
Denial of Service with
a Fistful of Packets:

Exploiting Algorithmic
Complexity

Vulnerabilities

PACKETS

Nathan Hauke David Renardy

Who are we?
● Security researchers

at Two Six Labs
● One of us is a

broomball national
champion

David RenardyNathan Hauke

Talk Roadmap
• Algorithmic Complexity (AC) vulnerability recap

• 3 new AC vulnerabilities we discovered:
• PDF specification
• Linux VNC servers
• Dropbox’s zxcvbn algorithm

• Defense and Mitigations
• ACsploit - Arsenal at 11:30

What is an AC Vulnerability?
• Impact: Resource consumption attack (DoS).

• Cause: Back-end algorithm has unacceptable
worst-case performance.

• Types:
• AC Time (CPU)
• AC Space(memory).

Toy Example: Insertion Sort

• Best Case: Sorted
• Linear time

• Worst Case: Reverse Sorted
• Quadratic time

Our goal: find corner-case inputs to get worst-case
performance

Our Story: Motivations and History
• There is a gap in awareness:

Our Story: Motivations and History
• There is a gap in awareness:

• Application designers
• Developers
• Pen-testers
• Vulnerability researchers

Our Story: Motivations and History
• There is a gap in awareness:

• Application designers
• Developers
• Pen-testers
• Vulnerability researchers

• We spent 3 years studying AC vulnerabilities while
working on DARPA STAC

• Small inputs give significant effect. No botnet
needed.

Effort Effect

AC

How do AC vulns differ from other
vulnerabilities?

• AC vulnerabilities arise from
intended functionality. AC
vulns are not bugs!

• AC vulns arise from design
decisions. Input is valid.

• Temporary DoS can result.

How do AC vulns differ from other
vulnerabilities?

• 29C3: Dan Bernstein, Jean-Philippe Aumasson,
Martin Boßlet - Hash-flooding DoS reloaded:
attacks and defenses

• BH-USA-2016: Cara Marie - I Came to Drop Bombs

• DEFCON-23: Eric Davisson - REvisiting RE DoS

You’ve seen AC vulns before

AC Vulns in the News: REDoS
● REDoS - leverage worst-case complexity of regular

expression parsers to cause denial of service

● Ex: ^(a+)+$ “aaaab” traverses all 16 possible paths

AC Vulns in the News: REDoS

Vulnerability 1:
An AC Time Vulnerability in the PDF

Specification

PDF Decompression Bomb?

• Effect: AC time
attack against PDF
parser without going
over a given memory
ceiling

PDF Decompression Bomb Napalm?

• Effect: AC time
attack against PDF
parser without going
over a given memory
ceiling

We Didn’t Start the Fire: Stevens’ Bomb

Filters

Data

PDFstream objects

Playing With Fire
Observations:

1. FlateDecode causes a small AC time effect

Playing With Fire
Observations:

1. FlateDecode causes a small AC time effect
2. A single PDF Page can hold multiple pdfstream

objects

Playing With Fire
Observations:

1. FlateDecode causes a small AC time effect
2. A single PDF Page can hold multiple pdfstream

objects
Challenge: Can we translate this memory (AC Space)
vulnerability into an CPU (AC time) vulnerability?

Desired Effect

M
em

or
y

Time

Only You Can Prevent OOM Errors
• Some filters shrink data: ASCIIHexDecode

“53 6d 6f 6b 65 79” Smokey

Only You Can Prevent OOM Errors
• Some filters shrink data: ASCIIHexDecode

“53 6d 6f 6b 65 79” Smokey
• Idea: FlateDecode to grow, and then

ASCIIHexDecode to shrink.

Only You Can Prevent OOM Errors
• Some filters shrink data: ASCIIHexDecode

“53 6d 6f 6b 65 79” Smokey
• Idea: FlateDecode to grow, and then

ASCIIHexDecode to shrink.
• Problem: ASCIIHexDecode needs valid hex

ASCIIHexDecode and a Trick

Trick:
 0x33 is the ASCII encoding for the character “3”
“33 33 33 33” “33 33” “33”

ASCIIHexDecode ASCIIHexDecode

A Small Fire

Recipe for Making PDF Napalm
1. Find or guess RAM limits

Recipe for Making PDF Napalm
1. Find or guess RAM limits
2. Deflate a bunch* of “3”s

Recipe for Making PDF Napalm
1. Find or guess RAM limits
2. Deflate a bunch* of “3”s
3. FlateDecode + ASCIIHexDecode filters

Recipe for Making PDF Napalm
1. Find or guess RAM limits
2. Deflate a bunch* of “3”s
3. FlateDecode + ASCIIHexDecode filters
4. Fill a PDF page with these mini bomb

pdfstreams

PDF Napalm Demo

Impact

• Affects spec-compliant implementations

• Vulnerable targets include OCR apps

Mitigations

• Input sanitization:
• Don’t allow repeated filters
• Limit the number of pdfstream objects per page

• Resource controls:
• Limit the memory / processing time

Vulnerability 2:
Unauthenticated VNC Server

Disk Space Consumption

What is a VNC Server?
● Remotely access

computer

● Graphical view of
desktop

● Compare with
Remote Desktop
Protocol (RDP)

VNC Server Disk Space Consumption

VNC Server Disk Space Consumption

Print the IP
address of every
connected client

Recipe for Exploiting Disk Space

Recipe for Exploiting Disk Space
1. Create multiple TCP connections to the VNC server

Recipe for Exploiting Disk Space
1. Create multiple TCP connections to the VNC server

2. Keep connections open

Recipe for Exploiting Disk Space
1. Create multiple TCP connections to the VNC server

2. Keep connections open

3. Every connection adds a longer line to the log file

Recipe for Exploiting Disk Space
1. Create multiple TCP connections to the VNC server

2. Keep connections open

3. Every connection adds a longer line to the log file

4. Log file size is O(n2) where n is the number of
connections

VNC Demo #1

Vulnerability 2 Bonus:
Infinite Logging & Denial of Service

Some Innocuous Code

Or is it?
● What happens if we

run out of file
descriptors?

● EMFILE error

● New connection still
needs to be
processed

Recipe for Exploiting Disk Space & Time
1. Create multiple TCP connections to the VNC server

2. Keep connections open

Recipe for Exploiting Disk Space & Time
1. Create multiple TCP connections to the VNC server

2. Keep connections open

3. Repeat until the server process is out of file
descriptors (~1024)

Recipe for Exploiting Disk Space & Time
1. Create multiple TCP connections to the VNC server

2. Keep connections open

3. Repeat until the server process is out of file
descriptors (~1024)

4. Next connection attempt triggers infinite loop

VNC Demo #2

Impact
● Multiple affected servers:

○ TightVNC
○ TurboVNC
○ Vino
○ LibVNCServer
○ x11VNC

● No authentication required

Mitigations
TurboVNC / LibVNCServer / x11VNC:
● Don’t log the list of other clients

● Limit the maximum number of client
connections

Vulnerability 3:
Unauthenticated Denial of Service

in Dropbox’s zxcvbn

What is zxcvbn?
● Estimate difficulty for an attacker to guess your

password

● Designed to replace archaic password policy

How does zxcvbn work?

● n@thanPassword080819
How does zxcvbn work?

● n@thanPassword080819
How does zxcvbn work?

● n@thanPassword080819
How does zxcvbn work?

● n@thanPassword080819
How does zxcvbn work?

p@ssw0rd

L33T Substitution

p@ssw0rd

L33T Substitution

p@ssw0rd {‘@’: ‘a’, ‘0’: ‘o’}

L33T Substitution

p@ssw0rd {‘@’: ‘a’, ‘0’: ‘o’} password

L33T Substitution

p@ssw0rd {‘@’: ‘a’, ‘0’: ‘o’} password

L33T Substitution

p@ssw0rd {‘@’: ‘a’, ‘0’: ‘o’} password

b|ackh@t

L33T Substitution

p@ssw0rd {‘@’: ‘a’, ‘0’: ‘o’} password

b|ackh@t {‘|’: ‘i’, ‘@’: ‘a’}

 {‘|’: ‘l’, ‘@’: ‘a’}

L33T Substitution

p@ssw0rd {‘@’: ‘a’, ‘0’: ‘o’} password

b|ackh@t {‘|’: ‘i’, ‘@’: ‘a’} biackhat

 {‘|’: ‘l’, ‘@’: ‘a’}

L33T Substitution

p@ssw0rd {‘@’: ‘a’, ‘0’: ‘o’} password

b|ackh@t {‘|’: ‘i’, ‘@’: ‘a’} biackhat

 {‘|’: ‘l’, ‘@’: ‘a’}

L33T Substitution

p@ssw0rd {‘@’: ‘a’, ‘0’: ‘o’} password

b|ackh@t {‘|’: ‘i’, ‘@’: ‘a’} biackhat

 {‘|’: ‘l’, ‘@’: ‘a’} blackhat

L33T Substitution

p@ssw0rd {‘@’: ‘a’, ‘0’: ‘o’} password

b|ackh@t {‘|’: ‘i’, ‘@’: ‘a’} biackhat

 {‘|’: ‘l’, ‘@’: ‘a’} blackhat

L33T Substitution

p@ssw0rd {‘@’: ‘a’, ‘0’: ‘o’} password

b|ackh@t {‘|’: ‘i’, ‘@’: ‘a’} biackhat

 {‘|’: ‘l’, ‘@’: ‘a’} blackhat

L33T Substitution

Ambiguous characters:

| 1 7

1o77|pop

L33T Substitution

1o77|pop {‘1’: ‘i’, ‘7’: ‘l’, ‘|’: ‘i’}
 {‘1’: ‘i’, ‘7’: ‘l’, ‘|’: ‘l’}
 {‘1’: ‘i’, ‘7’: ‘t’, ‘|’: ‘i’}
 {‘1’: ‘i’, ‘7’: ‘t’, ‘|’: ‘l’}
 {‘1’: ‘l’, ‘7’: ‘l’, ‘|’: ‘i’}
 {‘1’: ‘l’, ‘7’: ‘l’, ‘|’: ‘l’}
 {‘1’: ‘l’, ‘7’: ‘t’, ‘|’: ‘i’}
 {‘1’: ‘l’, ‘7’: ‘t’, ‘|’: ‘l’}

L33T Substitution

1o77|pop {‘1’: ‘i’, ‘7’: ‘l’, ‘|’: ‘i’} iollipop
 {‘1’: ‘i’, ‘7’: ‘l’, ‘|’: ‘l’} iolllpop
 {‘1’: ‘i’, ‘7’: ‘t’, ‘|’: ‘i’} iottipop
 {‘1’: ‘i’, ‘7’: ‘t’, ‘|’: ‘l’} iottlpop
 {‘1’: ‘l’, ‘7’: ‘l’, ‘|’: ‘i’} lollipop
 {‘1’: ‘l’, ‘7’: ‘l’, ‘|’: ‘l’} lolllpop
 {‘1’: ‘l’, ‘7’: ‘t’, ‘|’: ‘i’} lottipop
 {‘1’: ‘l’, ‘7’: ‘t’, ‘|’: ‘l’} lottlpop

L33T Substitution

1o77|pop {‘1’: ‘i’, ‘7’: ‘l’, ‘|’: ‘i’} iollipop
 {‘1’: ‘i’, ‘7’: ‘l’, ‘|’: ‘l’} iolllpop
 {‘1’: ‘i’, ‘7’: ‘t’, ‘|’: ‘i’} iottipop
 {‘1’: ‘i’, ‘7’: ‘t’, ‘|’: ‘l’} iottlpop
 {‘1’: ‘l’, ‘7’: ‘l’, ‘|’: ‘i’} lollipop
 {‘1’: ‘l’, ‘7’: ‘l’, ‘|’: ‘l’} lolllpop
 {‘1’: ‘l’, ‘7’: ‘t’, ‘|’: ‘i’} lottipop
 {‘1’: ‘l’, ‘7’: ‘t’, ‘|’: ‘l’} lottlpop

L33T Substitution

What’s the worst that could happen?
Recipe for extended zxcvbn runtime:

1. Make the password as long as possible

What’s the worst that could happen?
Recipe for extended zxcvbn runtime:

What’s the worst that could happen?
Recipe for extended zxcvbn runtime:
1. Make the password as long as possible

2. Use the l33t characters that have multiple possible
substitutions | 1 7

What’s the worst that could happen?
Recipe for extended zxcvbn runtime:
1. Make the password as long as possible

2. Use the l33t characters that have multiple possible
substitutions | 1 7

3. Use every l33t character 4@8({[<369!0$5{%2

4@8({[<3691!|1|70$5{7%24@8({[<3691!|1|70$5{7%24@8({[<36
91!|1|70$5{7%24@8({[<3691!|1|70$5{7%24@8({[<3691!|1|70$
5{7%24@8({[<3691!|1|70$5{7%24@8({[<3691!|1|70$5{7%24@
8({[<3691!|1|70$5{7%24@8({[<3691!|1|70$5{7%24@8({[<3691!
|1|70$5{7%24@8({[<3691!|1|70$5{7%24@8({[<3691!|1|70$5{7
%24@8({[<3691!|1|70$5{7%24@8({[<3691!|1|70$5{7%24@8({[
<3691!|1|70$5{7%24@8({[<3691!|1|70$5{7%24@8({[<3691!|1|7
0$5{7%24@8({[<3691!|1|70$5{7%24@8({[<3691!|1|70$5{7%24
@8({[<3691!|1|70$5{7%24@8({[<3691!|1|70$5{7%24@8({[<369

What’s the worst that could happen?

What’s the worst that could happen?

Password
length (chars)

Worst-case
password

DropBox says

100 0.1 s

200 N/A

1000 N/A

What’s the worst that could happen?

Password
length (chars)

Worst-case
password

DropBox says

100 5.7 s 0.1 s

200 24.4 s N/A

1000 22.1 min N/A

Impact
● Implementations in many

different programming
languages

Impact
● Implementations in many

different programming
languages

● Used in enterprise software

Impact
● Implementations in many

different programming
languages

● Used in enterprise software

● Attacks user signup page

zxcvbn Demo

Mitigations
● Input sanitization

○ Evaluate first n bytes of password

● Better algorithms
○ Improve quadratic time dictionary match

algorithm

Conclusion

Defensive Measures and Mitigations

● Select better algorithms

● Don’t just design for the average case

● Use proper input sanitization

ACsploit

• Generate worst-case inputs to common algorithms
• REDoS identification
• PoCs releasing today, open source:

 https://github.com/twosixlabs/acsploit
• Check it out at Arsenal at 11:30 Business Hall

(Oceanside), Arsenal Station 3!

https://github.com/twosixlabs/acsploit

Black Hat Sound Bytes
● Pen-testers: Incorporate AC

vulnerabilities as part of your testing.

● Developers: Develop with worst-case
inputs in mind.

● Researchers: “See something. Say
something.”

Questions?

Blog: https://www.twosixlabs.com/blog/

Contact:
● david.renardy@twosixlabs.com
● nathan.hauke@twosixlabs.com

ACsploit Arsenal 11:30 Business Hall (Oceanside),
Arsenal Station 3!

https://www.twosixlabs.com/blog/
mailto:david.renardy@twosixlabs.com
mailto:nathan.hauke@twosixlabs.com

