blackhat EUROPE 2024

DECEMBER 11-12, 2024 BRIEFINGS

The Devil is in the (Micro-) Architectures: Uncovering New Side-Channel and Bit-Flip Attack Surfaces in DNN Executables

Speakers:

Yanzuo Chen PhD at HKUST Zhibo Liu Postdoc at HKUST

blackhat EUROPE 2024

Contributors:

Yuanyuan Yuan Postdoc at ETH Shuai Wang Associate Professor at HKUST

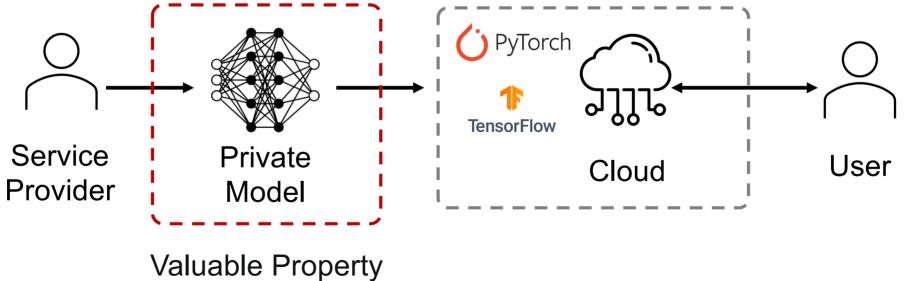
Tianxiang LiSihang HuZhihui LinSecurity Researchers at CSI AI Red Team

The Age of Al

• Machine Learning as a Service (MLaaS)



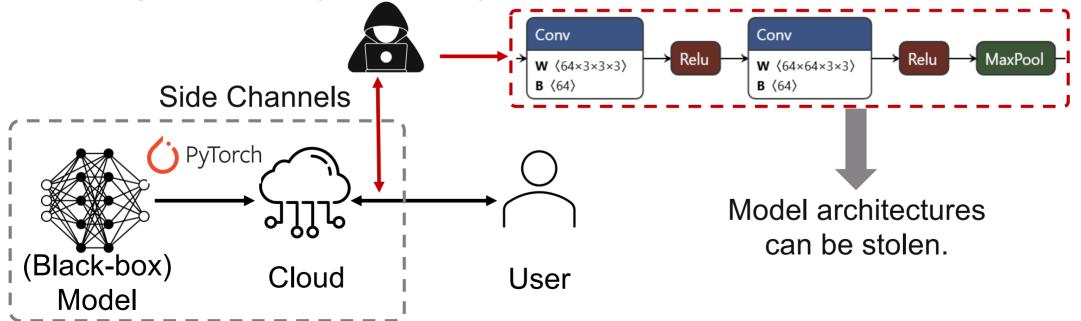
• Run ML models in could



e.g., design, parameters ...

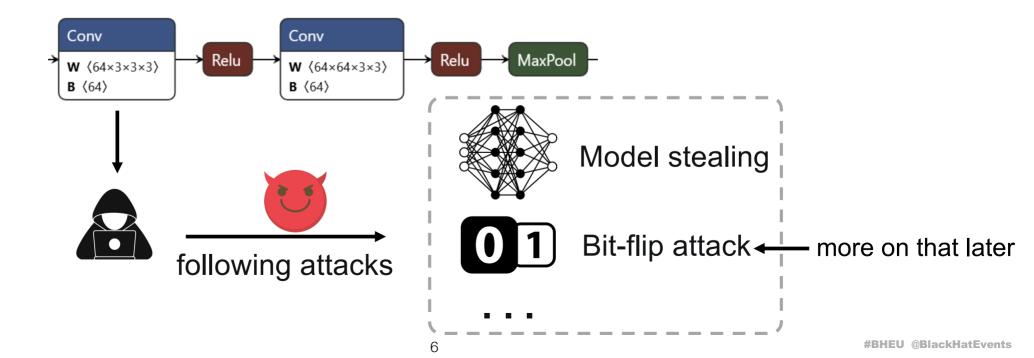
Attacks Arising

- Attacking objectives: model architectures
 - e.g., operator types and hyper-parameters



Attacks Arising

- Model architectures can enable various gray-box attacks
 - e.g., model stealing and bit-flip attack



Meanwhile

 Cloud service providers (e.g., Meta, AWS, and Google) are employing DNN compilation in resource-sharing environments for cost and profit reasons

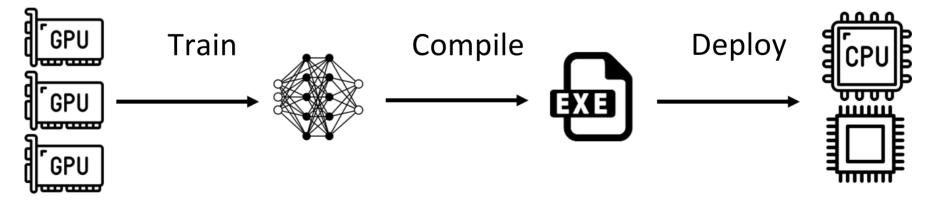
Are DNN executables vulnerable to side-channel attacks?

Outline

- Background
 - Deep Learning (DL) Compilation
 - DNN Executable
- How to Steal Model Architectures
 - Cache Side-Channel
- Making Models Do Bad Stuff
 - Bit-Flip Attack

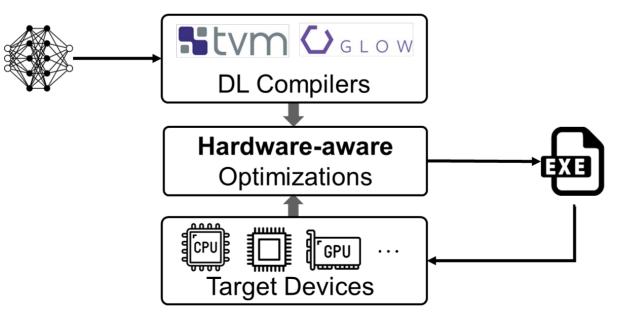
DNN Executable

- GPUs are expensive
 - Running DNNs on cost-efficient devices is popular
- DL compilation techniques are proposed to speed up DNN inference



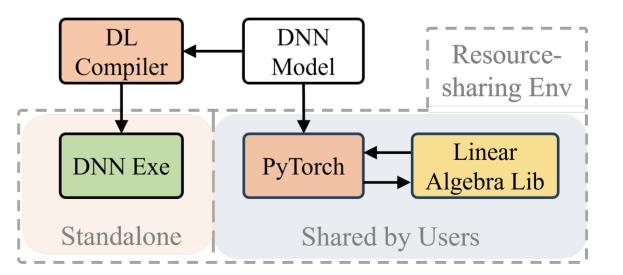
DL Compiler

- Automatically optimize the DNN and generate efficient binary code
- Unlock the full performance potential of various hardware



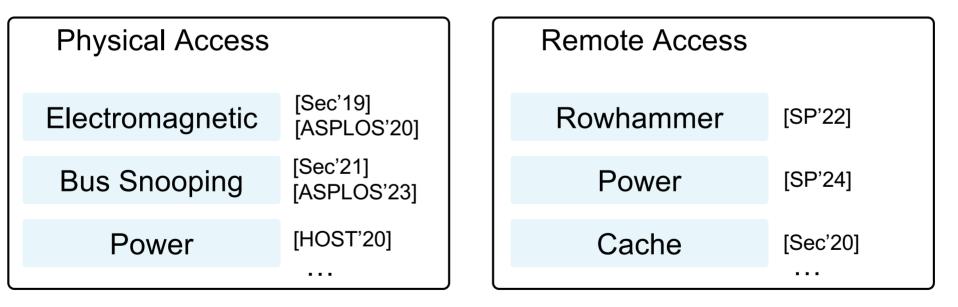
DNN Executable

- What are the differences compared with DL frameworks (e.g., PyTorch)
 - Each operator is optimized explicitly
 - Standalone
 - No libs during execution



Side-Channel Attacks

• Side-channel attacks on DNNs are emerging



More discussion: yanzuo.ch/bh24

[CCS'24] DeepCache: Revisiting Cache Side-Channel Attacks in Deep Neural Networks Executables

Side-Channel Attacks

• We focus on remote *model architecture stealing* attacks

Limitation				
Rowhammer	Leak partial information from quantized DNN			
Power	Rely on RAPL interface (require privileges)	NO		
Cache	Need shared cache (and memory regions)			

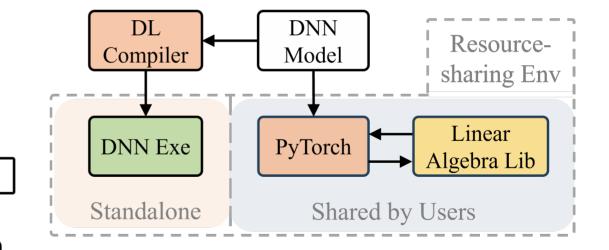
More discussion: <u>yanzuo.ch/bh24</u>

[CCS'24] DeepCache: Revisiting Cache Side-Channel Attacks in Deep Neural Networks Executables

Challenges

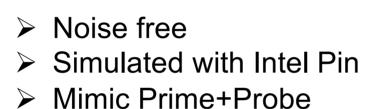
None of existing cache side channel attacks apply to DNN executable

- Standalone
- No shared memory
- No libs for pre-analysis



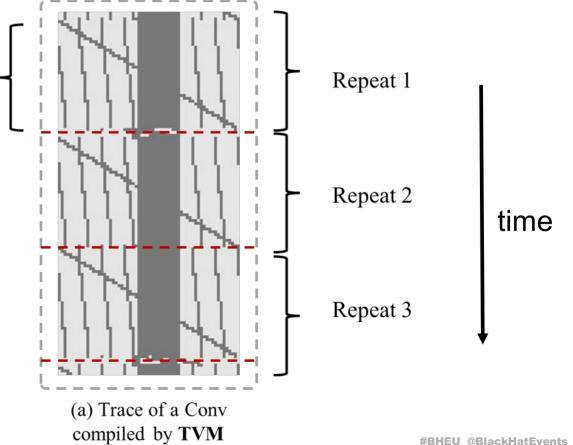
• Is DNN executable more secure?

Zoom In



Each **row** represents a cache state (e.g., 64 cache lines).

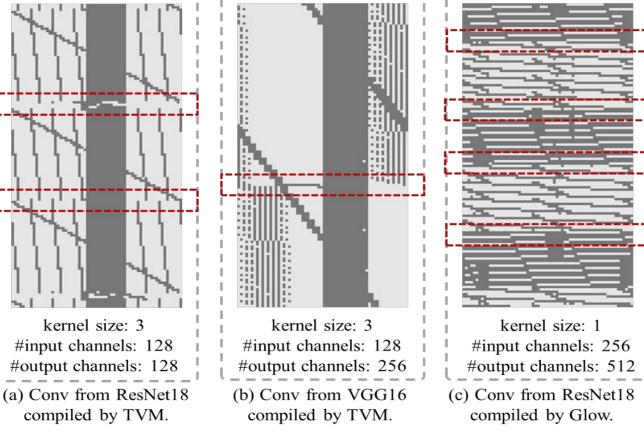
dark pixels \rightarrow cache hits light pixels \rightarrow cache misses



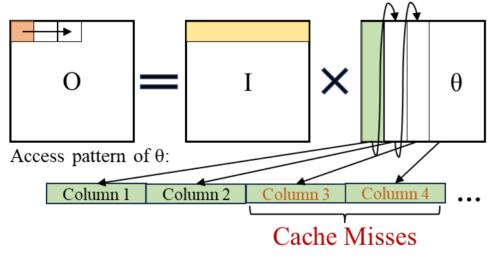
Cache Access Patterns

Why is that?

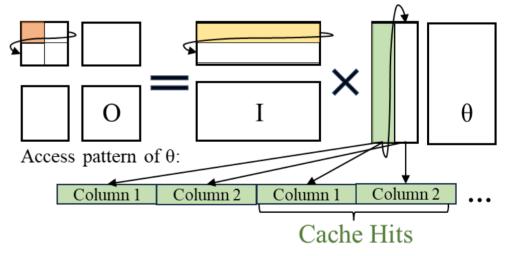
Compiler Optimizations!



- Blocking
- For better memory/cache locality



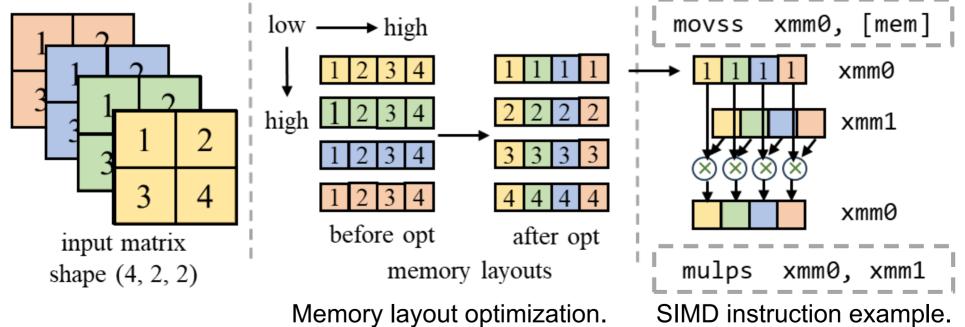
(a) Matrix multiplication without blocking.



(b) Matrix multiplication with blocking.

The size of cache is limited (e.g., 32KB)

- Vectorization
- Leverage Single Instruction Multiple Data (SIMD) extension

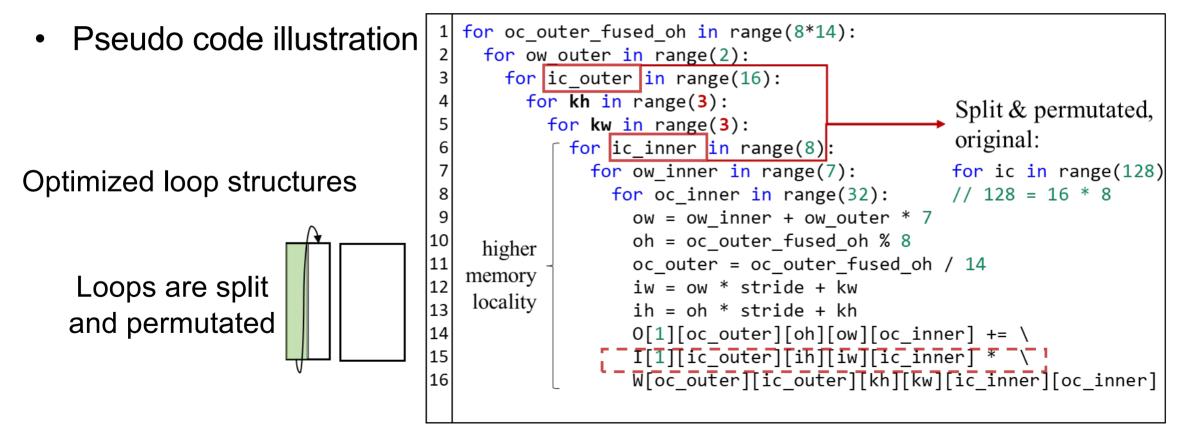


Pseudo code illustration

- Convolution
- Naïve loop structures
- Sweep the whole matrix

```
def Conv(I, W, 0):
 1
 2
       # output channels
 3
       for oc in range(256):
 4
         # output height
 5
         for oh in range(14):
           # output width
 6
           for ow in range(14):
 7
             # lines 2-7: each output element
8
 9
             # input channels
10
             for ic in range(128):
               # kernel height
11
               for kh in range(3):
12
                  # kernel width
13
       low
14
                  for kw in range(3):
   memory
15
                    v 1 = oh * stride + kh
   locality
16
                    v 2 = ow * stride + kw
17
                    0[1][oc][oh][ow] += \
                      I[1][ic][v_1][v_2] * \
18
                      W[oc][ic][kh][kw]
19
```

 $\mathcal{I} \mathcal{V}$



Unique Loop Structures

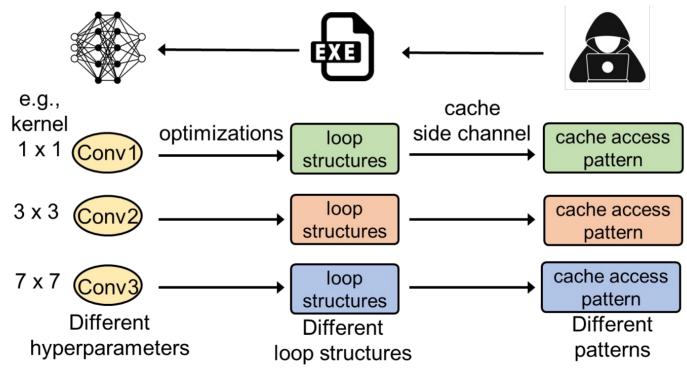
- Compiler optimizations depend on the hyper-parameters of operators.
 - Different operator types and hyper-parameters \rightarrow
 - Distinct loop structures in compiled low-level code.
- If we can determine the loop structure, we can distinguish operators.

Unique Loop Structures

 DNN inference involves massive memory accesses, resulting distinguishable cache activities

- We depict binary-level code structures with Loop₁ (inner loop) and Loop₀ (outer loop)
 - *Loop*, denotes the repeated pattern
 - *Loop*_O represents the frequency of a pattern's occurrence

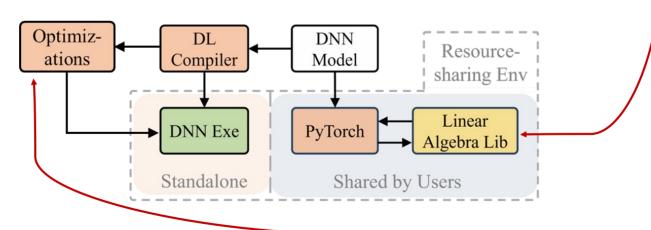
Unique Loop Structures



There should be a one-to-one mapping relation that attacker can exploit to infer operators.

New Attacking Surface

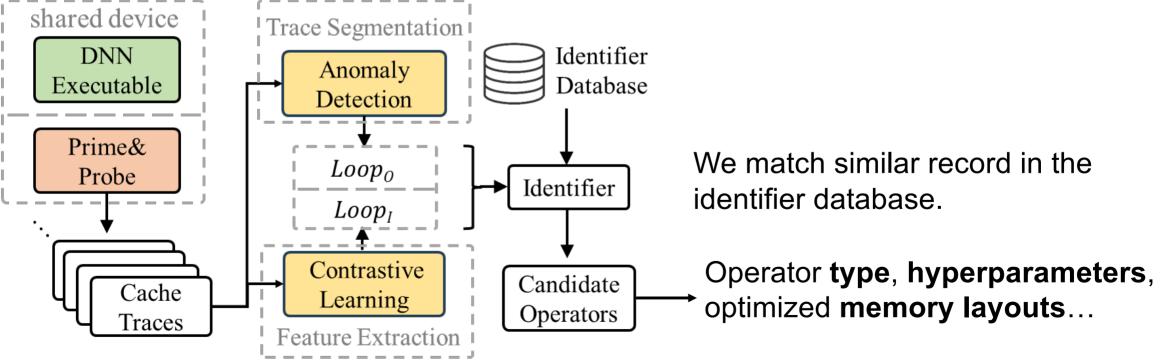
 Prior works manually locate sensitive functions in linear algebra libraries as target of cache side channels.



• Differently, we reveal that hardware- and cache-aware optimizations introduce new cache side channel leakages.

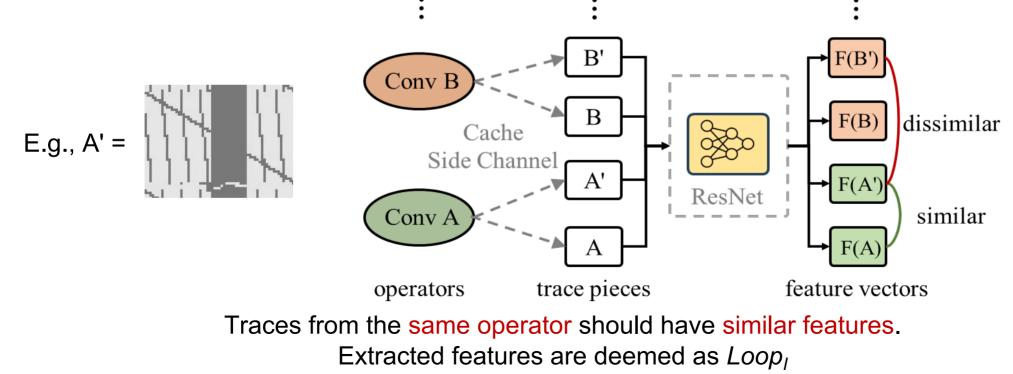
DeepCache: End-to-End DNN Architecture Stealing

• We approximate a mapping from cache access traces to loop structures



Contrastive Learning

• Extract features cache access traces



Trace Segmentation

• We use encoder-decoder network to segment traces



Compare recovered and original cache trace pieces

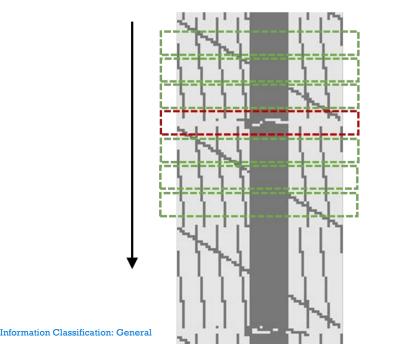
Similar:

smooth normal patterns Dissimilar: anomaly! → segment

Idea: frequent normal patterns can quickly be learned.

Trace Segmentation

Encoder: compress the information (of learned patterns) Decoder: recover the original information (uncompress)

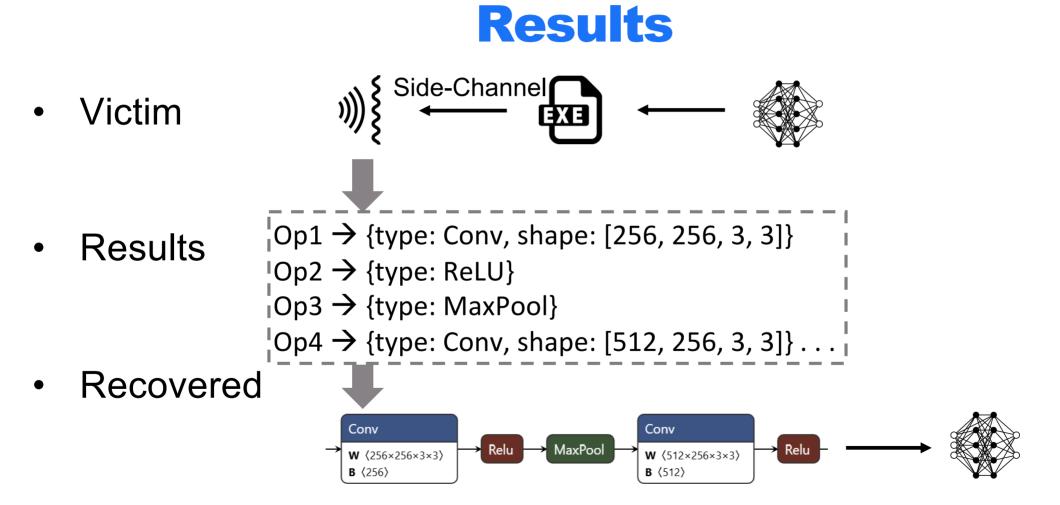


- Success to recover \rightarrow the pattern is seen before
- Fail to recover → the pattern is an anomaly → segmentation point

Sweep the trace to figure out how many times the whole pattern repeated.

Evaluation

- We collect 28 real-world CNN models (372 operators) from ONNX Zoo as database
- All models are compiled with two state-of-the-art DL compilers, TVM and Glow
- ResNet18 and VGG16 as the test set
- Evaluated with L1 and LLC Prime+Probe attack



Results

Table 4: The performance of DEEPCACHE with L1L1Prime+Probe attack in recovering DNN architectures,
and memory layouts.

	TVM		Glow	
	ResNet	VGG	ResNet	VGG
Operator Types	95.2%	88.2%	94.4%	81.3%
Hyperparameters	96.2%	89.5%	71.9%	87.5%
Mem Layouts	100%	100%	71.0%	100%

• **LLC** Table 5: The performance of **DEEPCACHE** with LLC attack.

	TVM		Glow	
	ResNet	VGG	ResNet	VGG
Operator Types	95.2%	100%	100%	100%
Hyperparameters	92.6%	100%	100%	100%
Mem Layouts	91.9%	100%	100%	100%

Information Classification: General

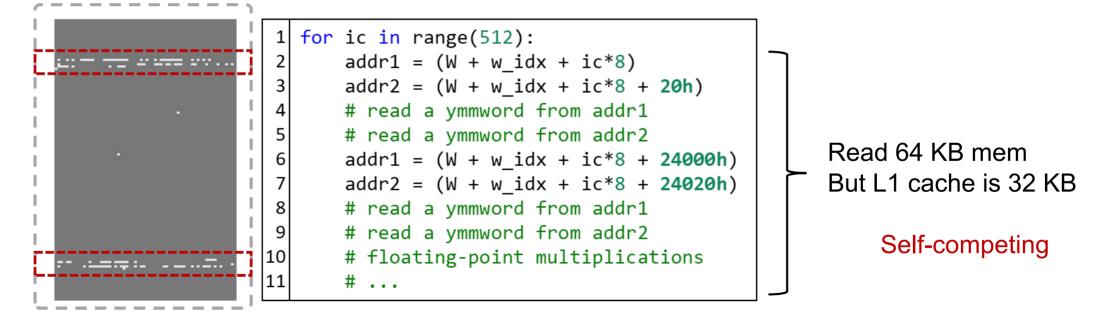
Why is LLC attack

much better?

- Why does LLC attack show better accuracy than L1 attack?
- Because some operators are compiled into non-optimal binary code
 - i.e., the binary code shows low memory locality
 - consequently, low cache hit rate
- From attack's view, non-optimal code is difficult to distinguish

Results

The cache trace of non-optimal code is featureless



(a) Example of featureless trace.

(b) Example of non-optimal code.

Part II: Making Models Do Bad Stuff

Speaker: Yanzuo Chen

#BHEU @BlackHatEvents

Ninja in camouflage	<mark>95</mark> %
Spooky ghost	4%
Professional chef	1%

Yes, putting pineapple on pizza is a crime. It's a violation of the sacred bond between dough, sauce, and cheese. While some may argue that the combination of sweet and savory flavors is delicious, true pizza aficionados know it's an offense to tradition.

Attacks on DNNs

- Existing: adversarial examples, data poisoning, backdoors, ...
 - More pointers: <u>yanzuo.ch/bh24</u>
- Optimisation problem vs. Attacking through a new dimension

xkcd.com/538

Is there a way?

Attacking DRAM Microarchitectures

- Rowhammer (Happy 10th Anniversary)
 - Software-triggered hardware bug
 - Current leakage between DRAM cells
 - Flips data bits in memory

Rowhammer in action

- 🔽 DDR3
- 🔽 DDR4
- V ECC memory
- 🗹 (New!) DDR5

- Vivilege escalation
- Cross-VM attacks
- V Attacking through browsers

Bit-Flip Attacks (BFAs) on DNNs

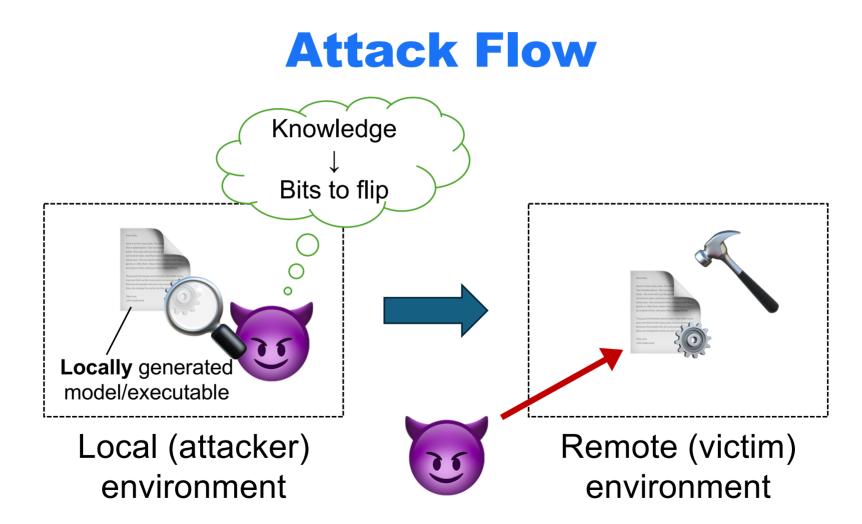
- Yes, it works
- Targets victim model weights...
 - What if we don't have that knowledge?

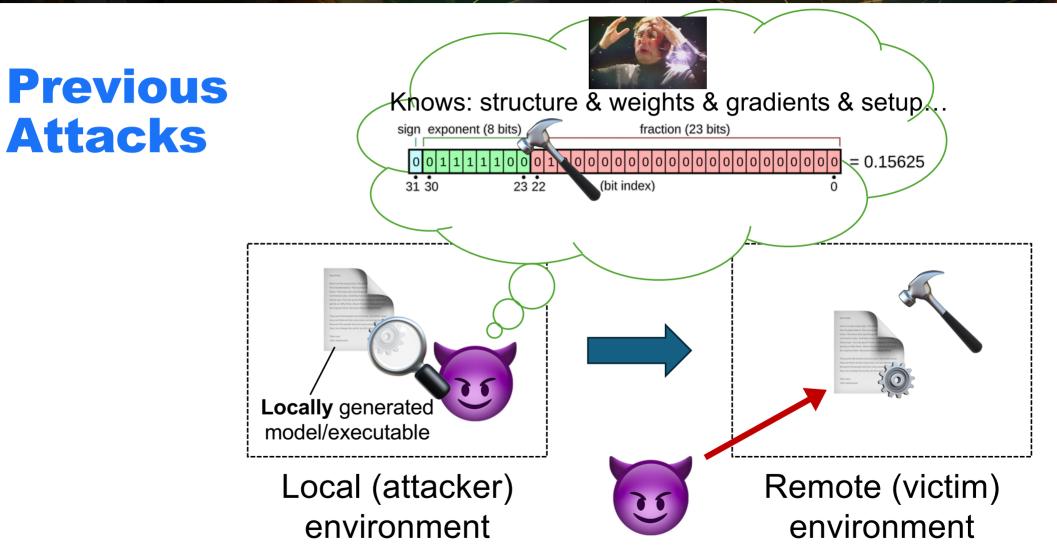
DNN "Executables"

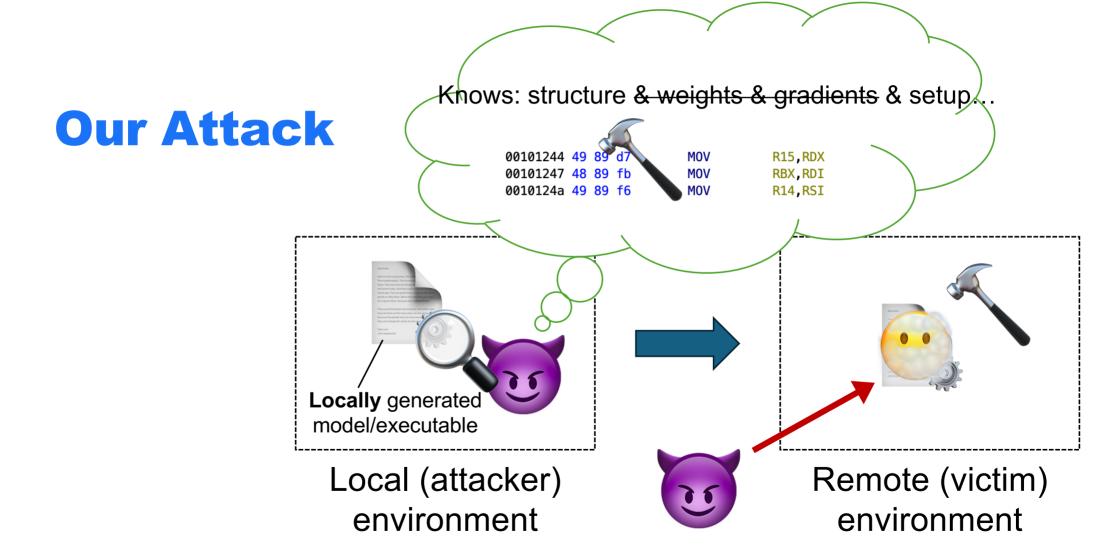
DNN executables are compiled code

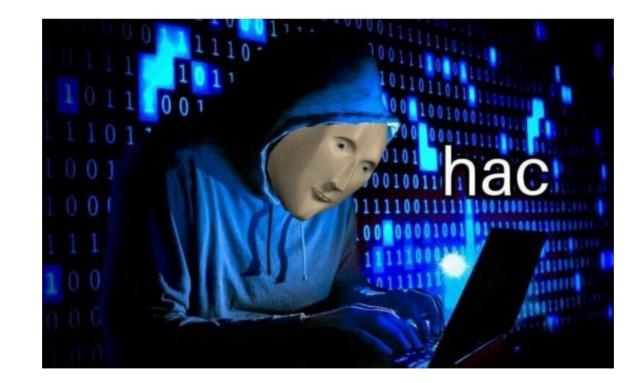
The Setup

- Attacker objective: deplete model intelligence via BFAs (E.g., make them random guessers)
- Attacker knowledge: Model structure => model executable
 - E.g., with DeepCache (Our Part I) / BTD (Zhibo@BH-USA24)
- Attacker has **no** access to victim model weights
- We figure out: **How** to find bits to flip

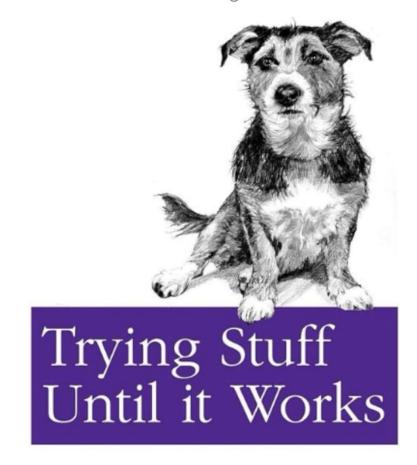








A Notebook for Programmers



Tree Leaf Press

- Randomly choose one bit within the code region
- Flip it
- See what happens
- 🕃 Loop

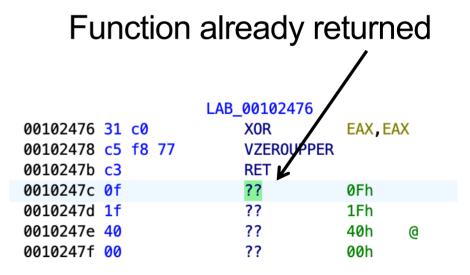
O,Really?

ASR: 2%

The Remaining 98%

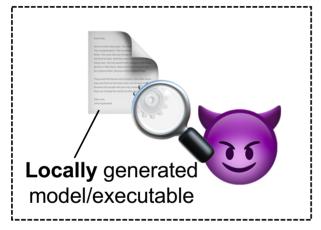
- Most of them \rightarrow Crash
- Some of them \rightarrow No effect

segfault at 940c9 ip 00007f329a3df57b sp 00007f3299b54d10 error 6
segfault at 73249 ip 00007f329a3df57b sp 00007f3298b52d10 error 6
segfault at 20e09 ip 00007f329a3df57b sp 00007f329634dd10 error 6
segfault at 523c9 ip 00007f329a3df57b sp 00007f3297b50d10 error 6
segfault at fffffffffffffff89 ip 00007f329a3df57b sp 00007f32290e9b9
segfault at 7f326a8ecc40 ip 00007f329a3df56f sp 00007f322a8ecb90 er
segfault at 48000028 ip 00007f329a3df577 sp:7f32290e9b90 error:0 i
segfault at 7f329b34fdc0 ip 00007f329a3df56f sp 00007f329734fd10 er



But: That 2%

Take 2: Using those 2% of bits



Local (attacker) environment

- Compile & train the model on an arbitrary dataset
 - Can't use victim dataset (we don't know it)
- Scan all bits and record those useful
- Remote: Try useful bits on victim executable

ASR: 45%

- 45% of time (or bits) lead to successful degradation
- Rest of the time: Crash or no effect
- Why not 100% ASR?
 - Model weights are different.

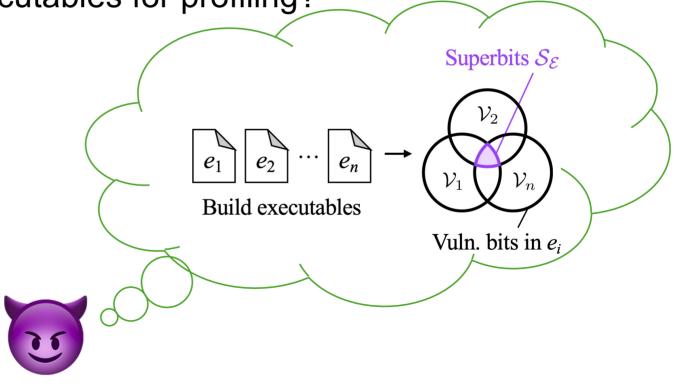
Transferable vulnerable bits

45% vulnerable bits transferable to victim model, *despite* different training sets

#BHEU @BlackHatEvents

Take 3: In seek of "Superbits"

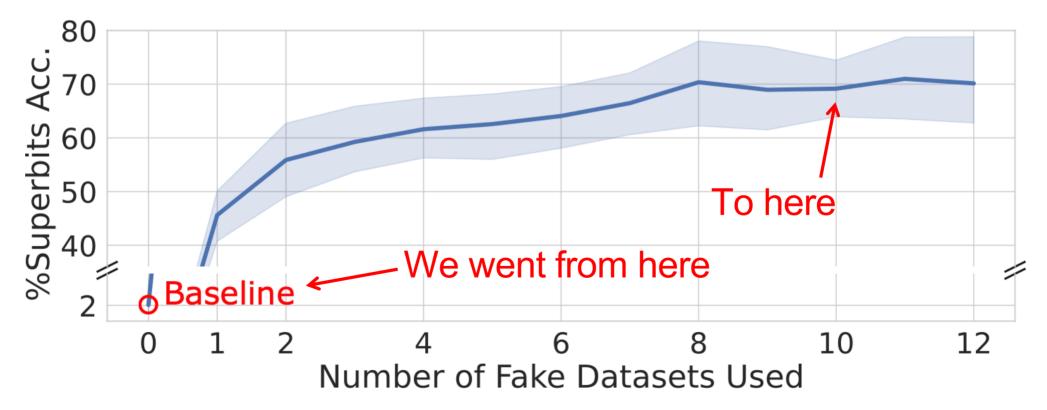
• Using more local executables for profiling?



Building More Local Executables

- Train them on datasets of random noise
 - Regulates weights
 - "Unbiased" choice
 - (More refs: <u>yanzuo.ch/bh24</u>)

ASR: 70%



Real World Experiments

Model	Dataset	#Flips	#Crashes	%Acc. Change
ResNet50	CIFAR10	1.4	0.0	$87.20 \rightarrow 10.00$
GoogLeNet	CIFAR10	1.4	0.0	$84.80 \rightarrow 10.00$
DenseNet121	CIFAR10	1.0	0.0	$80.00 \rightarrow 11.40$
DenseNet121	MNIST	1.2	0.0	$99.10 \rightarrow 11.20$
DenseNet121	Fashion	1.2	0.0	$92.50 \rightarrow 10.60$
QResNet50	CIFAR10	1.6	0.0	$86.90 \rightarrow 9.60$
QGoogLeNet	CIFAR10	1.4	0.0	$84.60 \rightarrow 11.20$
QDenseNet121	CIFAR10	1.6	0.0	$78.50 \rightarrow 10.20$
ResNet50	CIFAR10	1.4	0.0	$78.80 \rightarrow 10.00$
	-			

Real World Experiments

Model	Dataset	#Flips	#Crashes	%Acc. Change
ResNet50	CIFAR10	1.4	0.0	$87.20 \rightarrow 10.00$
GoogLeNet	CIFAR10	1.4	0.0	$84.80 \rightarrow 10.00$
DenseNet121	CIFAR10	1.0	0.0	$80.00 \rightarrow 11.40$
DenseNet121	MNIST	1.2	0.0	$99.10 \rightarrow 11.20$
DenseNet121	Fashion	1.2	0.0	$92.50 \rightarrow 10.60$
QResNet50	CIFAR10	1.6	0.0	86.90 ightarrow 9.60
<pre>@GoogLeNet</pre>	CIFAR10	1.4	0.0	$84.60 \rightarrow 11.20$
QDenseNet121	CIFAR10	1.6	0.0	$78.50 \rightarrow 10.20$
ResNet50	CIFAR10	1.4	0.0	$78.80 \rightarrow 10.00$

Avg: ~1.4 flips to success

Comparison: DeepHammer's Results

Architecture	Network	Acc. before	Random Guess	Acc. after	Min. # of
	Parameters	Attack (%)	Acc. (%)	Attack (%)	Bit-flips
LeNet	0.65M	90.20	10.00	10.00	3
VGG-11	132M	96.36	8.33	3.43	5
VGG-13	133M	96.38		3.25	7
ResNet-20	0.27M	90.70	10.00	10.92	21
AlexNet	61M	84.40		10.46	5
VGG-11	132M	89.40		10.27	3
VGG-16	138M	93.24		10.82	13
SqueezeNet	1.2M	57.00	0.10	0.16	18
MobileNet-V2	2.1M	72.01		0.19	2
ResNet-18	11M	69.52		0.19	24
ResNet-34	21M	72.78		0.18	23
ResNet-50	23M	75.56		0.17	23
	LeNet VGG-11 VGG-13 ResNet-20 AlexNet VGG-11 VGG-16 SqueezeNet MobileNet-V2 ResNet-18 ResNet-34	ArchitectureParametersLeNet0.65MVGG-11132MVGG-13133MResNet-200.27MAlexNet61MVGG-11132MVGG-16138MSqueezeNet1.2MMobileNet-V22.1MResNet-1811MResNet-3421M	ArchitectureParametersAttack (%)LeNet0.65M90.20VGG-11132M96.36VGG-13133M96.38ResNet-200.27M90.70AlexNet61M84.40VGG-11132M89.40VGG-16138M93.24SqueezeNet1.2M57.00MobileNet-V22.1M72.01ResNet-1811M69.52ResNet-3421M72.78	ArchitectureParametersAttack (%)Acc. (%)LeNet0.65M90.2010.00VGG-11132M96.368.33VGG-13133M96.388.33ResNet-200.27M90.704AlexNet61M84.4010.00VGG-11132M89.4010.00VGG-16138M93.24SqueezeNet1.2M57.00MobileNet-V22.1M72.01ResNet-1811M69.520.10ResNet-3421M72.78	ArchitectureParametersAttack (%)Acc. (%)Attack (%)LeNet0.65M90.2010.0010.00VGG-11132M96.36 8.33 3.43VGG-13133M96.38 8.33 3.25ResNet-200.27M90.7010.92AlexNet61M84.4010.46VGG-11132M89.4010.00VGG-16138M93.2410.82SqueezeNet1.2M57.000.16MobileNet-V22.1M72.010.19ResNet-1811M69.520.100.19ResNet-3421M72.780.18

Bonus: Case Study

Addr	Opcode bytes	x86 assembly instruction			
0x73 0x76	83 F8 28 0F 4D C2 39 F0 0F 8D FA 00+ 00 00	<pre>cmp eax, 28h ;; max ID cmovge eax, edx ;; edx=28h cmp eax, esi ;; esi<28h jge func_end</pre>			
	(a) Assem	bly code before BFA.			
0x73 0x76	83 FC 28 0F 4D C2 39 F0 0F 8D FA 00+ 00 00	<pre>cmp esp, 28h ;; true cmovge eax, edx ;; true cmp eax, esi ;; true jge func_end ;; exit</pre>			

(b) Assembly code after BFA.

In this case:

- Operand of *cmp* flipped
- Hard to defend with existing methods (e.g., optimisation)
- Learn more: yanzuo.ch/bh24

Black Hat Sound Bytes

- DeepCache: Optimisations gave away model architectures
- BFA: 6x fewer flips to ruin model intelligence
- More security research on DNN executables please

Thanks!

Yanzuo Chen ychenjo@cse.ust.hk

Zhibo Liu zhiboliu@ust.hk

Learn More yanzuo.ch/bh24

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING