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Abstract. The Siemens industrial control systems architecture consists of Simatic S7 PLCs which
communicate with a TIA engineering station and SCADA HMI on one side, and control industrial
systems on the other side. The newer versions of the architecture are claimed to be secure against
sophisticated attackers, since they use advanced cryptographic primitives and protocols. In this paper
we show that even the latest versions of the devices and protocols are still vulnerable. After reverse-
engineering the cryptographic protocol, we are able to create a rogue engineering station which can
masquerade as the TIA to the PLC and inject any messages favourable to the attacker. As a first
example we extend attacks that can remotely start or stop the PLC to the latest S7-1500 PLCs. Our
main attack can download control logic of the attacker’s choice to a remote PLC. Our strongest attack
– the stealth program injection attack – can separately modify the running code and the source code,
which are both downloaded to the PLC. This allows us to modify the control logic of the PLC while
retaining the source code the PLC presents to the engineering station. Thus, we can create a situation
where the PLC’s functionality is different from the control logic visible to the engineer.

1 Introduction

Programmable Logic Controllers (PLCs) are commonly used in Industrial Control systems
(ICSs) to implement process critical logic. They are the core of ICSs using equipment such as
thermostats, barometers, valves, engines and generators. ICS operates critical infrastructure
such as power plants, chemical plants, water treatment plants, railways, and other trans-
portation systems that are vital to our modern life.

Since 2010, ICSs, and in particular their configuration and monitoring interfaces, have
become popular targets for cyber attacks, the most well known of which is Stuxnet [10]. In
response, vendors hardened these interfaces by adding cryptographic protection.

PLCs are offered by several vendors such as Siemens, Allan-Bradley, Mitsubishi, and
Modicon. Each vendor has its own proprietary firmware, programming, communication pro-
tocols and maintenance software. However, the basic software system architecture is similar:
the PLC itself contains variables and logic to control its inputs and outputs. The PLC code
is written on an engineering station in the vendor’s control logic language. The control logic
is then is compiled into an executable format, and downloaded to the PLC. The operating
PLCs are monitored and managed via dedicated machines running Human Machine Interface
(HMI) software. Modern networked PLCs, HMIs, and engineering stations all communicate
over TCP/IP, but the higher-level protocols in use are typically proprietary.

Siemens S7 Programmable Logic Controllers (PLCs) in the Simatic family [30] are esti-
mated to have over 30% of the worldwide PLC market [9]. In addition to the PLCs themselves
the Simatic line of products includes the “Totally Integrated Automation Portal” (TIA),



which functions as the engineering station, and can also function as an HMI. The TIA (or
HMI) and the PLCs communicate over the S7 network protocol. The most recent versions
of the S7 protocol include cryptographic mechanisms to protect the communication — and
most importantly, a cryptographic message integrity code, whose goal is to protect the com-
munication from adversarial manipulation. Our focus in this research is the cryptography on
which the integrity protection relies, and the attacks that it admits.

1.1 Attacks Against ICSs

Digital attacks that cause physical destruction of equipment do occur [13]. Perhaps most well
known is the attack on an Iranian nuclear facility in 2010 (Stuxnet) to sabotage centrifuges at
a uranium enrichment plant. The Stuxnet malware [10,11,21] used a Windows PC to attack
a Simatic S7 PLCs. It targeted Siemens’s Simatic S7-315 and S7-417 PLCs and worked by
changing centrifuge operating parameters in a pattern that damaged the equipment—while
sending normal status messages to the HMI.

More recently, cyber-attacks on ICS controlling electrical distribution have caused wide-
spread blackouts in Ukraine [22,24]. In 2014, the German Federal Office for Information
Security announced a cyber attack at an unnamed German steel mill, where hackers ma-
nipulated and disrupted control systems to such a degree that a blast furnace could not be
properly shut down, resulting in “massive”-though unspecified-damage [8].

At BlackHat USA 2015 Klick et al. [20] demonstrated injection of malware into a the
control logic of a Simatic S7-300 PLC, without service disruption. In a follow on work, Spen-
neberg et al. [33] demonstrated the feasibility of a PLC worm. The worm spreads internally
from one PLC to other target PLCs. During the infection phase the worm scans the network
for new targets (PLCs).

More attacks against Simatic S7 include web session hijacking [15], a remote start/stop
attack [5], a replay attack [4], and man in the middle attacks [32]—all against the S7-1200
PLCs. A preliminary attempt to understand some of the cryptographic protections in the
S7 protocol can be found in [23]. As we shall see, the latest versions of the Siemens Simatic
products and the S7-1500 PLCs introduced stronger cryptographic protections into the S7
protocol, that are designed to prevent such attacks. Despite these defenses, we are able to
reprogram these PLCs over the network from a rogue engineering station.

A different type of attack takes advantage of vulnerabilities in PLC implementations.
These attacks, while significantly more powerful, have scarcely been explored. One such
attack [29], targeted the Allen Bradley ControlLogix L61 PLC. It took the approach of
crafting a counterfeit firmware update, and uploading it onto the PLC. It bypassed the basic
update validation methods by simply updating the package’s CRC checksum.

There is a large body of work focused on anomaly detection in industrial control systems
(ICS). Surveys of techniques related to learning and detection of anomalies can be found
in [1,2,6]. In particular model-based anomaly detection [7,35,12] has been shown to be well-
suited to anomaly detection in ICS. Kleinman and Wool [17,19] demonstrated that a similar
methodology is successful also in systems running the Siemens S7 protocol. More recently
Kleinmann et al. [18] showed that if the communication protocol is unauthenticated (as is the
case for Modbus) then stealthy semantic-level attacks can be mounted to achieve adversarial
control of the plant while presenting a benign view to the operators observing the HMI.
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Table 1. S7 protocol versions usage

S7-1200 S7-1500 V1.1 S7-1500 V1.8 S7-1500 V2.1
TIA V12 P2− P2 P2 P2
TIA V14 P2− P2 P3 P3
TIA V15 P2− P2 P3 P3

1.2 S7 protocol versions

As Siemens regularly updates their software and firmware, it is important to refer to the
protocol versions the various TIA and PLC firmware versions. There are currently two major
versions of the S7 protocol used by the PLC S7-1500, each has many subversions that were
adapted over time. Protocol version 2 (named after the value passed in the headers) is
used by the older versions of TIA and PLC firmware, up to TIA V12 and PLC S7-1500
firmware 1.5.1 In this paper we refer to the subversion used by our equipment as P2. Notice
that are differences between the S7-1500 P2 subversion which includes integrity protection,
and the S7-1200 P2 subversion which does not, although for both the version number in
the header is 2. Hence, we denote the S7-1200 P2 protocol by P2−. The newer versions of
TIA, e.g., V14 and V15, and newer PLC firmware, e.g., versions 1.8, 2.0 and 2.1, support
protocol version 3, which we refer to as P3.2 Actual use of protocol version 3 requires that
both TIA and PLC support this new protocol. Table 1 shows the selected protocol for TIA
and firmware versions that we tested.

1.3 Our contributions

In this paper we demonstrate that even cryptographically secured ICSs are not necessarily
secure. We chose the Siemens S7 architecture and in particular the S7-1200 and S7-1500 as
our test platform since they are relatively common and because the vendor states that they
are well protected against various attacks.

Our main contribution is the ability to create a rogue engineering station that can imper-
sonate the TIA to the latest S7-1500 PLCs running various firmware versions, using the P3
protocol. Using such impersonation we can apply many malicious operations. In particular,
we are able to:

1. Extend the remote PLC start/stop attack to S7-1500 PLCs.
2. Remotely download a replayed control logic program to the PLC.
3. We found that the S7 program download message contains two copies of the control logic:

the source (uncompiled) code and the binary (compiled) code. We are able to modify each
of them independently, causing source-binary inconsistency.

4. The S7 environment allows the engineering station to upload the source code back from
the PLC in order to display it to the engineer. Therefore, in our most advanced attack –
the stealth program injection attack – we can maintain the source program as the engineer
expects to see, while programming the PLC to run a malicious (different) binary that the
engineer will never see.

1 Version 1 in the protocol header is used for the initial handshake.
2 According to [31] the P3 protocol is also available on the S7-1200 PLCs, which use firmware versions that are more
recent that the ones we tested.
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Table 2. Summary of our attacks on Simatic S7 PLCs

Attack Attack type PLC Protocol
Start/Stop MitM and impersonation S7-1200 P2−

Start/Stop MitM and impersonation S7-1500 P2
Start/Stop Impersonation S7-1500 P3
Download MitM and impersonation S7-1200 P2−

Download MitM and impersonation S7-1500 P2
Download Impersonation S7-1500 P3

These attacks are made possible by a detailed reverse-engineering analysis by which we
gained insights into the S7 P3 protocol and its content, as well as the key generation and
cryptographic primitives used by it. This analysis covered:

1. Understanding the structure of S7 P3 protocol and its fields.
2. Understanding the cryptographic functions used in the protocol.
3. Understanding the cryptographic handshake and the generation of the common keys.

As part of our research we also analyzed versions of the S7 protocol running on previous
generations of PLCs, of the S7-1200 family. Besides the rogue engineering station attacks
we described above, we found additional attacks against the older PLCs running the P2
protocol:

1. A man in the middle attack on PLC S7-1200.
2. A man in the middle attack on TIA V12 with S7-1500 PLC.

All our attacks are network based, and can be successfully launched by any attacker with
network access to the PLC. A summary of our attacks appears in Table 2. In parallel to this
paper submission disclosed our findings to Siemens.

We note that our main findings in themselves are not “vulenrabilities” that can be quickly
patched: rather, once the obscurity of the protocol is unveiled, we find that the attacks are
consequences of the cryptographic design choices used in the S7 protocol.

1.4 Structure of this paper

The rest of this paper is organized as follows: Section 2 describes the Siemens Simatic S7
environment and protocols. In Section 3 we describe our discoveries about the S7 use of
cryptography, focusing on the integrity check, key derivation and key exchange. In Section 5
we describe our Start/Stop attack, and in Section 6 we describe the program download attack.
Section 7 includes a discussion of possible countermeasures, and conclusions. Additional
details are provided in the Appendices.

2 Preliminaries

2.1 S7 communication over TCP/IP

The S7 protocol is proprietary and little is published about it. Before delving into the details
of our attacks on the protocol, we summarizes some of its key features. The information in
this section is based on the reverse engineering work of [25][14][27][37] augmented by our
own analysis of live S7 traffic.
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Fig. 1. The S7 packet structure as shown within WireShark. Note the unique protocol stack including COTP and
TPKT, and Integrity part.

2.2 The S7 PLC platform

The Siemens Simatic S7 product line was introduced in 1995, and includes both older PLC
models (S7-200, S7-300 and S7-400), and new generation PLCs, the S7-1200, and the S7-1500
(introduced in 2009 and 2012 respectively). In addition to the PLCs themselves the Simatic
line of products includes the “Totally Integrated Automation Portal” (TIA), which functions
as the engineering station, and can also function as an HMI, i.e., it can also be used to
control the PLC, by sending commands to start or stop running, and watch or update the
PLC’s inner variables.

The TCP/IP implementation of the S7 protocol relies on ITOT [28] and communicates
across the well known TCP port 102. S7 works on top of the ISO Connection Oriented
Transport Protocol (COTP) [16,26] and TPKT [28]. Both TPKT and COTP add their own
headers (inside the TCP segment). Thus the S7 message is encapsulated within the COTP
packet. See Figure 1 for an example of a Wireshark view of an S7 packet.

The S7 protocol defines formats for exchanging S7 messages between devices. Its main
communication mode follows a client-server pattern: the HMI or TIA (client) device initiates
transactions (called queries) and the PLC (server) responds by supplying the requested data
to the client, or by taking the action requested in the query.

Two different protocol flavours are implemented by Simatic S7 products: The older
Simatic S7 PLCs implement an S7 flavor that is identified by the protocol number 0x32
(S7comm), while the new generation PLCs implement an S7 flavor that is identified by the
protocol number 0x72 (S7CommPlus3). The newer S7CommPlus protocol, which is the focus
of this paper, supports security features.

Throughout this paper, we use the term message for the messages that the S7 transmits.
Long messages are typically divided into fragments (while short messages form a single
fragment). Each fragment is then preceded by an S7 fragment header. An empty fragment
(consisting of only a header) follows the last fragment of a message. The term packet refers
to a fragment encapsulated by the required TPKT, COTP, TCP and IP headers.
3 The name is taken from the wireshark dissector [37].
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2.3 The S7comm-plus protocol overview

The S7 protocol supports various operations that are performed by the TIA. In this paper
we discuss the first three operation and attack the first two:

– Start/Stop the control program currently loaded in the PLC memory.
– Download a control program to the PLC.
– Upload the current control program from the PLC to the TIA.
– Read the value of a control variable.
– Modify the value of a control variable.

All the above operations are translated by the TIA software to S7 messages, that are trans-
mitted to the PLC. The PLC acts upon the messages it receives, performs the operations,
and responds.

All messages are transmitted in a context of a session. Each session has a session ID
(chosen by the PLC). A session begins with a four-message handshake used to select the
cryptographic attributes of the session including the protocol version and keys. All messages
after the handshake are integrity protected.

The S7comm-plus protocol also provides different flavours of integrity protection and key
exchange:

– S7-1200 communication does not support integrity protection.
– S7-1500 PLCs communicating with P2 protocol use per-message integrity protection with

a simple key exchange handshake.
– S7-1500 PLCs communicating with P3 protocol use per-fragment integrity protection

with a cryptographic challenge-response key exchange for each session.

3 The S7 cryptographic protection

In order to protect the ICS from an adversary who gains network access to the PLC, Siemens
integrated cryptographic protection into the newer version of its S7 proprietary protocol. The
protection mechanisms include encryption of specific payloads (e.g., control program source
and binary), authentication and integrity protection.

The message cryptographic protection mechanism consist of the following modules:

1. A key exchange protocol, that the two parties (PLC and TIA) use to establish a secret
shared key, which we call the session key.

2. A message integrity protection algorithm, that calculates a MAC (Message Authentica-
tion Code) value, based on the session key and the message bytes.

3. A payload encryption algorithm.

Siemens implemented several variants of the S7 cryptographic protection. In the S7-1200
models, messages are not integrity protected. We observed that some of the fields in the S7
protocol used by the S7-1200 are encrypted, but we didn’t investigate it.

On the other hand, the protocol used by the S7-1500 PLCs includes full integrity protec-
tion of all the messages exchanged between the TIA and the PLC (after the handshake).

The next two sub-sections describe the message integrity mechanisms and the key ex-
change protocols used by various TIA and S7 PLC firmware versions.
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Fig. 2. S7 integrity protection in protocol P2

Fig. 3. S7 integrity protection in protocol P3

3.1 Message authentication and integrity protection

As mentioned above, the messages that the TIA and S7-1500 PLCs exchange are integrity
protected by a message authentication code. It is calculated under a (symmetric) secret key,
which we denote by sessionKey, shared between the PLC and the TIA.

The handshake is performed in the first four messages of a session, which perform the
cryptographic session key establishment. We discuss the handshake later in Section 3.2.
All the further messages in the session (starting from the fifth message) are then integrity
protected. Depending on the TIA and the PLC model and version, the protocol used is either
P2 or P3.

We discovered that the per-message integrity protection uses HMAC-SHA256 as the
MAC, using the shared sessionKey as the MAC key, using the full 256-bit output of HMAC-
SHA256 as the MAC.

In the earlier (P2) version of the protocol, the MAC is placed in the integrity object at
the end of the message, i.e., in the last fragment, just before the null fragment header—see
Figure 2.

Notice that large messages (such as the program download messages we discuss in Sec-
tion 6) are fragmented to many fragments, sent over many TCP/IP packets. Since the MAC
is sent at the end of the message, it is only at the last packet of the message that the re-
ceiver can verify the integrity of the message (see Figure 2). All earlier packets cannot be
authenticated (thus should not be parsed nor used) before the last packet is received.

In the newer version of the protocol (P3) integrity protection is applied at the fragment
level, replacing the single MAC value at the end of the message. A cryptographic digest is
placed at each fragment between the fragment header and the fragment data (see Figure 3).
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Technically, the TIA (and PLC) software calls the HMAC-SHA256 API in an un-designed
way. HMAC APIs (following hash functions APIs) have three API functions: init, update,
and finalize. The intended use is that init initializes a context structure, then many update
calls are made with all the fragments, incrementally updating the context with the message,
and only at the end a finalize call is made (once) to extract the digest from the context. The
design of such functions never intended to allow several finalize calls on the same message
or to mix finalize calls between update calls. Therefore, most implementations let finalize
modify the context, even though no new fragment is added during finalize.

We were thus surprised to find out that the integrity is computed as follows

– init
– update (with the first fragment)
– finalize (extract digest for the first fragment)
– update (with the second fragment)
– finalize (extract digest for the second fragment)
– update...
– finalize...
– update (with the last fragment)
– finalize (extract digest for the last fragment).

As the implementations of HMAC-SHA256 used by the TIA is one in which finalize mod-
ifies the context though it does not add any fragment, all digests but the first one are not
valid HMAC-SHA256 digests. Moreover, the security proofs of HMAC do not hold for this
incremental variant of HMAC. In fact, this incremental variant is less secure than HMAC-
SHA256 [3].

CVE-2019-10929 was allocated to this vulnerability.

3.2 S7 Key Establishment

The P2 protocol uses a simplistic key synchronization scheme, which is equivalent to usage
of a list fixed keys in a sequence. During each new handshake the next key is calculated by
both parties. We observed that these keys are same and in the same order for all S7-1500
PLCs communicating the P2 protocol (at least with the PLC models that we have in our
lab). Moreover, the same sequence of keys is used each time a TIA is restarted, regardless
of whether it is the same TIA instance or another instance. The first ten keys are listed in
Table 3. We also wrote a program that generates the sequence of the keys, by mimicking the
TIA key generation algorithm. It is too lengthy to describe here.4

In the P3 protocol, Siemens replaced the simplistic P2 key generation process by a more
sophisticated challenge-response protocol, that involves elliptic-curve public-key cryptogra-
phy for the key exchange. The four-message handshake of the P3 protocol is outlined in
Figure 4.

The first request message [M1] is an Hello message that the TIA sends to initialize a new
session. The PLC responds with message [M2], which contains the PLC firmware version,
and a 20-byte challenge ServerSessionChallenge. The PLC firmware version determines the
4 According to [31] this vulnerability was disclosed to Siemens in the past as part of [32], analyzed as a failure in a
random number generator within the TIA, and corrected in later versions of the TIA software (CVE-2015-1601).
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Index Key
1 0xca1bd6399c718a9886a5b3ca************************
2 0x9bad94613b6b36ddba562a88************************
3 0x857a27307a932c0e0376598d************************
4 0x480d391238b1d59c26e8a65e************************
5 0x99634177751406a5ad1793a0************************
6 0x4a2a336fe6eac56f5fb16b14************************
7 0xc5129d05329cfee1b113e45f************************
8 0x0e7ad010269c1696aae1cdce************************
9 0x7135a24727104103e60f57ba************************
10 0x8197b43e537e66eb4a3a9818************************

Table 3. P2 key list (first 10 keys, half of each key is kept hidden)

TIA PLC

[M1] Hello, seq = 1

[M2] Hello, PLC Model, firmware version, serverSessionChallenge, seq = 1

[M3] Metadata, SecurityKeyEncryptedKey, seq=2

[M4] OK, seq = 2

Authenticated Request, Integrity=[32 bytes], seq=3

Authenticated Response, Integrity=[32 bytes], seq=3

...

Fig. 4. The session establishment handshake.

elliptic-curve public-key pair to be used in the key exchange. Appendix A.1.3 elaborates on
this issue.

Upon receiving the [M2] message, the TIA activates a derivation algorithm to randomly
select a “Key Derivation Key” (KDK) and to generate the sessionKey from the PLC’s
ServerSessionChallenge and the KDK. The details of the derivation algorithm appear in
Appendix A.

The third handshake message [M3] (recall Figure 4) transfers the KDK to the PLC, using
the public-key scheme. [M3] contains two main parts:

1. A data structure which the S7CommPlus dissector [37] calls SecurityKeyEncryptedKey,
which contains, among other things the KDK encrypted with the PLC’s public key. See
subsection A.1.2 for the exact description of the SecurityKeyEncryptedKey data structure
and the algorithm that builds it.

2. Two 8-byte key fingerprints, of the PLC public key ID and the KDK, respectively.

The details of [M3] construction and verification appear in the Appendix. When the PLC
verifies [M3] successfully it returns OK in the fourth message [M4]. All the following messages
in the session are protected with the derived SessionKey.
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3.3 S7 key exchange vulnerabilities and Implications

The S7 key exchange protocol contains several significant flaws, which we later exploit in the
attacks we describe in Sections 5 and 6.

– The P3 key exchange uses one-way group authentication. A PLC of a given model and
firmware version has the necessary private key and is able to successfully decrypt the
KDK, and derive the SessionKey. I.e., when the TIA verifies the correct integrity pro-
tection of message #5, it authenticates the PLC. However, the PLC does not authenticate
the TIA: it only confirms the session freshness, by successfully decrypting the encrypted
PLC challenge.

– The design of the P3 key exchange implies that all PLCs running the same firmware
version use the same public-key, and thus can impersonate each other. It seems that if
some PLC’s firmware is analyzed and its private key is extracted, then the security of the
whole line of PLCs sharing the same firmware version will be compromised.

– There is no tethering (or pairing) of the TIA to the PLC: the PLC does not ensure that
the currently-communicating TIA is the same TIA that successfully communicated with
it earlier in another session.

– The P2 key exchange uses a static sequence of symmetric keys. The same keys are used
by all the PLCs and all TIA installations. We extracted this key sequence, exposing the
communication between the PLC and the TIA to Man-in-the-Middle attacks.

4 The attack architecture

To launch our attacks we implemented a toolbox, consisting of two types of a rogue TIA
engineering station, and an S7 proxy. A rogue engineering station is a station which is
controlled by the attacker, who can optionally modify its binaries to change it behaviour.
Our toolbox includes:

1. A rogue station. It either builds the S7 packets by itself, or reads them from a pre-recorded
file, and modifies them before sending to the PLC. We use a rogue station to implement
our start/stop attacks.

2. An advanced rogue station. It consists of a real TIA connected through a man in the
middle S7 proxy that modifies the packets that the TIA and the PLC transmit to each
other. The proxy takes over the TIA, and receives the session key from it. Therefore the
TIA is part of the rogue station. The proxy uses the key to correct the integrity protection.
We use the advanced rogue station to implement our program download attack on S7
protocol version P3.

3. An S7 proxy. This proxy serves as a man in the middle between a victim TIA and a
victim PLC. We use it to implement a man in the middle attack on program download
of S7 versions P2 and P2−.

4.1 Impersonating the TIA

Based on our understanding of the S7 key exchange we implemented a Python code imper-
sonating the TIA. The crucial action of the impersonation code is to pick a random KDK,
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and to calculate the sessionKey by combining the KDK with the PLC’s challenge. Once
our code derives the sessionKey and successfully completes the 4-message handshake, it is
able to generate a correct integrity code on any further S7 message that is required.

We implement some of the impersonation functionality by coding various functions in
Python, and calling some Python libraries (such as HMAC-SHA256 and AES). In addition,
we used the native DLL functions to compute the remaining fields of the key exchange
message [M3]. These few functions are called through Python’s ctypes library wraping the
OMSp_core_managed.dll DLL.

Note that we could have chosen fixed values for the KDK and for the seed used to
randomize the public-key encryption (for each firmware version’s public-key). Based on these
choices it is possible to calculate almost all the complex [M3] key exchange fields in advance.
In this case, only two DLL functions actually need to be called after receiving the PLC’s
challenge: the fingerprinting function f() used within the sessionKey calculation, and the
internal Checksum function. See Appendix A for details.

5 A start/stop attack against Simatic S7 PLCs

Using our findings on the S7 protocol cryptographic protection and its vulnerabilities we
succeeded to maliciously and remotely start and stop Simatic PLCs. The simplest attack
is Beresford’s attack [5] targeting the S7-1200 PLC, which we replicated. The more secure
S7-1500 P2 protocol requires additional hacks to overcome the cryptographic authentication.
Finally the latest improved cryptographic authentication and key exchange of the P3 protocol
requires even further hacks. We describe these attacks in sequence.

5.1 S7-1200 with the P2− protocol

Our first step was to re-implement Beresford’s attack [5] against the S7-1200 PLC using the
P2− protocol, which has no device or message authentication. We describe our attack flavor
here for completeness, since the more advanced attacks on the S7-1500 rely on it.

In P2− the first packet that the PLC sends to the TIA contains a two-byte random
number, which the TIA uses as a session ID. The PLC verifies that this ID appears in all
further messages sent by the TIA to the PLC.

In our attack, we recorded an S7 session containing a start (or stop) command. We
wrote a program that reads the recorded messages and communicates with a victim PLC.
The program sends the recorded packets to the PLC, whose new content is based on values
transmitted by the PLC. The only required change in the replayed payload is to inject the
correct session ID. The TCP and IP headers are freshly created. We use standard tools (e.g.,
TCPLiveReplay [34]) for this purpose.

5.2 S7-1500 with the P2 protocol

The S7-1500 P2 protocol uses cryptographic keys for authenticating messages. The content
of each message is authenticated using HMAC-SHA256 under a session key which is shared
between the PLC and the TIA. As mentioned earlier, we found that the S7-1500 P2 protocol
uses a fixed sequence of keys (recall Table 3).
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Our attack follows the lines of the attack on S7-1200, while also replacing the authenti-
cation tag by a digest that fits the modified message. Notice that in this attack the attacker
can force the S7 session to always be the first, hence, it always uses the first key in the list.
Therefore, the digest is HMAC-SHA256(first key in the list, modified message).

5.3 S7-1500 with the P3 protocol

In order to launch a successful start/stop attack on the S7-1500 P3 protocol one must first
compromise the key exchange protocol. We exploited the fact the key exchange uses one
way authentication and impersonated a TIA station. We have written a rogue TIA program,
that implements the P3 key exchange we describes in Section 3.2. Once the key exchange is
completed, the program transmits S7 start and stop messages that we recorded from a legal
TIA session, with the appropriate modifications to the session ID and the integrity fields.
The rogue TIA enabled us to start and stop the S7-1500 which communicates using the P3
protocol at our will.

6 The program download attack and the Stealth Program
Injection Attack against Simatic S7 PLCs

Before describing our attacks we first discuss some aspects of control-logic program download
from a TIA to a PLC. A program download is typically performed by a TIA that already
knows the PLC model and its IP address. To do so the the control engineer performs a
procedure that consists of the following steps:

– Create a new “project” or use an existing “project” in the TIA.
– Configure the PLC model and the PLC’s IP address within the project.
– Write a control program using the TIA’s dedicated GUI. The program may consist of

several modules called OBs (Object Blocks). The program may also be written in one of
several languages supported by Siemens PLCs (e.g., LAD and STL).

– The engineer may choose between several compilation and download options. He may
decide to compile the program, or alternatively to compile and download the program to
the PLC. In the latter case he can choose between full download or download of changes
only. It is important to note that compilation is performed locally in the TIA, without any
communication with the PLC. The compilation produces several outputs, whose total size
is typically between hundreds of kilobytes and many megabytes. The compilation outputs
are kept in the TIA’s memory ready for download.

– Once the engineer runs a download command, the TIA sends the compiled outputs to
the PLC in a single download message (potentially fragmented into smaller fragments).

– After a successful download, the program typically runs automatically. The program
periodically reads the PLC’s inputs, and writes into its outputs based on the control
algorithm. In parallel, a SCADA HMI (typically running on a separate computer) may
communicate with the PLC during the run, and fetch or modify information that is used
for process control, monitoring and alerts.

– The engineer may also upload a program from the PLC into his project, and later edit
it, compile it and download it to the same PLC, or to any other PLC.
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Fig. 5. The S7 program download message in the P2− protocol variant.

The S7 protocol variants include specific mechanisms that are dedicated to the protection
of the program download message. Next we describe the structure of the message, and
its protection in the different protocol variants. We then discuss the vulnerabilities of this
protection, and explain how we exploit them to inject malicious control program that cannot
be viewed by the engineer or the operator to the S7 Simatic PLC. Last, we describe three
variants of our attack for the three S7 protocol variants.

6.1 The S7-1500 program download message

We used network sniffing to identify the messages that the TIA sends to the Simatic S7 PLCs
when the user performs the “program download” operation. Our findings on the structure of
this message in the three protocol variants is summarized in this sub-section. As mentioned
before, the S7 is a request response protocol. Each request message consists of a request
header, and a request set. Respectively, a response message is composed of response header
and response set. Both headers contains a function code, which identifies the requested
operation. Specifically CreateObject request builds a new object in the PLC memory5. A
single S7 message might contain multiple objects. Each object contains multiple attributes.
Objects and attributes have unique class identifiers.

We found out that the program download message creates an object of class ProgramCy-
cleOB. Figure 5 shows a Wireshark dump of the ProgramCycleOB object from the program
download message in the P2− protocol variant. Using network sniffing, we identified the
ProgramCycleOB attributes which contain the values of the run and source objects.
– The object FunctionalObject.Code contains the binary executable that the PLC runs (see

Figure 5). This is the compiled program in the PLC’s internal language.
5 The names of the functions, the classes and the attributes are taken from the S7CommPlus dissector [37].
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Fig. 6. The S7 program download message in the P3 protocol variant.

– Another attribute related to the run object is Block.AdditionalMac. This attribute is used
only by the P2 and the P3 versions of the protocol .

– We identified two attributes carrying the source object: Block.OptimizedInfo and
Block.BodyDescription. These attributes consist of the original program in a computerized
form and are equivalent to the program written by the engineer. They are stored in the
PLC and can later be uploaded, upon request, to a TIA project.

Figure 6 shows the attributes of the run and source objects in a download message from
protocol P3.

6.2 The attack on P2−

When communicating with S7-1200, the TIA sends the run object in plaintext, without any
attempt to encrypt it. For example in Figure 5 the run object (FunctionalObject.Code) is
0x021c6801021c6803020c.

We analyzed the run object structure, and identified the instruction and operands syntax.
As a result, we can easily build control programs with some desired functionality either from
scratch or by modifying existing run objects.

We implemented a Man-in-the-Middle (MitM) attack on the P2− program download
message. We modified the run object on the fly, by changing PLC instructions to other
desired instructions (e.g., changing “set” to “reset”), or by modifying the instruction operands,
or both. We can easily do this, since in the P2− protocol the download message is not
integrity-protected, and the run object is not encrypted.

Our changes forced different output values in the PLC outputs (e.g., toggling 1 to 0, or
vice-versa), and produced visible changes in output on the PLC leds.
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Alternatively, it is easy to write an S7 program injector that takes a source object and a
run object and impersonates a TIA to download them to the victim PLC.

Note that since we did not change the source object, when the engineer or the operator
uploads the control program from the PLC, the PLC will response with the original source
object, which corresponds to the original binary object, and not the the program that actually
runs in the PLC.

6.3 Manipulating P2 and P3 encrypted program objects

The main difference between the P2− download message and the P2 download message is that
the source and run objects are encrypted. We discovered that in P2, the run and the source
attributes contain encrypted blobs that begin with the magic 0xdeafbeef (see Figure 6).

Encryption of these objects is done as part of the compilation, which can be done offline
(i.e., without communicating the PLC). It is therefore clear that the encryption keys are not
session dependent. We observed that it is possible to record an S7 download message from
one session, fetch the source and run objects, and plug them into a download message from
another session. This is true for both the P2 and P3 S7 protocol variants. Therefore, we did
not attempt to understand the encryption process, nor did we extract the encryption keys:
we can use an offline TIA to create and compile the control program of our choice, and then
download the program to the victim PLC later.

Another vulnerability that we found in the cryptographic protection of the program
objects is that the run object and the source object are not protected by a shared message
authentication code. This enables us to mix and match between inconsistent source and
run objects, so one program runs in the PLC, while another is displayed to the engineer
when he uploads the source from the PLC. Specifically, integrity protection is attached to
the run object through the addition of the Block.AdditionalMac attribute. Unfortunately
the MAC is applied only to attribute FunctionalObject.Code, enabling us to substitute both
attributes with another program’s recorded attributes, without modifying the source objects:
Block.OptimizedInfo and Block.BodyDescription. Note that even-though these attributes are
encrypted, it does not prevent us from manipulating them.

6.4 The attack on protocol P2

Once we construct the desired malicious encrypted source and run objects on a legitimate
offline TIA, we are ready to download them to the PLC. Since the P2 handshake protocol
is susceptible both to man in the middle and impersonation attacks (see Sub-section 3.3, we
can either plug the malicious object in a download message as part of a man in the middle
attack that replaces the program, or use our rogue S7 program injector that impersonates
the TIA and downloads the pre-built program to the victim PLC. Notice that in both cases
the P2 protocol requires us to correct the cryptographic message authentication, which we
can easily replay together with the source and binary objects, as mentioned in the previous
section.

6.5 The attack on protocol P3

As described in Sub-section 3.2, protocol P3 contains an improved key-exchange during the
protocol handshake. However, our rogue engineering station is able to impersonate the TIA
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to the PLC in the P3 protocol. Therefore, we can adapt our S7 stealth program injector of
the P2 protocol with a modified steps required for the P3 protocol.

We implemented this S7 stealth program injector, and used it to download a pre-recorded
encrypted programs to a victim S7-1500 PLC, and even downloaded one binary program to
the PLC along with a different source program. When an engineer uploads the source back
from the PLC, he gets only the source program, and the TIA notifies only on changes in the
source, and ignores changes made by our attacks in the binary program.

7 Countermeasures and Conclusions

In this paper we showed that even the latest versions of the S7 devices and protocols are
vulnerable to attacks. After reverse-engineering the cryptographic protocol, we are able to
create a rogue engineering station which can masquerade as the TIA to the PLC and inject
any messages favourable to the attacker. We presented attacks that can remotely start or
stop the PLC, and can download control logic of the attacker’s choice to a remote PLC.
Our strongest attack – the Stealth Program Injection Attack – can separately modify the
running code and the source code, which are both downloaded to the PLC. This allows us
to modify the control logic of the PLC while retaining the source code the PLC presents
to the engineering station. Thus, we can create a situation where the PLC’s functionality is
different from the control logic visible to the engineer.

The main gap in the S7 cryptographic handshake is that the TIA is not authenticated to
the PLC: only the PLC is authenticated to the TIA. Fundamentally, this allows us to create
a rogue engineering station (once the veil of obscurity was lifted from the protocol). This gap
can be addressed cryptographically — e.g., by having each TIA instance use its own private
key, whose public-key is shared and retained by the PLC. An alternative is to introduce a
“pairing” mode, in which the PLC and TIA establish a long-lived shared secret during the
first session. Either way, the PLC must refuse to communicate with any device claiming to
be a TIA which is not the previously-authenticated TIA.

According to [31], the recommended counter-measure against rogue programming of the
PLC is by activating the password-protected access control mechanism on each PLC.

A second gap is that all PLCs of the same model and firmware version share the same
private-public key pair. This gap can be used in two ways. We used it in a generic way to
conduct impersonation attacks on all the S7-1500 PLCs, which use the fact that all PLCs
use the same key. We did not, however, extract the private key from the PLCs. If the private
key is extracted from one PLC of a particular version, then stronger attacks, specifically full
man in the middle attacks with on-they-fly session-hijacking, and also PLC impersonation
attacks against a TIA station (without any valid PLC), become possible.
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A Details of the S7 P3-variant key exchange protocol

A.1 Cryptographic environment and primitives

All the cryptographic code used in the key exchange is located in the OMSp_core_managed
DLL: a 64bit binary which contains both managed (.NET: C#) code and native code. We
have been able to characterize the central functions used withing this DLL. We refer to
functions we have not identified yet using generic names such as f1, or sometimes via a name
that indicates their role (like KDF for Key Derivation Function) when that is clear. Note
that by linking to the DLL using python ctypes and preparing the proper arguments we are
able to call arbitrary functions inside the DLL as needed.

The DLL is accompanied by a directory of compressed key files (located at Siemens/Au-
tomation/Portal V14/Data/Hwcn/Custom/Keys) organized by firmware version. In addition
there are also generic family (“S7-1500 Family”) key files.

These key files contain general information (such as key type, firmware version, etc.), a
standard certificate which we haven’t encountered during our research, and a 40-byte public
key, representing a 160-bit elliptic-curve point we denote by Q. The curve’s base point G
seems to be hardcoded inside the DLL.

We identified that the key exchange scheme uses an Elliptic-curve El-Gamal-like ex-
change. The curve itself is not one of the standard curves implemented by OpenSSL. Fur-
thermore, while the OpenSSL library is embedded inside the OMSp_core_managed DLL,
the TIA code does not use it for the public-key operations; instead we found a loop-unrolled
implementation designed specifically for a 160-bit curve.

The integrity protection session key, which we denote by sessionKey is derived from the
16 middle bytes of the PLC’s ServerSessionChallenge combined with a random 24-byte key
derivation key (KDK) that the TIA selects. The main purpose of the handshake is to provide
the KDK to the PLC so it can derive the same sessionKey.
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Algorithm 1 Session key derivation
Input: ServerSessionChallenge # [20 bytes]

1: challenge = ServerSessionChallenge[2 : 18]
2: KDK = prng(24) . Based on the Microsoft CryptGenRandom API
3: sessionKey = HMAC-SHA256KDK(f(challenge, 8)||challenge)[: 24] . Using a “fingerprinting” function f
4: Return: KDK, sessionKey

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0xFEE1DEAD Length 1 1 KDK ID Header

Public key ID Header EG1
EG1 EG2 Nonce

Nonce IV Encrypted Challenge
Encrypted Challenge Encrypted KDK

Encrypted KDK Encrypted Checksum ——–

Fig. 7. The SecurityKeyEncryptedKey structure of [M3]

A.1.1 Starting the handshake The first request message [M1] is a Hello message that
the TIA sends to initialize a new session.

The PLC responds with message [M2], which contains the PLC firmware version, and a
20-byte challenge ServerSessionChallenge. The PLC firmware version determines the elliptic-
curve public-key pair to be used in the key exchange — see Section A.1.3.

Upon receiving the [M2] message, the TIA then activates Algorithm 1 to randomly select
a KDK and to generate the sessionKey from the PLC’s ServerSessionChallenge and the
KDK.

A.1.2 The key exchange message [M3] The third handshake message M3 (recall Fig-
ure 4) transfers the KDK to the PLCs, using the public-key scheme. [M3] contains a struc-
ture called SecurityKeyEncryptedKey in the S7CommPlus dissector [37] (See Figure 7). This
structure starts with a magic value 0xFEE1DEAD, the structure length (180 bytes), and
some flags which we always found to be ‘1’.

To initialize the cryptographic elements and populate some of the in [M3] the TIA acti-
vates Algorithm 2, which works as follows:

1. Generates a 24-bytes random quantity R and maps it to the elliptic curve’s domain: we
call the resulting random curve point the PreKey. It seems that the PreKey is represented
in a projective representation, as a 60-byte quantity.
This PreKey will be sent to the PLC as part of M3 using an elliptic-curve El-Gamal
public-key exchange, see below.

2. From the random point PreKey, it uses a key-derivation-function KDF to derive 3 16-byte
quantities, see Algorithm 2. We identify these quantities as follows:
(a) A Key Encryption Key (KEK). This is an AES key that is used to encrypt the KDK

and the Challenge): the encrypted KDK and encrypted challenge are placed inside the
[M3] message.

(b) A Checksum Seed CS. This seed is used to generate 4096 pseudo-random bytes orga-
nized as four 256-word look-up tables, which we collectively call LUT . LUT is used
by a (non-cryptographic) tabulation hash to calculate a checksum over the KDK and
Challenge (See Algorithm 4).
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Algorithm 2 Initialization
1: R = prng(24) . Based on the Microsoft CryptGenRandom API
2: PreKey = EC-MAP(R) . Select a random point on the curve
3: KEK,CEK,CS = KDF (PreKey) . Derive AES keys and seed for lookup tables
4: LUT [4][256] = TB-HASH-INIT(CS) . Initialize 4 lookup-tables for the tabulation hash
5: Return PreKey, LUT, KEK, CEK

Algorithm 3 Elliptic-Curve El-Gamal-like key exchange
1: procedure EC-ENC(PreKey, Q) [G is the base point]
2: point =∞
3: Nonce = prng(20)
4: while point ==∞ do
5: y = prng(20)
6: point = EC-MULT (G, y,Nonce) . Using the base point G
7: EG2 = pointX
8: end while
9: s = EC-MULT(Q, y,Nonce) . Using the public-key Q
10: EG1 =EC-ADD(s, PreKey)X . Encrypt the PreKey using s
11: return EG1, EG2, Nonce
12: end procedure

(c) A Checksum Encryption Key CEK. This is an AES key used to encrypt the checksum.
The encrypted checksum is placed inside [M3].

A.1.3 Public Key ID and KDK ID headers The [M3] message includes 2 header fields
that are include key fingerprints: these are 8-byte truncated SHA256 hashes of the relevant
key, with some additional flags. See Algorithm 5.

The Public key ID header identifies the public key Q used to encrypt the PreKey, while
the KDK ID header identifies the KDK used to derive the sessionKey.

The public key ID appears in the key-chain data structure in the TIA memory, and
may enable the TIA to indicate which public key it is using in case there is more than one
applicable key for a specific PLC model and firmware version. We are unsure of the role of
the KDK key ID field in [M3], perhaps it is used by the PLC to check the validity of the
KDK it derives, in addition to the validation offered by the Encrypted Checksum field.

A.1.4 EC-Elgamal-like Encryption The TIA uses an EC-Elgamal-like public-key en-
cryption to encrypt PreKey (See Algorithm 3). The TIA chooses 20-bytes Nonce, which is
placed as-is in the [M3] structure and seems to be used to ‘mask’ the elliptic-curve calcula-
tions. It then chooses a 20-bytes random y, uses the base point G to calculate yG, and places
its X coordinate into an [M3] field (EG2). Then it uses the public-key Q to calculate yQ,
encrypts the PreKey point (yQ+ PreKey) and places the resulting point’s X coordinate in
an [M3] field (EG1).

A.1.5 Challenge and KDK Encryption The TIA encrypts the Challenge and the KDK
by computing AES-CTRKEK(Challenge||KDK) and stores the results in the two relevant
fields in [M3]. To do so the TIA picks a random 16-byte initialization vector (IV) for AES-
CTR, which is also placed in [M3] (in plaintext). The counter-mode increments the counter
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Algorithm 4 Checksum calculation
1: procedure checksum(ENC, CEK, LUT[4][256]) . ENC is Encrypted Challenge||Encrypted KDK
2: currentChecksum = 0
3: for block in ENC do
4: currentChecksum =TB-HASH(currentChecksum⊕ block, LUT )
5: end for
6: currentChecksum[12] = currentChecksum[12]⊕ 40 . size of ENC is 40 bytes
7: finalChecksum = TB-HASH(currentChecksum,LUT )
8: return AES-ECBCEK(finalChecksum)
9: end procedure

Algorithm 5 Key ID Derivation
1: procedure GetKeyId(key)
2: return sha256(key[: 24] || “DERIVE”)[: 8] . return an 8 byte fingerprint
3: end procedure

using a maximum-cycle 128-bit LFSR with taps at 128,127,126,121, called LFSR-4(n = 128)
in [36].

A.1.6 Checksum Encryption To provide authenticated encryption for the encrypted
challenge and encrypted KDK a non-cryptographic checksum is computed, encrypted by
AES-ECB using the CEK, and placed in the M3 structure (see Algorithm 4)

A.1.7 M3 decryption and handling by the PLC When the PLC receives the M3
message, it uses its private key to decrypts PreKey. It then derives the KEK, CEK and
the CS hash configuration from the PreKey. Then it uses KEK to extract the KDK and
Challenge and verifies TIA’s freshness and the integrity of KDK. When the message is
verified successfully, the PLC uses KDK to derive the SessionKey responses with an ACK
message.

The next request message that the TIA sends, is already authenticated by an HMAC-
SHA256 with the derived session key. All the rest of the packets in the session, both those
which are sent by the PLC, and those which are sent by the TIA, are authenticated and
integrity protected with HMAC-SHA256 with the session key.
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