
Simplified Malware
Evasion
Entropy & Other
Techniques

<p> Will Summerhill </p>

who am i? will i am
<p>

Will Summerhill

Senior red team consultant

@ Mandiant Canada (Google Cloud)

Previously PwC, Security Compass...

SOMETHING??

</p>

Make malware
SIMPLE again

- Will

EDR Evasion Theory

Blue Team Detections

02

Windows Callback
Functions

Entropy Evasion

03

04

01

Overview

<p> 30,000 foot view of evasion </p>

EDR Evasion Theory
01

EDR Overview
<p> How do EDRs actually detect? </p>

● Signatures

● Heuristics

● Sandboxing

● Entropy: Detecting high entropy files

● Etc…

<p> Areas of evasion, as per Jackson T. </p>

EDR Evasion Theory

1. Avoidance

2. Blending In

3. Blind Spots

4. Tampering Sensors

Reference: https://web.archive.org/web/20230802194854/https://jackson_t.gitlab.io/edr-reversing-evading-

01.html

(http://bit.ly/4a9HMDk)

EDR Evasion Theory

1. Avoidance

Target systems without AV/EDR

altogether

- Running processes

- Program Files folders

- Etc…

“No EDR installed? Let’s GO!”

2. Blending In

Hide within expected processes and

behaviour (context!)

Poor injection:

Better:

EDR Evasion Theory

3. Blind Spots

Abuse gaps in detections

- Obfuscation

- Encryption

- Hiding Function Calls

- Syscalls

- ...

4. Tampering Sensors

Modifying detection software behaviour

- Unhooking

- Patching

- Uninstalling/disabling software

- Firewall telemetry data

Reference: https://github.com/Mr-Un1k0d3r/EDRs

EDR Evasion Theory

1. Avoidance

2. Blending In

3. Blind Spots -> Area of focus for this talk!

4. Tampering Sensors

<p> That’s sooooo random </p>

Entropy Evasion
02

First off, what is
ENTROPY?

Entropy in Malware

- Shellcode / encryption = high entropy (randomness)

- EDRs can have detections for high entropy thresholds of files

- Further context/analysis/detections/machine learning is applied to high-entropy files

- Determine if malicious vs benign

<p> What does this have to do with malware? </p>

Therefore, we can improve evasion by reducing entropy of our malware!

More entropy = Random = BAD

Less entropy = Order = GOOD

Logarithmic algorithm used to calculate entropy

“Expected value of the information contained in each message”

Shannon Entropy

Examples:

Common events = “Some random words like this” = Low number output

Rarer events = “fZjl1a98#0(y89201A*&zmz.0“ = High number output

2 Implementations:

- Windows SysInternals

- SigCheck.exe

- Python

- Shannon-Python.py

Shannon Entropy of Files

Calculates entropy value between
0 and 8

● 0 = 0% random

● 8 = 100% random

Reference: https://gist.github.com/wsummerhill/a5a2068e717b5c290ab345c05ef99fcc
(https://bit.ly/3Qz0M7c)

Python Implementation - Shannon-Entropy.py

Normal files = 4.8 to 7.2

Malicious files >= 7.2

Fully encrypted files = 8

Entropy of files in C:\Windows\System32*

Standard files:

- Windows Hosts file = 4.68
- ntdll.dll = 6.21

Calculate entropy of…

Raw shellcode:

- Calc-thread64.bin = 5.91
- Msgbox64.bin = 6.03

XOR encrypted* shellcode:

- calc-thread64-XOR.bin = increase from 5.91 to 6.94
- msgbox64-XOR.bin = increase from 6.03 to 7.12

*XOR Key = 16 random bytes
Note: randomness of key and algo are both factors

Reference: https://github.com/wsummerhill/Python-Crypter

Calculate entropy of…

https://github.com/wsummerhill/Python-Crypter

Payloads w/ XOR encrypted* Cobalt Strike shellcode:

- CPP-DLL-payload.dll (C++) = 7.97
- InstallUtil-payload.dll (.NET) = 7.91

*XOR Key = 16 random bytes

Calculate entropy of…

<p> Reducing entropy... </p>

What can we do?

- Adding arbitrary data (files/images)

- Append a “EULA” or movie script to the end of your payload

- Inflating (null bytes)

- Adding random functions and code

- Junk code, math operations, etc.

- Code from Microsoft?

- OBFUSCATING SHELLCODE !!

Word-encoded shellcode? Yes please!!

EDR Blind Spot #1: Reducing Entropy

Vincent Van Mieghem Blog:

“A blueprint for evading

industry leading endpoint

protection in 2022”

Reference:

https://vanmieghem.io/blueprint-for-

evading-edr-in-2022/

https://github.com/wsummerhill/DictionShellcode

Enter: DictionShellcode

1. Encode shellcode into dictionary words

2. Avoid using standard encryption libraries (RC4/XOR/AES)

Decode words → shellcode bytes at runtime using “translation” dictionary of 256 words:

- toronto = 0x00

- raccoon = 0x01

- queen = 0x02

…

- traffic = 0xFF (255)

https://github.com/wsummerhill/DictionShellcode

DictionShellcode

2 Payloads with dictionary word encoded Cobalt Strike shellcode:

1. Encoded shellcode words within payload:
- DictionShellcode.exe = 5.16

Calculate entropy of… DictionShellcode

LOOK HOW LOW OUR PAYLOAD ENTROPY IS NOW!!

2. Encoded shellcode words in separate file:
- DictionaryShellcode-FromFile.exe = 4.56 !!!
- DictionaryWords.txt (shellcode) = 4.19 !!!

CAVEAT #1

Entropy reduction isn’t a
single solution,

but a small part of the
equation

CAVEAT #2

Each environment and EDR
is different

<p> Windows, please call me back! </p>

Windows Callback
Functions

03

Malware Dev 101:

Launching Shellcode: Windows API Calls

1. VirtualAlloc → Allocate memory

2. RtlMoveMemory / memcpy / Marshal.Copy → Copy shellcode

3. VirtualProtect → Change address space protection to Executable

4. CreateThread → Make new thread within process

a. WaitForSingleObject → Wait for thread to complete

1.

2.

3.

4.

Standard Methods

Launching Shellcode

LOCAL PROCESS

- CreateThread (kernel32.dll)

- NtCreateThread (ntdll.dll)

CreateThread

kernel32.dll

NtCreateThread

ntdll.dll

Kernel mode

User mode

Syscall

1. Known detectable series of API calls

2. CreateThread APIs are commonly hooked by EDRs

What’s the Problem?

Reference: https://github.com/Mr-Un1k0d3r/EDRs

Windows Callback Functions - Hexacorn blog post

EDR Blind Spot: #2 Avoiding Hooked APIs

Reference: https://www.hexacorn.com/blog/2016/12/17/shellcode-ill-call-you-back/

(https://bit.ly/4adjYhT)

100s exist !!

Windows Callback Functions to the Rescue

Reference:
https://learn.microsoft.com/en-
us/dotnet/framework/interop/callback-
functions
(https://bit.ly/4a6oizj)

Examples kindly
provided by Microsoft:

- EnumWindows
- EnumPrinters
- EnumFontFamilies

https://github.com/wsummerhill/CSharp-Alt-Shellcode-Callbacks

Repo: CSharp Alt Shellcode Callbacks

C# and C++ payload samples with numerous ways to exec shellcode using

Callback functions

Callback function payloads:

- EnumWindows

- EnumFontFamiliesW

- EnumDesktops

- Etc…

https://github.com/wsummerhill/CSharp-Alt-Shellcode-Callbacks

Currently 47 callback function payloads supported in C#

Unmanaged Export

Function call to
launch schellcode

<p> What are we actually trying to detect? </p>

Blue Team
Detections

04

How Could we Detect This?

High-level ideas:

1. YARA rules

2. PE file analysis

3. ETW

Other candidates:

- Monitoring APIs

- TLS fingerprinting (JA3)

- Firewall untrusted URLs

- Sleep detection

YARA (VirusTotal): https://github.com/VirusTotal/yara

1. Detections: YARA Rules

Goal: Detect the patterns/characteristics and not the

techniques specifically

- Detect known malware families, patterns,

characteristics

- Cobalt Strike, Sliver, etc.

Further reading: https://www.cobaltstrike.com/blog/cobalt-strike-and-yara-can-i-have-your-signature

(https://bit.ly/4dGj2pk)

https://github.com/VirusTotal/yara

Google Cloud’s Threat Intelligence (GCTI) rules:

https://github.com/chronicle/GCTI

Individual rule: yara64.exe RULE.yara <PID/PE>

1. CallbackFunction.exe - PID = 7528 Scan EXE - Clean

Scan PID - Hit!

https://github.com/chronicle/GCTI

2. DictionShellcode.exe - PID = 8828

No detections w/ these rules!

PE-sieve: https://github.com/hasherezade/pe-sieve

2. Detections: PE File Analysis

Goal: Detect malware in-memory

- Identify suspicious indicators in PE files

- Process injection

- Shellcode

- IAT hooks

- Call Stack spoofing

- Etc…

- JSON output

https://github.com/hasherezade/pe-sieve

Event Tracing for Windows

3. Detections: ETW

Goal: Use Windows events to detect

suspicious activity (FREE telemetry!)

- Used by many EDRs for capturing

events

- Microsoft-Windows-Threat-

Intelligence

- Microsoft-Windows-WinINet

- Microsoft-Windows-PowerShell

So many more:
https://github.com/repnz/etw-
providers-docs

Example detection tools:

- SilkETW (Mandiant)

- BeaconHunter (Andrew Oliveau)

https://github.com/mandiant/SilkETW
https://github.com/3lp4tr0n/BeaconHunter

SecTor Sound Bytes

Focus on
detecting the
outcome, not
the technique

Opportunities to
identify blind
spots for further
evasion

Always consider
malware
entropy

Thank
YOU!
Questions?

x.com/bsummerz

github.com/wsummerhill

wsummerhill.github.io

http://twitter.com/bsummerz
http://github.com/wsummerhill
https://wsummerhill.github.io

	Slide 1: Simplified Malware Evasion Entropy & Other Techniques
	Slide 2: who am i? will i am 🍁
	Slide 3: Make malware SIMPLE again
	Slide 4: 02
	Slide 5: EDR Evasion Theory
	Slide 6: EDR Overview
	Slide 7: EDR Evasion Theory
	Slide 8: EDR Evasion Theory
	Slide 9: EDR Evasion Theory
	Slide 10: EDR Evasion Theory
	Slide 11: Entropy Evasion
	Slide 12: First off, what is ENTROPY?
	Slide 13: Entropy in Malware
	Slide 14: More entropy = Random = BAD
	Slide 15: Shannon Entropy
	Slide 16: Shannon Entropy of Files
	Slide 17: Python Implementation - Shannon-Entropy.py
	Slide 18: Entropy of files in C:\Windows\System32*
	Slide 19: Calculate entropy of…
	Slide 20: Calculate entropy of…
	Slide 21: Calculate entropy of…
	Slide 22: What can we do?
	Slide 23: EDR Blind Spot #1: Reducing Entropy
	Slide 24: Enter: DictionShellcode
	Slide 25: DictionShellcode
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Calculate entropy of… DictionShellcode
	Slide 30: CAVEAT #1 Entropy reduction isn’t a single solution, but a small part of the equation
	Slide 31: CAVEAT #2 Each environment and EDR is different
	Slide 32: Windows Callback Functions
	Slide 33: Launching Shellcode: Windows API Calls
	Slide 34
	Slide 35: Launching Shellcode
	Slide 36: What’s the Problem?
	Slide 37: EDR Blind Spot: #2 Avoiding Hooked APIs
	Slide 38: Windows Callback Functions to the Rescue
	Slide 39: Repo: CSharp Alt Shellcode Callbacks
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Blue Team Detections
	Slide 44: How Could we Detect This?
	Slide 45: 1. Detections: YARA Rules
	Slide 46
	Slide 47
	Slide 48: 2. Detections: PE File Analysis
	Slide 49
	Slide 50
	Slide 51: 3. Detections: ETW
	Slide 53
	Slide 54
	Slide 55: SecTor Sound Bytes
	Slide 56: Thank YOU!

