog poisoning attack LLaVA
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Limitations & Future Research Directions

Our Attack
v White Box settings.

v Targets: LLaVA and PandaGPT.

v The attack requires a dedicated 
perturbation for each LLM model.

v The perturbation may be visible to 
the human eye.

v Audio/image compression may affect 
the success of the attack.

Next Generation of the Attack
v Black-Box settings??

v Targets: ChatGPT? Bard? 

v Universal perturbation??

v Invisible perturbation (L2)?

v Compression-resistant 
perturbation.
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Takeaways

Insight#1: Prompts can be injected into audio samples and images in 
order to indirectly attack LLMs. 

Triggering toxic responses Acting as pirate Discussing Italian topics
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Takeaways

Supply chain attack (via Wikipedia) Direct interaction with the LLM agent

Insight#2: The risk associated with a threat may differ according to various 
factors: e.g., the difficulty of distributing the compromised prompt, the 

place/location of the LLM component in the chain of the LLM experience, 
the existence of humans in the loop.
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Takeaways

Supply chain attack (via Wikipedia) Direct interaction with the LLM agent

Insight#3: I expect that the risk of threats associated with LLMs will 
become a real concern in the near future due to the wide adoption of LLMs 

in the wild



#BHEU @BlackHatEvents

Q&A

• Thank you very much for attending this talk.

LinkedIn

@ben_nassi


