
Practical Approach to
Automate the Discovery
and Eradication of Open-
Source Software
Vulnerabilities at Scale
Aladdin Almubayed
Senior Application Security Engineer @ Netflix

@0xshellrider

@

@

Outline
• The problem of open source security (5 minutes)

• Attacks on open source dependencies (10 minutes)

• Our approach (25 minutes)

• Challenges & Future work (5 minutes)

@

@0xshellrider

Aladdin Almubayed
Senior Application Security Engineer

@

The Benefits of Open Source Software

OPEN SOURCE
SOURCE

FR
EE

D
EV

EL
O

PM
EN

T

AC
C

ES
SCOPYRIGHT

SHARING

PR
O

D
U

C
TI

O
N CREATIVE LICENSE

RESEARCH

DATA

USERSNETWORK IN
TER

N
ET

PA
C

K
A

G
ES

TECHNOLOGY
RISK

DECLINE

CHART

ANALYSIS CI/CD

FUNCTION

COMPONENT

ENGINEER

D
EVO

PS

DEVELOPER

SOFTWARE

SOFTWARE

DEVELOPMENT

@

FRUSTRATION

@

@

This is just for illustration, not a real post

@

FREAKING OUT

@

Who is using that package?
What versions are impacted?

Which libraries are consuming the vulnerable package?What are the impacted services?

Which of the impacted services you need to get to first?

What is the actual severity of the vulnerability?

Is an exploit in the wild?
Is there an upstream patched version?

What is the likelihood of exploitation?

How is the package being used in your services?

How long It would take to patch it?

What is the minimum safe version to update to?

@

Open source vulnerabilities are growing exponentially

Source: https://snyk.io/wp-content/uploads/The-State-of-Open-Source-2017.pdf

@

That’s the real motivation for
our practical approach

@

Open source security is a strange thing

@

A

BDirect Dependency
Library

C

Library

Indirect Dependency

D Indirect Dependency D
Indirect Dependency

PyPi dependency graph

Source: Creative Commons Attribution 3.0 Unported (CC BY 3.0) generated by Olivier Girardot http://ogirardot.github.io/meta-deps/

Maven dependency graph

Source: Creative Commons Attribution 3.0 Unported (CC BY 3.0) generated by Olivier Girardot https://ogirardot.wordpress.com/2013/01/11/state-of-the-mavenjava-dependency-graph/

@

Dependencies can also be malicious (supply chain attacks)

@

Malicious code gets injected into open source dependencies

Source: https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident

@

So why are supply chain attacks really bad?

• Cheap to carry out

• It’s hard to detect

• Blast radius system compromise

@

• Typo squatting

• Package masking

• Ownership transfer

• Dangling references

• Infection

How are malicious packages introduced into an ecosystem?

1 0 1 1 0 0 1 1 0 1 0 1 1
0 1 1 0 1 0 1 0 0 1 0 1 0
1 0 1 1 0 0 1 1 0 1 0 1 1
1 0 1 1 0 1 1 1 0 1 0 1 1
0 1 0 0 1 0 1 0 0 1 0 1 0

@

• Relies on typo mistakes.

• Instead of typing:

• Developers may type

npm install express

npm install epxress

Typo squatting

@Source: https://www.theregister.co.uk/2017/08/02/typosquatting_npm/

Typo squatting

colourama

@

• Internal packages can have the same
name as external packages

• Whichever package has the highest
semantic version will take
precedence

• Results in a security consequences if
the external package has a malicious
code

Package Masking

Source: https://www.1001shops.com

@

Package Masking

Developer

Library

company.lib.x (1.2)

Library

company.lib.x (99.99)

Internal Package Repository

External Package Repository

Library

company.lib.x (1.2)

Library

company.lib.x (99.99)

@

• When a retired developer hands over library
ownership to untrusted party

• Results in unexpected modifications to the
original library

• Gives them access to the library and to all the
people who already trust that code

Ownership transfer

Source: https://amorphia-apparel.com

@

• Attackers look for popular packages
hardcoding URL resources.

• Sometimes those URLs are dangling
and can be taken over by the attacker

Dangling references

@

Dependency Infection

@

• The popularity and reputation of the package

• Number of direct and transitive dependencies

• How the package’s classes are used in the application

Picking a target for infection

@Source: https://npm.anvaka.com Source http://npm.broofa.com

https://npm.anvaka.com/
http://npm.broofa.com/?q=dat

@

• Compromises of maintainer accounts

• Sending an obfuscated commit to the maintainer

• Compromises of maintainers laptops

• Compromises of CI/CD for maintainer pipeline

• Internal package version override

How dependencies gets infected?

@

Commit Build Build Artifacts
1.5 Amazon

Machine
Image
(AMI)

Continuous
Delivery
Platform

Commit Build Build Artifacts
1.6

Positioned
internal
attacker

Compromised
developer

@

How can we protect ourselves from supply
chain attacks?
ü Scoped registries

ü Package signing

ü Dependency locking

ü Harden CI/CD infrastructure

ü Use proxy to force internal packages to
take precedence over external ones

ü For maintainers, use 2FA

@

Handling 3rd party dependencies with care

@

Shift left approach enables catching vulnerabilities
earlier in the software development lifecycle

Shift Left Model

@

Netflix Microservice Architecture

• Polyglot

• Flexible deployments

• Works well in the cloud
ELB

@

Design principles for our approach
Scalability
• Build a solution that scales at the speed we operate

Automation
• Automates most of the repetitive tasks

Efficiency
• Enabling developers and minimizing interruption whenever possible

Compatibility
• Being cautious about security related updates that may break developer code

@

What is our approach?

@

Our approach

RemediationDiscovery TriageDiscovery

@

Build open source vulnerability database

mailing lists

@

Track vulnerabilities in distributed databases

• Automated crawlers

• OSS vulnerability intelligence sources

• Commercial OSS feeds

Crawler

NVD
NIST

VictimsDB

npmjs

Tools:
• cve-search
• VIA4CVE
• vFeed

D2sec

ExploitDB

IAVM
vFeed

@

Vulnerability description

Metadata helps you make data-driven decisions

JSON
Vulnerability

Feed

Exploit in the wild

…

Malicious

Package Vulnerable Method

@

API Mapper

Map vulnerabilities with affected services

JSON
Vulnerability

Feed

@

Build Dependency Graph

@

• Parsing manifest files may not yield what’s running on production

• Problem with semantic ranges

Relying on manifest files is not sufficient

npm install lodash@^4.0.0

This command will install the latest 4.x.x version.

@

Astrid
Artifactory-sourced dependency insight at Netflix

@

How does the Astrid index work?

• Published artifacts indexing

• Deployable module indexing

• Indexing of AMI manifests

@

Published artifacts indexing

Jar Grab
metadata

Recursive Build

Dependency
Graph

@

Deployable module indexing

Debian Scan file
content

Published Artifacts Indexing process

Grab
metadat

a
Jars Dependency

Graph

@

Indexing of AMI (Amazon Machine Image) manifests

AMI Scan file list
of Debian

Deployable module indexing

Scan file
content

Grab
metadata

Jars
Depend

ency
Graph

Debian

@

package_metadata": {
"version": "[,3.4.14)",
"artifactId": "zookeeper",
"groupId": "org.apache.zookeeper"

},

Instance/Container ID 1

Instance/Container ID 2

…

Instance/Container ID 73

Instance/Container ID 74

Use Astrid to find a list of impacted services

Astrid

@

RemediationDiscovery TriageTriage

@

Vulnerability Triage

• Focus on the applications that need immediate
resolution

• Target vulnerabilities based on criticality and
exploitability

• Relying on CVSS score is not enough to determine
critical vulnerabilities

Critical

High

Medium

Low

@

Risk strategy Items
CVSS Score

Application Risk

Vulnerable Method is Executed

Active Exploit in the Wild

internet Facing

@

Risk Strategy Table – Example 1

Application
is Internet

Facing

Active Exploit
in the Wild

Vulnerable
Method is
Executed

Application
Risk

CVSS
Score

Priority Action

High 10.0 Serious PR Slack RR Campaign

@

Risk Strategy Table – Example 2

Application
is Internet

Facing

Active Exploit
in the Wild

Vulnerable
Method is
Executed

Application
Risk

CVSS
Score

Priority Action

Medium 9.0 Insignificant Campaign

@

Risk Strategy Table – Example 3

Application
is Internet

Facing

Active Exploit
in the Wild

Vulnerable
Method is
Executed

Application
Risk

CVSS
Score

Priority Action

High 10.0 Moderate PR Campaign

@

RemediationDiscovery Triage Remediation

@

Requirements for effective vulnerability remediation

• Find the minimum version update that remediates the vulnerability

• Find first order dependencies of the vulnerable packages

• Identify transitive dependency blockers

@

2.4.9 or above

2.4.0

2.4.9

2.x before 2.4.0

CVE-1

Foo
2.x before 2.4.9

CVE-2

Application

Understanding minimum version update problem

@

1. Find all version ranges from central repository.

2. Identify vulnerable versions.

3. Exclude vulnerable versions from the list.

4. Conclude the immediate version that fixes the issue.

(2.0.0, 2.0.1, 2.0.2 ... 2.9.7, 2.9.8, 2.9.9)

<2.4.0 , <2.4.9

(2.4.9, 2.5.0, 2.5.1 ... 2.9.8, 2.9.9)

2.4.9 or above

Source: https://github.com/snyk/unified-range

Find the minimum version update that remediates the vulnerability

https://github.com/snyk/unified-range

@

Vulnerable Dependency

Dependency

(B is a Blocker)

(E is a Blocker)

A 1.0

B 2.0C 3.0

D 2.0E 3.0

F 2.0

H 4.0

J 5.0

Application

First order dependency problem

@

F

E

K

D

C

B Package metadata
- Git Repository
- Ownership information

A

K

Same?

Foo

K

?

@

Identify transitive dependency blockers – Example

@

What do we have so far?

• The list of all impacted services based on particular vulnerability

• Triaged list of all the impacted services based on the criticality

• The list of actionable data about the remediation version and non-blockers

@

When do we issue a remediation request?

CVE

Issues that require immediate resolution

Issues that can wait

@

Issues that require immediate resolution

@

Vulnerability Remediation

Resolution Strategy and Substitution Rules

REMEDIATE

@

Gradle Resolution Rules Plugin - Example

configurations.all {

resolutionStrategy {

dependencySubstitution {

substitute module('org.gradle:api:2.0') with module('org.gradle:api:2.1')

}
}

}

@

Yarn Selective dependency resolutions - Example

{
"name": "project",
"version": "1.0.0",
"dependencies": {

"left-pad": "1.0.0",
"c": "file:../c-1",
"d2": "file:../d2-1"

},
"resolutions": {

"d2/left-pad": "1.1.1",
"c/**/left-pad": "1.1.2"

}
}

@

NPM Force Resolutions - Example

"resolutions": {
"hoek": "4.2.1"

}

rm -r node_modules
npx npm-force-resolutions
npm install

Then

@

Resolution rules may break builds in unpredictable ways

@

Compatibility assurance of non breaking changes

• Netflix has a service that builds all source codes

• Start with source code root. Build all the way down to the lead project

• It provides test coverage and build break percentage as a feedback signal

@

• Auto-Pull requests

Pull Request

Vulnerability Remediation

@

Auto Pull Requests

@

Security Change Campaigns

Application

Lib A

Lib B

Lib A

Lib B

Lib A Owner

@

Security Change Campaign – Blacklist

@

Issues that can wait

@

• Quarterly deprecation cycle

Security Change Campaigns

@

Security Campaigns - Deprecation

@

• Indirect dependencies of 3rd party packages

• Issuing and alerting library owners

• Technical debt

• Dealing with shaded or Uber-JAR packages

Challenges

@

• Vulnerable method use detection

• Better remediation

• Organizational metrics

What work is still needed?

@

Vulnerable method use detection

Application
Code

…

…

OSS
Package A

…

Vulnerable
Method

Program Execution

@

Java
• Forward tracing with aspect-oriented programming (AOP) (AspectJ)
• Hotspot serviceability agent

Nodejs
• Dynamic instrumentation

Python
• Monkey patching (AOP)
• Python decorator library

@

Better remediation (slack bot remediation)

Slackbot

New vulnerability in org.hibernate.validator has been detected in your application (details click here)

Pull request has been created

Tests passed

Merge pull request? Yes No Snooze

@

Questions we ask for organizational metrics

• How often do we see open source vulnerabilities in
our ecosystem?

• How long does it take to fix vulnerabilities?

• What parts of the organization can we remediate
quickly and what parts will take longer?

@

• Ignoring third-party libraries risk in your code is like seeing a cavity and ignoring it

• Empower developers to use third-party libraries but make concrete decisions
based on the risk of OSS libraries

• Building automation for open source vulnerability will reduce both risk and
operational cost

• Auto-remediating vulnerabilities in open source dependencies is hard but doable

Blackhat sound bytes

@

Application Security Team
• Scott Behrens
• David King

Chang Engineering Team
• Danny Thomas
• Danny Hyun

Build CI
• Roberto Perez Alcolea
• Steve Hill

Performance Engineering
• Brendan Gregg
• Jason Koch

Thank You

User Focused Security
• Jesse Kriss
• Rob McVey

@

Blackhat sound bytes

Q/A

• Ignoring third-party libraries risk in your code is like seeing a cavity and ignoring it

• Empower developers to use third-party libraries but make concrete decisions
based on the risk of OSS libraries

• Building automation for open source vulnerability will reduce both risk and
operational cost

• Auto-remediating vulnerabilities in open source dependencies is hard but doable

