
#BHEU @BlackHatEvents

The Devil is in the (Micro-) Architectures:
Uncovering New Side-Channel and Bit-Flip

Attack Surfaces in DNN Executables
Speakers:

Yanzuo Chen
PhD at HKUST

Zhibo Liu
Postdoc at HKUST

#BHEU @BlackHatEvents

Contributors:

Yuanyuan Yuan
Postdoc at ETH

Shuai Wang
Associate Professor

at HKUST

Tianxiang Li Sihang Hu Zhihui Lin
Security Researchers at CSI AI Red Team

#BHEU @BlackHatEventsInformation Classification: General

• Machine Learning as a Service (MLaaS)

The Age of AI

3

#BHEU @BlackHatEventsInformation Classification: General

• Run ML models in could

MLaaS

4

Service
Provider

UserCloudPrivate
Model

Valuable Property
e.g., design, parameters …

#BHEU @BlackHatEventsInformation Classification: General

• Attacking objectives: model architectures
• e.g., operator types and hyper-parameters

Attacks Arising

5

(Black-box)
Model

UserCloud

Side Channels

Model architectures
can be stolen.

#BHEU @BlackHatEventsInformation Classification: General

• Model architectures can enable various gray-box attacks
• e.g., model stealing and bit-flip attack

Attacks Arising

6

following attacks

Model stealing

Bit-flip attack

. . .
more on that later

#BHEU @BlackHatEventsInformation Classification: General

• Cloud service providers (e.g., Meta, AWS, and Google) are employing
DNN compilation in resource-sharing environments for cost and profit
reasons

Meanwhile

7

Are DNN executables vulnerable to side-channel attacks?

DL Compilers

#BHEU @BlackHatEventsInformation Classification: General

• Background
• Deep Learning (DL) Compilation
• DNN Executable

• How to Steal Model Architectures
• Cache Side-Channel

• Making Models Do Bad Stuff
• Bit-Flip Attack

Outline

8

#BHEU @BlackHatEventsInformation Classification: General

• GPUs are expensive
• Running DNNs on cost-efficient devices is popular

• DL compilation techniques are proposed to speed up DNN inference

DNN Executable

9

CompileTrain Deploy

#BHEU @BlackHatEventsInformation Classification: General

• Automatically optimize the DNN and generate efficient binary code

• Unlock the full performance potential of various hardware

DL Compiler

10

#BHEU @BlackHatEventsInformation Classification: General

• What are the differences compared with DL frameworks (e.g., PyTorch)
• Each operator is optimized explicitly

• Standalone

• No libs during execution

DNN Executable

11

#BHEU @BlackHatEventsInformation Classification: General

• Side-channel attacks on DNNs are emerging

Side-Channel Attacks

12

Physical Access Remote Access

Electromagnetic

Bus Snooping

Power

Rowhammer

Power

Cache

[SP’22]

[SP’24]

[Sec’20]

[Sec’19]
[ASPLOS’20]

[Sec’21]
[ASPLOS’23]

[HOST’20]
… …

More discussion: yanzuo.ch/bh24
[CCS’24] DeepCache: Revisiting Cache Side-Channel Attacks in Deep Neural Networks Executables

#BHEU @BlackHatEventsInformation Classification: General

• We focus on remote model architecture stealing attacks

Side-Channel Attacks

13

Rowhammer

Power

Cache

Limitation

Leak partial information from quantized DNN

Rely on RAPL interface (require privileges)

Need shared cache (and memory regions)

More discussion: yanzuo.ch/bh24
[CCS’24] DeepCache: Revisiting Cache Side-Channel Attacks in Deep Neural Networks Executables

#BHEU @BlackHatEventsInformation Classification: General

• None of existing cache side channel attacks apply to DNN executable

• Why?
• Standalone
• No shared memory
• No libs for pre-analysis

• Is DNN executable more secure?

Challenges

14

#BHEU @BlackHatEventsInformation Classification: General

Zoom In

15

dark pixels à cache hits
light pixels à cache misses

Each row represents a cache state
(e.g., 64 cache lines).

Ø Noise free
Ø Simulated with Intel Pin
Ø Mimic Prime+Probe

time

#BHEU @BlackHatEventsInformation Classification: General

Cache Access Patterns

16

Compiler
Optimizations!

Why is that?

#BHEU @BlackHatEventsInformation Classification: General

• Blocking
• For better memory/cache locality

DL Compiler Optimizations

17
The size of cache is limited (e.g., 32KB)

#BHEU @BlackHatEventsInformation Classification: General

• Vectorization
• Leverage Single Instruction Multiple Data (SIMD) extension

DL Compiler Optimizations

18

SIMD instruction example.Memory layout optimization.

#BHEU @BlackHatEventsInformation Classification: General

• Pseudo code illustration

DL Compiler Optimizations

19

Ø Convolution

Ø Naïve loop structures

Ø Sweep the whole matrix

#BHEU @BlackHatEventsInformation Classification: General

• Pseudo code illustration

DL Compiler Optimizations

20

Optimized loop structures

Loops are split
and permutated

#BHEU @BlackHatEventsInformation Classification: General

• Compiler optimizations depend on the hyper-parameters of operators.

• Different operator types and hyper-parameters à

• Distinct loop structures in compiled low-level code.

• If we can determine the loop structure, we can distinguish operators.

Unique Loop Structures

21

LoopsLoopsLoops LoopsLoopsOps

#BHEU @BlackHatEventsInformation Classification: General

• DNN inference involves massive memory accesses, resulting
distinguishable cache activities

• We depict binary-level code structures with LoopI (inner loop) and LoopO
(outer loop)
• LoopI denotes the repeated pattern
• LoopO represents the frequency of a pattern’s occurrence

Unique Loop Structures

22

#BHEU @BlackHatEventsInformation Classification: General

Unique Loop Structures

23

Ø There should be a one-to-one mapping relaGon
that aHacker can exploit to infer operators.

#BHEU @BlackHatEventsInformation Classification: General

• Prior works manually locate sensitive functions in linear algebra libraries
as target of cache side channels.

• Differently, we reveal that hardware- and cache-aware optimizations
introduce new cache side channel leakages.

New Attacking Surface

24

#BHEU @BlackHatEventsInformation Classification: General

• We approximate a mapping from cache access traces to loop structures

DeepCache: End-to-End DNN Architecture Stealing

25

We match similar record in the
identifier database.

Operator type, hyperparameters,
optimized memory layouts…

#BHEU @BlackHatEventsInformation Classification: General

• Extract features cache access traces

Contrastive Learning

26

Traces from the same operator should have similar features.
Extracted features are deemed as LoopI

E.g., A' =

#BHEU @BlackHatEventsInformation Classification: General

• We use encoder-decoder network to segment traces

Trace Segmentation

27

Compare recovered and original
cache trace pieces

Similar:
smooth normal patterns

Dissimilar:
anomaly! à segment

Idea: frequent normal patterns can
quickly be learned.

#BHEU @BlackHatEventsInformation Classification: General

Encoder: compress the information (of learned patterns)
Decoder: recover the original information (uncompress)

Trace Segmentation

28

Success to recover à the pattern is seen before

Fail to recover à the pattern is an anomaly à
segmentation point

Sweep the trace to figure out how many
times the whole pattern repeated.

#BHEU @BlackHatEventsInformation Classification: General

• We collect 28 real-world CNN models (372 operators) from
ONNX Zoo as database

• All models are compiled with two state-of-the-art DL
compilers, TVM and Glow

• ResNet18 and VGG16 as the test set

• Evaluated with L1 and LLC Prime+Probe attack

Evaluation

29

#BHEU @BlackHatEventsInformation Classification: General

• Victim

• Results

• Recovered

Results

30

Op1 à {type: Conv, shape: [256, 256, 3, 3]}
Op2 à {type: ReLU}
Op3 à {type: MaxPool}
Op4 à {type: Conv, shape: [512, 256, 3, 3]} . . .

Side-Channel

#BHEU @BlackHatEventsInformation Classification: General

• L1

• LLC

Results

31

Why is LLC attack
much better?

#BHEU @BlackHatEventsInformation Classification: General

• Why does LLC attack show better accuracy than L1 attack?

• Because some operators are compiled into non-optimal
binary code

• i.e., the binary code shows low memory locality
• consequently, low cache hit rate

• From attack’s view, non-optimal code is difficult to distinguish

Results

32

#BHEU @BlackHatEventsInformation Classification: General

• The cache trace of non-optimal code is featureless

Results

33

Read 64 KB mem
But L1 cache is 32 KB

Self-competing

#BHEU @BlackHatEventsInformation Classification: General

Part II: Making Models Do Bad Stuff
Speaker: Yanzuo Chen

#BHEU @BlackHatEventsInformation Classification: General

#BHEU @BlackHatEventsInformation Classification: General

#BHEU @BlackHatEventsInformation Classification: General

Attacks on DNNs

37

• Existing: adversarial examples, data poisoning, backdoors, …
• More pointers: yanzuo.ch/bh24

• Optimisation problem vs. Attacking through a new dimension

#BHEU @BlackHatEventsInformation Classification: General 38

xkcd.com/538

#BHEU @BlackHatEventsInformation Classification: General 39

Is there a way?

#BHEU @BlackHatEventsInformation Classification: General

Attacking DRAM Microarchitectures

40

• Rowhammer (🎉 Happy 10th Anniversary)
• Software-triggered hardware bug
• Current leakage between DRAM cells
• Flips data bits in memory

#BHEU @BlackHatEventsInformation Classification: General

Rowhammer in action

41

• ✅ DDR3
• ✅ DDR4
• ✅ ECC memory
• ✅ (New!) DDR5

• ✅ Privilege escalation
• ✅ Cross-VM attacks
• ✅ Attacking through browsers

#BHEU @BlackHatEventsInformation Classification: General

Bit-Flip Attacks (BFAs) on DNNs

42

• Yes, it works
• Targets victim model weights…
• What if we don’t have that knowledge?

#BHEU @BlackHatEventsInformation Classification: General 43

DNN “Executables”

#BHEU @BlackHatEventsInformation Classification: General 44

DNN executables are compiled code

#BHEU @BlackHatEventsInformation Classification: General

The Setup

45

• Attacker objective: deplete model intelligence via BFAs (E.g.,
make them random guessers)
• Attacker knowledge: Model structure => model executable
• E.g., with DeepCache (Our Part I) / BTD (Zhibo@BH-USA24)
• Attacker has no access to victim model weights
• We figure out: How to find bits to flip

#BHEU @BlackHatEventsInformation Classification: General

Attack Flow

46

📄⚙

Local (attacker)
environment

😈🔍Locally generated
model/executable

Remote (victim)
environment

📄⚙

😈

🔨

Knowledge
↓

Bits to flip

#BHEU @BlackHatEventsInformation Classification: General 47

📄⚙

Local (attacker)
environment

😈🔍Locally generated
model/executable

Remote (victim)
environment

📄⚙

😈

🔨

Knows: structure & weights & gradients & setup…

🔨
Previous
Attacks

#BHEU @BlackHatEventsInformation Classification: General 48

Our Attack

📄⚙

Local (attacker)
environment

😈🔍
Remote (victim)

environment

📄⚙

😈

🔨😶🌫

Knows: structure & weights & gradients & setup…

🔨

Locally generated
model/executable

#BHEU @BlackHatEventsInformation Classification: General 49

#BHEU @BlackHatEventsInformation Classification: General 50

• Randomly choose one bit
within the code region
• Flip it
• See what happens
• 🔄 Loop

#BHEU @BlackHatEventsInformation Classification: General 51

ASR: 2%

#BHEU @BlackHatEventsInformation Classification: General

The Remaining 98%

52

• Most of them → Crash
• Some of them → No effect

Function already returned

#BHEU @BlackHatEventsInformation Classification: General 53

But: That 2%

#BHEU @BlackHatEventsInformation Classification: General

Take 2: Using those 2% of bits

54

• Compile & train the model on an arbitrary
dataset
• Can't use victim dataset (we don't know it)
• Scan all bits and record those useful
• Remote: Try useful bits on victim executable

📄⚙

Local (attacker)
environment

😈🔍Locally generated
model/executable

#BHEU @BlackHatEventsInformation Classification: General

ASR: 45%

55

• 45% of time (or bits) lead to successful degradation
• Rest of the time: Crash or no effect

• Why not 100% ASR?
• Model weights are different.

#BHEU @BlackHatEventsInformation Classification: General

💡 Transferable vulnerable bits

56

45% vulnerable bits transferable to victim model,
despite different training sets

#BHEU @BlackHatEventsInformation Classification: General

Take 3: In seek of “Superbits”

57

• Using more local executables for profiling?

😈

#BHEU @BlackHatEventsInformation Classification: General

Building More Local Executables

58

• Train them on datasets of random noise
• Regulates weights
• “Unbiased” choice
• (More refs: yanzuo.ch/bh24)

#BHEU @BlackHatEventsInformation Classification: General

ASR: 70%

59

We went from here
To here

#BHEU @BlackHatEventsInformation Classification: General

Real World Experiments

60

#BHEU @BlackHatEventsInformation Classification: General

Real World Experiments

61

Avg: ~1.4 flips to success

#BHEU @BlackHatEventsInformation Classification: General

Comparison: DeepHammer’s Results

62
Avg: ~12 flips

#BHEU @BlackHatEventsInformation Classification: General

Bonus: Case Study

63

In this case:
• Operand of cmp flipped
• Hard to defend with existing

methods (e.g., optimisation)

• Learn more: yanzuo.ch/bh24

#BHEU @BlackHatEventsInformation Classification: General

• DeepCache: Optimisations gave away model architectures

• BFA: 6x fewer flips to ruin model intelligence

• More security research on DNN executables please

Black Hat Sound Bytes

64

#BHEU @BlackHatEventsInformation Classification: General

Thanks!

65

Yanzuo Chen
ychenjo@cse.ust.hk

Zhibo Liu
zhiboliu@ust.hk

Learn More
yanzuo.ch/bh24

