
THE LEADER IN SECURITY OPERATIONS

Information Classification: General©2023 Arctic Wolf Networks, Inc. All rights reserved.Public

Harnessing Large Language Models for

Enhanced Malware Reverse Engineering

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Jeremy (Dyngnosis) Richards

Started reversing microsoft patches for a company called nCircle in the mid 2000s, came up through BBS and

IRC scene before that.

20 years of reversing/vuln research / exploit dev

5 years firmware / embedded research

5 years malware research (mobile / desktop)

Lead Malware Reverse Engineer at Arctic Wolf Labs.

👀 Intersection of AI/ML and Security 👀

Introduction

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Who am I?

THE LEADER IN SECURITY OPERATIONS

Information Classification: General©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

01
02
03
04

Introduce Problem & Goals

The Project

Results

Future work & Q/A

Agenda

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Reverse engineering...

● Is labor-intensive and time-consuming task.

● requires a deep understanding of the programming languages, libraries, and frameworks used in the software

● requires the ability to recognize patterns and structures within the code.

● analyzing malicious code is a specialized task (obfuscation, anti-analysis, etc.)

Rise of the LLMs

Large Language Models have showcased their prowess in processing and generating text that mirrors human-

like understanding, but can it understand decompiled code?

Introduction: The Problem

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

The Need for Automation in Reverse Engineering

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Contextual Understanding:

● Models recognize patterns in decompiled code.

● Translate machine-level operations to high-level concepts.

Natural Language Bridging:

● Converts complex code into simple, layman-understandable

terms.

● Explains functions, variables, and logic flow.

Assists in Reverse Engineering

● Provides insights into code's purpose and behavior.

● Helps developers understand legacy or unfamiliar codebases.

Large Language models

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Why Are They Good for Explaining Decompiled Code?

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Project Objectives

The aim of this project is to enhance the reverse engineering experience, and improve the velocity and quality

of analyst output by providing tools to automate the boring and illuminate the interesting..

Presentation Objectives

Encourage others to adopt the usage of Lupine and contribute the model

Show my method, mistakes, and successes when fine tuning a model

Provide the background necessary to start your own project focused on fine-tuning a local model to increase

performance on a custom tasks

Introduction: Goals

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Why are we here?

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Fine-tune a local model to improve performance on the following three reverse engineering tasks:

1. Explain <code> step by step

2. Provide a summary for the following <code>

3. Supply a descriptive new name that describes the following <code>

Providing automation around these high level reversing tasks allows an analyst to identify interesting functions

by name and summary.

Project Objective

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Project Goals

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

When approaching the task of reverse engineering a binary, the analyst usually gets a little context but

assuming there is none we:

1. Identify the file type & architecture (PE32, ELF, MACHO/x86, x64, arm)

2. PE Specific file parsing (headers, resources, imports, exports)

3. xref interesting API calls to find interesting functions

4. xref interesting strings to find interesting functions

5. reverse / trace execution from entry point to find interesting functions

Introduction: Reverse Engineering

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Reversing an unknown binary

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Reverse engineering

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Sections

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Reverse engineering

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Assembly

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Reverse engineering

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Decompiled

Code

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Reverse engineering

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Imports / Export

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Reverse engineering

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Functions

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Reverse engineering

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Calling functions

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Reverse engineering

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Functions called

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Xref RegOpenKey from 6

functions ...

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Solution:

We hypothesize that with appropriate base model, fine-tuning, and a quality dataset, LLMs can significantly

contribute to malware reverse engineering. They might automate the recognition of malicious code patterns,

extraction of embedded constants, identification of malware signatures, and even suggest potential detection

measures. This accelerates the malware analysis process and lowers the entry barrier for individuals venturing

into this critical cybersecurity domain.

Today, I’ll unfold my journey of constructing a dataset and a model, developing a plugin, and a plugin

server, and amalgamating these elements to probe the potential of Large Language Models in the realm

of malware reverse engineering.

Introduction:

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Potential of LLMs in Reverse Engineering Malware

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

G-3PO: A Protocol Droid for Ghidra: An AI assistant developed by Olivia Lucca Fraser at Tenable for analysing

and annotating decompiled code in Ghidra, which queries OpenAI and/or Anthropic's language models. See

this writeup on the Tenable tech blog for details.

Gepetto: An IDA Pro plugin that queries GPT models for explanatory comments and meaningful variable

names (like G-3PO for IDA Pro). Developed by Ivan Kwiatkowski.

ai for Pwndbg: Your trusty AI debugging sidekick, developed by Olivia Lucca Fraser at Tenable as a Pwndbg

command.

ai for GEF: Same as above, but implemented as a GEF command. Developed by Olivia Lucca Fraser at

Tenable.

GPT-WPRE: Whole-program Reverse Engineering with GPT-3. This is a little toy prototype of a tool that

attempts to summarize a whole binary using GPT-3 (specifically the text-davinci-003 model), based on

decompiled code provided by Ghidra. Developed by Brendan Dolan-Gavitt.

IATelligence: IATelligence is a Python script that extracts the Import Address Table (IAT) from a PE file and

uses OpenAI's GPT-3 model to provide details about each Windows API imported by the file. The script also

searches for related MITRE ATT&CK techniques and explains how the API could potentially be used by

attackers. Developed by Thomas Roccia.

Literature Review (tools)

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

https://github.com/tenable/ghidra_tools/tree/main/g3po
https://medium.com/tenable-techblog/g-3po-a-protocol-droid-for-ghidra-4b46fa72f1ff
https://github.com/JusticeRage/Gepetto
https://github.com/tenable/pwndbg/blob/dev/pwndbg/commands/ai.py
https://github.com/tenable/gef-extras
https://github.com/moyix/gpt-wpre
https://github.com/fr0gger/IATelligence

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Code Llama: Code Llama is a family of large language models for code based on Llama 2 providing

state-of-the-art performance among open models, infilling capabilities, support for large input contexts,

and zero-shot instruction following ability for programming tasks. (7B, 13, 34B)

Starcoder: The StarCoder models are 15.5B parameter models trained on 80+ programming languages

CodeAlpaca: The Code Alpaca models are fine-tuned from a 7B and 13B LLaMA model on 20K

instruction-following data

replit-code-v1.5: Replit Code v1.5 is a 3.3B parameter Causal Language Model focused on Code

Completion.

Literature Review (models)

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

https://github.com/facebookresearch/codellama
https://huggingface.co/blog/starcoder
https://github.com/sahil280114/codealpaca
https://huggingface.co/replit/replit-code-v1_5-3b

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

LmPa: Improving Decompilation by Synergy of Large

Language Model and Program Analysis

DIRTY Usenix 2022 Conference Video: Augmenting

Decompiler Output with Learned Variable Names and

Types

Code | Paper PDF | Demo

Literature Review (papers)

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

https://arxiv.org/pdf/2306.02546.pdf
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-qibin
https://github.com/CMUSTRUDEL/DIRTY
https://cmustrudel.github.io/papers/ChenDIRTY2022.pdf
https://dirtdirty.github.io/explorer.html

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

1. Input Embeddings: Text sequences are converted into vectors.

These vectors hold the meaning and context of words.

2. Attention Mechanism: Determines which parts of the input are relevant.

Weights importance of words based on context.

Allows for capturing long-range dependencies in text.

3. Encoder-Decoder Stacks: Processes and transforms input embeddings.

Multiple layers of encoders capture the context.

Decoders generate the output, be it text translation, summarization, or other tasks.

4. Positional Encoding: Ensures sequence order is maintained.

Adds information about the position of each word in the sequence.

Transformers United 2023: Introduction to Transformers w/ Andrej Karpathy

Neural Networks: Zero to Hero

Large Language models

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

How do they work?

https://www.youtube.com/watch?v=XfpMkf4rD6E
https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

1. Unidirectional Self-Attention:

 - While the original Transformer's encoder uses bidirectional (or "self") attention, meaning each word can attend to all other words in the input, GPT's

architecture is built on the Transformer's decoder, which employs unidirectional attention.

 - In this model, a word can only attend to preceding words, not future words. This ensures that when predicting a word in a sequence, the model can't "cheat"

by looking ahead.

2. Text Generation Context:

 - GPT is designed for text generation. Using the unidirectional context fits the generative nature of the task where we generate one word at a time and the

prediction of the next word depends only on the preceding words.

3. Positional Encoding:

 - Since Transformer architectures don't inherently understand the order of sequences (like RNNs or LSTMs do), GPT also injects positional encodings into its

inputs to give the model information about the position of words in a sequence.

4. Pre-training and Fine-tuning:

 - GPT's training is typically two-fold. First, it's pre-trained on a massive corpus of text data in an unsupervised manner where it learns to predict the next word in

a sequence (language modeling).

 - Once pre-trained, GPT can be fine-tuned on specific tasks (like translation, question-answering, etc.) using smaller, task-specific datasets.

Large Language models

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

GPT and the Transformer Decoder

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

(1) Generate a dataset of decompiled functions paired with the answers to the questions we will

ask.

(2) Develop a set of prompts (questions) whose answers generate the data we require.

(3) Select and fine tune an existing model.

(4) Deploy webserver that loads the model and provides inference.

(5) Provide IDE integration to send & receive code comments and function names for analysis

& update IDE

(6) Provide feedback mechanism for Analysts to make suggestions

(7) Retrain / Test / Announce / Release

Methodology

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

How it’s done

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

0. decompiled code

1. descriptive name

2. short summary

3. step-by-step description.

Methodology

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

(1) Generate a dataset of decompiled functions that includes the following:

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

This shows an example function that builds

a training example out of the dataset.

The input is the decompiled code and

the output is the function name being

learned .

* Context should be treated as a budget

like in LmPa

Methodology

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Develop a set of prompts

https://arxiv.org/pdf/2306.02546.pdf#page=11&zoom=100,424,168

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

A synthetic malware dataset is generated with ttp_code_finder.py

(1) recursively generate instruction prompts to request the implementation of a specific TTP using a specific

API call

(2) compile response and execute response

(3) keep successful binaries

(4) analyze / decompile the binaries

With this workflow we have the function description/summary/function name (instruction prompt) AND the

decompiled code for the interesting function.

*NOTE: Prompt template for ttp_code_finder.py to include print/debug statements and lots of comments when

generating source of truth.

*NOTE: Remove print statements before training or you end up relying on them instead of APIs & Arguments

Methodology

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Generate a dataset

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Synthetic data is a great start, but need to get more real world malware samples in

front of the model for training. We need to be able to recognize anti-dissassembly /

anti-debugging malware code.

We leverage an existing set of tools to generate candidate functions for analysis and

store them for review.

Methodology

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Generate a dataset: Malware Processing Pipeline

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

1. PEfile and Detect It Easy

The Python library `pefile` and the CLI tool `Detect It Easy` (DIE) are potent utilities for analyzing PE (Portable Executable) files. `pefile`

facilitates the inspection of a PE file's structure and attributes, including headers, sections, imports, exports, and resources, aiding in the

understanding of its behavior. Additionally, `Detect It Easy` offers extended functionality, including the identification of file types, entropy

analysis, and detection of specific packers.

2. YARA

YARA is known for its pattern matching capabilities, making it a valuable tool for identifying and classifying malware based on textual or binary

patterns. It can be easily extended

3. Capa

Capa is utilized for capability hunting which is crucial for understanding what a particular piece of code or software is capable of doing.

4. Radare2

This is a comprehensive framework for analyzing binaries, dealing with the analysis of imports, exports, strings and decompilation, which are

critical for reverse engineering purposes.

5. Langchain

Interaction with LLM, generate requests and store responses

6. Ghidra llm.py

The output from AiAnalyzer is then loaded by a plugin in Ghidra, which is a software reverse engineering (SRE) framework. This plugin is

designed to process and display the intelligence extracted by the LLM.©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Information Classification: General

We execute CAPA to detect interesting

regions of code and end up with a bunch of

memory addresses (offsets).

Github

Execute CAPA

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Finding interesting functions

35

https://github.com/mandiant/capa

Information Classification: General

We execute CAPA to detect interesting

regions of code and end up with a bunch

of memory addresses (offsets).

Github

Execute CAPA

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Finding interesting functions

36

https://github.com/mandiant/capa

Information Classification: General

We execute CAPA to detect interesting

regions of code and end up with a list of

memory addresses (offsets).

Github

Execute CAPA

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Finding interesting functions

37

https://github.com/mandiant/capa

Information Classification: General

With the interesting function offsets above

we use radare2 to decompile the function

and store the results in the

analysis_results dict.

Website

Github

Decompile Function

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Decompiling interesting functions

38

https://rada.re/n/
https://github.com/radareorg/radare2

Information Classification: General

`analysis_results` is a dictionary of

dictionaries containing the results of the

entire analysis pipeline.

We're interested in the capa dictionary

which store the function offsets for

matched rules and the functions dictionary

that contains the decompiled code.

Analysis Results Data

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Decompiling interesting functions

39

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

LLM empowered Malware Analysis.

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

LLMs in the Lab

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

LLM empowered Malware Analysis.

Create a training dataset that will work with hugging

face transformers

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

dyngnosis/function_names_v2 · Datasets at Hugging Face

https://huggingface.co/datasets/dyngnosis/function_names_v2

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

LLMs in the Lab

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

LLM empowered Malware Analysis.

fine tuned StarCode->StarDecoder

(It sucked)

THE LEADER IN SECURITY OPERATIONS

Information Classification: General©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

https://ai.meta.com/blog/code-llama-large-language-model-coding/

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

https://ai.meta.com/blog/code-llama-large-language-model-coding/

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Finetune codellama for SQL Task

https://ragntune.com/blog/guide-fine-tuning-code-llama

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

https://ragntune.com/blog/guide-fine-tuning-code-llama

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Data parallel vs model parallel

Context size limits based on memory

Batch size / gradient / accumulation steps.

Local training (Speed and context suffers)

Coreweave training ($$$)

Large Language models

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Fine-tuning Notes

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Define the set of tasks

Collect the data (answers)

● Leverage existing tools to automate the generation of your dataset

● Use larger language models (eg: GPT4) to generate training data

● Get creative (ttp_code_finder.py)

Construct the prompt

● Read the paper! Implement system / init prompts to match training, add special tokens for end of

sequence.instruction, and input

Tokenization

● Ensure prompt + code is under the max len. Don’t poison your training with truncated samples.

Large Language models

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Fine-tuning: Review

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

PEFT (Parameter-Efficient Fine-Tuning) and QLoRA are mechanisms aimed at training large language

models (LLMs) on modest hardware.

1. PEFT:

PEFT is a subset of fine-tuning that emphasizes parameter efficiency. Unlike traditional fine-tuning

where all coefficients of the model are altered, PEFT selectively tunes a subset of them, which

significantly reduces the computational and memory requirements, making it a desirable approach for

training large models like Falcon 7B where efficiency is crucial​ [1]​.

PEFT methods optimize the adaptation of LLMs to specific tasks, enhancing their performance and

speed without demanding extensive GPU power and memory resources​ [2]​.

Some notable methods under PEFT include LoRA and QLoRA, which are specifically designed for fine-

tuning LLMs in a parameter-efficient manner​ [3]​.

[1] https://www.analyticsvidhya.com/blog/2023/10/llm-fine-tuning-with-peft-techniques/#:~:text=,7B%2C%20where%20efficiency%20is%20crucial

[2] https://www.analyticsvidhya.com/blog/2023/08/lora-and-qlora/#:~:text=Overview%20As%20we%20delve%20deeper,LLMs%29%20to%20specific%20tasks

[3] https://abvijaykumar.medium.com/fine-tuning-llm-parameter-efficient-fine-tuning-peft-lora-qlora-part-1-571a472612c4#:~:text=,We%20will%20understnad%20how

Large Language models

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Fine-tuning: PEFT/QLoRA

https://www.analyticsvidhya.com/blog/2023/10/llm-fine-tuning-with-peft-techniques/#:~:text=,7B%2C%20where%20efficiency%20is%20crucial
https://www.analyticsvidhya.com/blog/2023/08/lora-and-qlora/#:~:text=Overview%20As%20we%20delve%20deeper,LLMs%29%20to%20specific%20tasks
https://abvijaykumar.medium.com/fine-tuning-llm-parameter-efficient-fine-tuning-peft-lora-qlora-part-1-571a472612c4#:~:text=,We%20will%20understnad%20how

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

QloRA [1] is a method derived by combining Quantization, a weight reduction technique, with LoRA, a

parameter-efficient fine-tuning technique. This combination facilitates the fine-tuning of large models

with very resource-efficient utilization​4​.

Specifically, QLoRA enables the fine-tuning of 7-billion-parameter models such as Lllama-2 7B or

Bloom 7B on a 16GB GPU. The process involves adding quantization to LoRA, which allows for the

training of significantly larger and more powerful models while maintaining resource efficiency​ [2]​.

An example highlighted is the fine-tuning of a 7-billion-parameter Bloom model on a T4 16GB GPU in

Google Colab, which was made possible through the application of QLoRA​4​.

[1] https://www.arxiv-vanity.com/papers/2305.14314/

[2] https://towardsai.net/p/machine-learning/qlora-training-a-large-language-model-on-a-16gb-gpu

Large Language models

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public.

Fine-tuning: PEFT/QLoRA

https://www.arxiv-vanity.com/papers/2305.14314/
https://towardsai.net/p/machine-learning/qlora-training-a-large-language-model-on-a-16gb-gpu

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

AiAnalyzer.py >> output x 5000

Load the dataset and the base model

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Setup prompt template. Tokenize and prep model for 8bit training

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

LORA Config

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Setup training arguments

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

GPUs go Brrrrr....

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

GPUs go Brrrrr....

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

GPUs go Brrrrr....

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

GPUs go Brrrrr....

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

LLMs in the Lab

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

LLM empowered Malware Analysis.

Recognizes

encryption

constants

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

LLMs in the Lab

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

LLM empowered Malware Analysis.

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

●There are three Ghidra plugins each with their own configured shortcut keys

●llm.py (CTRL-ALT-L)

●This script calls your local LLM. It requests a new function name and function description. It renames the function and updates the somments

with the description. Your cursor can be anywhere inside the decompiled function that you're interested in.

●The plugin expects api_server.py to be running on localhost on port 8000. Documentation for the API server can be found below.

●llm_remote.pt (CTRL-ALT-O)

●This script calls the Project Lupine community server. It requests a new function name and function description. It renames the function and

updates the somments with the description. Note that it sends the hash, function offset, and decompiled code to the community server.

●llm_suggest (CTRL-SHIFT-K)

●This script is useful for contributing back to the community. If you get a summary, function name or step-by-step description that you don't like

you can edit the content directly in Ghidra and send your edits back. Note that it sends the hash, function offset, and decompiled code, function

name, function comment to the community server

Plugins

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Ghidra Plugins

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Xref RegOpenKey from 6

functions ...

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

LLM generated names

in API xref view

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Interesting functions

identified by CAPA

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

● This function name isn’t very

descriptive…

Ghidra Plugin
Analyst in the loop

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

● The Analyst can modify the

function name and/or

summary description and

submit suggestions to the

community server.

Ghidra Plugin
Analyst in the loop

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

● The Analyst can modify the function

name and/or summary description and

submit suggestions to the community

server.

● CTRL-SHIFT-K

Ghidra Plugin: Feedback
Analyst in the loop

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

● YARA/Sigma/Snort

● AutoAnalyst: Using a predefined list of

Windows APIs, the auto analyst iterates,

gets calling cross xrefs, and pre-

decomiles & generates llm analysis

results, follows LLM generated tasks

from seed exploration, calls dynamic

analysis as needed.

● Reporting: Generate/export a report in

markdown for threat intelligence analysis

● Smaller models: Quantize existing,

explore 7 & 13 B versions.

Future Work
Analyst in the loop

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

● We can fine-tune a model to improve results for reverse engineering tasks

● Model size matters and to get decent results for summary and step-by-step tasks 34B parameter models

were required. This may change with better training data, more training steps at higher context limit.

● Matching the pre-training prompts is important, so is finding a decent semi-working starting point.

● Context should be treated like a budget where we maximize the context on all calls. When there is additional

space we can add xrefs, dref memory, include dynamic analysis tracing.

● When context is tight due to large functions chunking & summarization helps.

● Analyst in the loop for continuous learning. Make the labeling process an improvement to workflow to drive

adoption. Reward contribution.

● Confident hallucinations on Community model (also repeating, not knowing when to stop), susceptible to

injection / misdirection.

Conclusion

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Did it work?

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

●FAILURES

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

Demo?

● Briefly demonstrate how your plugin and LLM assist in reverse engineering.

● Show a few examples or case studies.

(1) abuse_api_thread32first.exe, checkremotedebugger--5d,

(2) /review

(3) /curate

●FAILURES:

…

How it’s done

THE LEADER IN SECURITY OPERATIONS

Information Classification: General

● http://lupine.richards.ai:9001

Q&A

©2023 Arctic Wolf Networks, Inc. All rights reserved. Public

Any questions?

http://lupine.richards.ai:9001

	Slide 1
	Slide 2: Introduction
	Slide 3: Agenda
	Slide 4: Introduction: The Problem
	Slide 5: Large Language models
	Slide 6: Introduction: Goals
	Slide 7: Project Objective
	Slide 8: Introduction: Reverse Engineering
	Slide 9
	Slide 10: Reverse engineering
	Slide 11: Reverse engineering
	Slide 12: Reverse engineering
	Slide 13: Reverse engineering
	Slide 14: Reverse engineering
	Slide 15: Reverse engineering
	Slide 16: Reverse engineering
	Slide 17
	Slide 18
	Slide 19: Introduction:
	Slide 20: Literature Review (tools)
	Slide 21: Literature Review (models)
	Slide 22: Literature Review (papers)
	Slide 23: Large Language models
	Slide 24: Large Language models
	Slide 25: Methodology
	Slide 26: Methodology
	Slide 27: Methodology
	Slide 28: Methodology
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Methodology
	Slide 34
	Slide 35: Execute CAPA
	Slide 36: Execute CAPA
	Slide 37: Execute CAPA
	Slide 38: Decompile Function
	Slide 39: Analysis Results Data
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: LLMs in the Lab
	Slide 45
	Slide 46: LLMs in the Lab
	Slide 47
	Slide 48
	Slide 49: Finetune codellama for SQL Task
	Slide 50: Large Language models
	Slide 51: Large Language models
	Slide 52: Large Language models
	Slide 53: Large Language models
	Slide 54: AiAnalyzer.py >> output x 5000
	Slide 55
	Slide 56
	Slide 57
	Slide 58: GPUs go Brrrrr....
	Slide 59
	Slide 60: GPUs go Brrrrr....
	Slide 61
	Slide 62: GPUs go Brrrrr....
	Slide 63: GPUs go Brrrrr....
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: LLMs in the Lab
	Slide 71: LLMs in the Lab
	Slide 72
	Slide 73: Plugins
	Slide 74
	Slide 75
	Slide 76
	Slide 77: Ghidra Plugin
	Slide 78: Ghidra Plugin
	Slide 79: Ghidra Plugin: Feedback
	Slide 80: Future Work
	Slide 81: Conclusion
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: Demo?
	Slide 87: Q&A

