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• Machine Learning as a Service (MLaaS)

The Age of AI
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• Run ML models in could

MLaaS
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Service 
Provider

UserCloudPrivate
Model

Valuable Property
e.g., design, parameters …
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• Attacking objectives: model architectures
• e.g., operator types and hyper-parameters

Attacks Arising
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(Black-box) 
Model

UserCloud

Side Channels

Model architectures 
can be stolen.
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• Model architectures can enable various gray-box attacks 
• e.g., model stealing and bit-flip attack

Attacks Arising

6

following attacks

Model stealing

Bit-flip attack

. . .
more on that later
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• Cloud service providers (e.g., Meta, AWS, and Google) are employing 
DNN compilation in resource-sharing environments for cost and profit 
reasons

Meanwhile
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Are DNN executables vulnerable to side-channel attacks?

DL Compilers
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• Background
• Deep Learning (DL) Compilation 
• DNN Executable

• How to Steal Model Architectures
• Cache Side-Channel

• Making Models Do Bad Stuff
• Bit-Flip Attack

Outline
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• GPUs are expensive
• Running DNNs on cost-efficient devices is popular

• DL compilation techniques are proposed to speed up DNN inference

DNN Executable

9

CompileTrain Deploy



#BHEU @BlackHatEventsInformation Classification: General

• Automatically optimize the DNN and generate efficient binary code

• Unlock the full performance potential of various hardware

DL Compiler
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• What are the differences compared with DL frameworks (e.g., PyTorch)
• Each operator is optimized explicitly

• Standalone

• No libs during execution

DNN Executable
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• Side-channel attacks on DNNs are emerging

Side-Channel Attacks
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Physical Access Remote Access

Electromagnetic

Bus Snooping

Power

Rowhammer

Power

Cache

[SP’22]

[SP’24]

[Sec’20]

[Sec’19]
[ASPLOS’20]

[Sec’21]
[ASPLOS’23]

[HOST’20]
… …

More discussion: yanzuo.ch/bh24
[CCS’24] DeepCache: Revisiting Cache Side-Channel Attacks in Deep Neural Networks Executables
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• We focus on remote model architecture stealing attacks

Side-Channel Attacks
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Rowhammer

Power

Cache

Limitation

Leak partial information from quantized DNN

Rely on RAPL interface (require privileges)

Need shared cache (and memory regions)

More discussion: yanzuo.ch/bh24
[CCS’24] DeepCache: Revisiting Cache Side-Channel Attacks in Deep Neural Networks Executables
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• None of existing cache side channel attacks apply to DNN executable

• Why?
• Standalone
• No shared memory
• No libs for pre-analysis

• Is DNN executable more secure?

Challenges
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Zoom In
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dark pixels à cache hits 
light pixels à cache misses

Each row represents a cache state 
(e.g., 64 cache lines).

Ø Noise free
Ø Simulated with Intel Pin
Ø Mimic Prime+Probe

time
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Cache Access Patterns
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Compiler 
Optimizations!

Why is that?



#BHEU @BlackHatEventsInformation Classification: General

• Blocking
• For better memory/cache locality

DL Compiler Optimizations
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The size of cache is limited (e.g., 32KB)
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• Vectorization
• Leverage Single Instruction Multiple Data (SIMD) extension

DL Compiler Optimizations
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SIMD instruction example.Memory layout optimization.
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• Pseudo code illustration

DL Compiler Optimizations
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Ø Convolution

Ø Naïve loop structures

Ø Sweep the whole matrix
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• Pseudo code illustration

DL Compiler Optimizations
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Optimized loop structures

Loops are split 
and permutated
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• Compiler optimizations depend on the hyper-parameters of operators.

• Different operator types and hyper-parameters à

• Distinct loop structures in compiled low-level code.

• If we can determine the loop structure, we can distinguish operators.

Unique Loop Structures
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LoopsLoopsLoops LoopsLoopsOps
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• DNN inference involves massive memory accesses, resulting 
distinguishable cache activities

• We depict binary-level code structures with LoopI (inner loop) and LoopO
(outer loop)
• LoopI denotes the repeated pattern
• LoopO represents the frequency of a pattern’s occurrence

Unique Loop Structures
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Unique Loop Structures
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Ø There should be a one-to-one mapping relaGon
that aHacker can exploit to infer operators.
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• Prior works manually locate sensitive functions in linear algebra libraries
as target of cache side channels.

• Differently, we reveal that hardware- and cache-aware optimizations
introduce new cache side channel leakages.

New Attacking Surface
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• We approximate a mapping from cache access traces to loop structures

DeepCache: End-to-End DNN Architecture Stealing
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We match similar record in the 
identifier database.

Operator type, hyperparameters, 
optimized memory layouts…
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• Extract features cache access traces

Contrastive Learning
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Traces from the same operator should have similar features.
Extracted features are deemed as LoopI

E.g., A' = 
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• We use encoder-decoder network to segment traces

Trace Segmentation
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Compare recovered and original 
cache trace pieces

Similar:
smooth normal patterns

Dissimilar:
anomaly! à segment

Idea: frequent normal patterns can 
quickly be learned.
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Encoder: compress the information (of learned patterns)
Decoder: recover the original information (uncompress)

Trace Segmentation
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Success to recover à the pattern is seen before

Fail to recover à the pattern is an anomaly à
segmentation point

Sweep the trace to figure out how many 
times the whole pattern repeated.
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• We collect 28 real-world CNN models (372 operators) from 
ONNX Zoo as database 

• All models are compiled with two state-of-the-art DL 
compilers, TVM and Glow

• ResNet18 and VGG16 as the test set

• Evaluated with L1 and LLC Prime+Probe attack

Evaluation
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• Victim

• Results

• Recovered 

Results
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Op1 à {type: Conv, shape: [256, 256, 3, 3]}
Op2 à {type: ReLU}
Op3 à {type: MaxPool}
Op4 à {type: Conv, shape: [512, 256, 3, 3]} . . .

Side-Channel
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• L1

• LLC

Results

31

Why is LLC attack 
much better?
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• Why does LLC attack show better accuracy than L1 attack?

• Because some operators are compiled into non-optimal
binary code

• i.e., the binary code shows low memory locality
• consequently, low cache hit rate

• From attack’s view, non-optimal code is difficult to distinguish

Results

32
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• The cache trace of non-optimal code is featureless

Results
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Read 64 KB mem
But L1 cache is 32 KB

Self-competing
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Part II: Making Models Do Bad Stuff
Speaker: Yanzuo Chen
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Attacks on DNNs
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• Existing: adversarial examples, data poisoning, backdoors, …
• More pointers: yanzuo.ch/bh24

• Optimisation problem vs. Attacking through a new dimension
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xkcd.com/538



#BHEU @BlackHatEventsInformation Classification: General 39

Is there a way?



#BHEU @BlackHatEventsInformation Classification: General

Attacking DRAM Microarchitectures
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• Rowhammer (🎉 Happy 10th Anniversary)
• Software-triggered hardware bug
• Current leakage between DRAM cells
• Flips data bits in memory
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Rowhammer in action
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• ✅ DDR3
• ✅ DDR4
• ✅ ECC memory
• ✅ (New!) DDR5

• ✅ Privilege escalation
• ✅ Cross-VM attacks
• ✅ Attacking through browsers
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Bit-Flip Attacks (BFAs) on DNNs
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• Yes, it works
• Targets victim model weights…
• What if we don’t have that knowledge?
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DNN “Executables”
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DNN executables are compiled code
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The Setup

45

• Attacker objective: deplete model intelligence via BFAs (E.g., 
make them random guessers)
• Attacker knowledge: Model structure => model executable
• E.g., with DeepCache (Our Part I) / BTD (Zhibo@BH-USA24)
• Attacker has no access to victim model weights
• We figure out: How to find bits to flip
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Attack Flow
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📄⚙

Local (attacker)
environment

😈🔍Locally generated 
model/executable

Remote (victim)
environment

📄⚙

😈

🔨

Knowledge
↓

Bits to flip
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📄⚙

Local (attacker)
environment

😈🔍Locally generated 
model/executable

Remote (victim)
environment

📄⚙

😈

🔨

Knows: structure & weights & gradients & setup…

🔨
Previous
Attacks
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Our Attack

📄⚙

Local (attacker)
environment

😈🔍
Remote (victim)

environment

📄⚙

😈

🔨😶🌫

Knows: structure & weights & gradients & setup…

🔨

Locally generated 
model/executable
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• Randomly choose one bit 
within the code region
• Flip it
• See what happens
• 🔄 Loop
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ASR: 2%
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The Remaining 98%
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• Most of them → Crash
• Some of them → No effect

Function already returned
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But: That 2%
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Take 2: Using those 2% of bits
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• Compile & train the model on an arbitrary 
dataset
• Can't use victim dataset (we don't know it)
• Scan all bits and record those useful
• Remote: Try useful bits on victim executable

📄⚙

Local (attacker)
environment

😈🔍Locally generated 
model/executable
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ASR: 45%
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• 45% of time (or bits) lead to successful degradation
• Rest of the time: Crash or no effect

• Why not 100% ASR?
• Model weights are different.
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💡 Transferable vulnerable bits
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45% vulnerable bits transferable to victim model,
despite different training sets
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Take 3: In seek of “Superbits”
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• Using more local executables for profiling?

😈
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Building More Local Executables
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• Train them on datasets of random noise
• Regulates weights
• “Unbiased” choice
• (More refs: yanzuo.ch/bh24)
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ASR: 70%
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We went from here
To here
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Real World Experiments

60
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Real World Experiments
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Avg: ~1.4 flips to success
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Comparison: DeepHammer’s Results
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Avg: ~12 flips
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Bonus: Case Study

63

In this case:
• Operand of cmp flipped
• Hard to defend with existing 

methods (e.g., optimisation)

• Learn more: yanzuo.ch/bh24
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• DeepCache: Optimisations gave away model architectures

• BFA: 6x fewer flips to ruin model intelligence

• More security research on DNN executables please

Black Hat Sound Bytes
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Thanks!
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Yanzuo Chen
ychenjo@cse.ust.hk 

Zhibo Liu
zhiboliu@ust.hk

Learn More
yanzuo.ch/bh24


