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Who are we?
● Security researchers 

at Two Six Labs
● One of us is a 

broomball national 
champion

David RenardyNathan Hauke



Talk Roadmap
• Algorithmic Complexity (AC) vulnerability recap

• 3 new AC vulnerabilities we discovered:
• PDF specification 
• Linux VNC servers
• Dropbox’s zxcvbn algorithm

• Defense and Mitigations
• ACsploit - Arsenal at 11:30



What is an AC Vulnerability?
• Impact: Resource consumption attack (DoS).

• Cause: Back-end algorithm has unacceptable 
worst-case performance. 

• Types: 
• AC Time (CPU)
• AC Space(memory). 



Toy Example: Insertion Sort

• Best Case: Sorted 
• Linear time

• Worst Case: Reverse Sorted
• Quadratic time

Our goal: find corner-case inputs to get worst-case 
performance
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Our Story: Motivations and History
• There is a gap in awareness:

• Application designers
• Developers
• Pen-testers
• Vulnerability researchers

• We spent 3 years studying AC vulnerabilities while 
working on DARPA STAC 



• Small inputs give significant effect. No botnet 
needed.

Effort Effect

AC

How do AC vulns differ from other 
vulnerabilities?



• AC vulnerabilities arise from 
intended functionality. AC 
vulns are not bugs!

• AC vulns arise from design 
decisions. Input is valid.

• Temporary DoS can result.

How do AC vulns differ from other 
vulnerabilities?



• 29C3: Dan Bernstein, Jean-Philippe Aumasson, 
Martin Boßlet - Hash-flooding DoS reloaded: 
attacks and defenses

• BH-USA-2016: Cara Marie - I Came to Drop Bombs

• DEFCON-23: Eric Davisson - REvisiting RE DoS

You’ve seen AC vulns before



AC Vulns in the News: REDoS
● REDoS - leverage worst-case complexity of regular 

expression parsers to cause denial of service 

● Ex: ^(a+)+$  “aaaab” traverses all 16 possible paths 



AC Vulns in the News: REDoS



Vulnerability 1: 
An AC Time Vulnerability in the PDF 

Specification



PDF Decompression Bomb?

• Effect: AC time 
attack against PDF 
parser without going 
over a given memory 
ceiling



PDF Decompression Bomb Napalm?

• Effect: AC time 
attack against PDF 
parser without going 
over a given memory 
ceiling



We Didn’t Start the Fire: Stevens’ Bomb

Filters

Data 

PDFstream objects
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Playing With Fire
Observations: 

1. FlateDecode causes a small AC time effect
2. A single PDF Page can hold multiple pdfstream 

objects
Challenge: Can we translate this memory (AC Space) 
vulnerability into an CPU (AC time) vulnerability?



Desired Effect
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or
y

Time



Only You Can Prevent OOM Errors
• Some filters shrink data: ASCIIHexDecode
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Only You Can Prevent OOM Errors
• Some filters shrink data: ASCIIHexDecode

“53 6d 6f 6b 65 79”            Smokey
• Idea: FlateDecode to grow, and then 

ASCIIHexDecode to shrink.
• Problem: ASCIIHexDecode needs valid hex



ASCIIHexDecode and a Trick

Trick:
      0x33 is the ASCII encoding for the character “3”
“33 33 33 33”                        “33 33”                        “33”
  

ASCIIHexDecode ASCIIHexDecode



A Small Fire



Recipe for Making PDF Napalm
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Recipe for Making PDF Napalm
1. Find or guess RAM limits
2. Deflate a bunch* of “3”s
3. FlateDecode + ASCIIHexDecode filters
4. Fill a PDF page with these mini bomb 

pdfstreams



PDF Napalm Demo



Impact

• Affects spec-compliant implementations

• Vulnerable targets include OCR apps



Mitigations

• Input sanitization: 
• Don’t allow repeated filters
• Limit the number of pdfstream objects per page

• Resource controls: 
• Limit the memory / processing time



Vulnerability 2: 
Unauthenticated VNC Server 

Disk Space Consumption



What is a VNC Server?
● Remotely access 

computer

● Graphical view of 
desktop

● Compare with 
Remote Desktop 
Protocol (RDP)





VNC Server Disk Space Consumption



VNC Server Disk Space Consumption

Print the IP 
address of every 
connected client



Recipe for Exploiting Disk Space
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Recipe for Exploiting Disk Space
1. Create multiple TCP connections to the VNC server

2. Keep connections open

3. Every connection adds a longer line to the log file

4. Log file size is O(n2) where n is the number of 
connections



VNC Demo #1



Vulnerability 2 Bonus: 
Infinite Logging & Denial of Service



Some Innocuous Code



Or is it?
● What happens if we 

run out of file 
descriptors?

● EMFILE error

● New connection still 
needs to be 
processed







Recipe for Exploiting Disk Space & Time
1. Create multiple TCP connections to the VNC server

2. Keep connections open
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Recipe for Exploiting Disk Space & Time
1. Create multiple TCP connections to the VNC server

2. Keep connections open

3. Repeat until the server process is out of file 
descriptors (~1024)

4. Next connection attempt triggers infinite loop



VNC Demo #2



Impact
● Multiple affected servers: 

○ TightVNC
○ TurboVNC
○ Vino
○ LibVNCServer
○ x11VNC

● No authentication required



Mitigations
TurboVNC / LibVNCServer / x11VNC:
● Don’t log the list of other clients

● Limit the maximum number of client 
connections



Vulnerability 3: 
Unauthenticated Denial of Service 

in Dropbox’s zxcvbn



What is zxcvbn?
● Estimate difficulty for an attacker to guess your 

password

● Designed to replace archaic password policy



How does zxcvbn work?



● n@thanPassword080819
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How does zxcvbn work?
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p@ssw0rd                {‘@’: ‘a’, ‘0’: ‘o’}               password

b|ackh@t                  

L33T Substitution



p@ssw0rd                {‘@’: ‘a’, ‘0’: ‘o’}               password

b|ackh@t                  {‘|’: ‘i’, ‘@’: ‘a’}                

                                    {‘|’: ‘l’, ‘@’: ‘a’}   

L33T Substitution



p@ssw0rd                {‘@’: ‘a’, ‘0’: ‘o’}               password

b|ackh@t                  {‘|’: ‘i’, ‘@’: ‘a’}                  biackhat

                                    {‘|’: ‘l’, ‘@’: ‘a’}   

L33T Substitution



p@ssw0rd                {‘@’: ‘a’, ‘0’: ‘o’}               password

b|ackh@t                  {‘|’: ‘i’, ‘@’: ‘a’}                  biackhat

                                    {‘|’: ‘l’, ‘@’: ‘a’}   

L33T Substitution



p@ssw0rd                {‘@’: ‘a’, ‘0’: ‘o’}               password

b|ackh@t                  {‘|’: ‘i’, ‘@’: ‘a’}                  biackhat

                                    {‘|’: ‘l’, ‘@’: ‘a’}                  blackhat

L33T Substitution



p@ssw0rd                {‘@’: ‘a’, ‘0’: ‘o’}               password

b|ackh@t                  {‘|’: ‘i’, ‘@’: ‘a’}                  biackhat

                                    {‘|’: ‘l’, ‘@’: ‘a’}                  blackhat

L33T Substitution



p@ssw0rd                {‘@’: ‘a’, ‘0’: ‘o’}               password

b|ackh@t                  {‘|’: ‘i’, ‘@’: ‘a’}                  biackhat

                                    {‘|’: ‘l’, ‘@’: ‘a’}                  blackhat

L33T Substitution

Ambiguous characters:

| 1 7



1o77|pop

L33T Substitution



1o77|pop  {‘1’: ‘i’, ‘7’: ‘l’, ‘|’: ‘i’}
 {‘1’: ‘i’, ‘7’: ‘l’, ‘|’: ‘l’}
 {‘1’: ‘i’, ‘7’: ‘t’, ‘|’: ‘i’}
 {‘1’: ‘i’, ‘7’: ‘t’, ‘|’: ‘l’}
 {‘1’: ‘l’, ‘7’: ‘l’, ‘|’: ‘i’}
 {‘1’: ‘l’, ‘7’: ‘l’, ‘|’: ‘l’}
 {‘1’: ‘l’, ‘7’: ‘t’, ‘|’: ‘i’}
 {‘1’: ‘l’, ‘7’: ‘t’, ‘|’: ‘l’}

L33T Substitution



1o77|pop  {‘1’: ‘i’, ‘7’: ‘l’, ‘|’: ‘i’}     iollipop
 {‘1’: ‘i’, ‘7’: ‘l’, ‘|’: ‘l’}     iolllpop
 {‘1’: ‘i’, ‘7’: ‘t’, ‘|’: ‘i’}     iottipop                 
 {‘1’: ‘i’, ‘7’: ‘t’, ‘|’: ‘l’}     iottlpop
 {‘1’: ‘l’, ‘7’: ‘l’, ‘|’: ‘i’}     lollipop
 {‘1’: ‘l’, ‘7’: ‘l’, ‘|’: ‘l’}     lolllpop
 {‘1’: ‘l’, ‘7’: ‘t’, ‘|’: ‘i’}     lottipop
 {‘1’: ‘l’, ‘7’: ‘t’, ‘|’: ‘l’}     lottlpop

L33T Substitution



1o77|pop  {‘1’: ‘i’, ‘7’: ‘l’, ‘|’: ‘i’}     iollipop
 {‘1’: ‘i’, ‘7’: ‘l’, ‘|’: ‘l’}     iolllpop
 {‘1’: ‘i’, ‘7’: ‘t’, ‘|’: ‘i’}     iottipop                 
 {‘1’: ‘i’, ‘7’: ‘t’, ‘|’: ‘l’}     iottlpop
 {‘1’: ‘l’, ‘7’: ‘l’, ‘|’: ‘i’}     lollipop
 {‘1’: ‘l’, ‘7’: ‘l’, ‘|’: ‘l’}     lolllpop
 {‘1’: ‘l’, ‘7’: ‘t’, ‘|’: ‘i’}     lottipop
 {‘1’: ‘l’, ‘7’: ‘t’, ‘|’: ‘l’}     lottlpop

L33T Substitution



What’s the worst that could happen?
Recipe for extended zxcvbn runtime:
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What’s the worst that could happen?
Recipe for extended zxcvbn runtime:
1. Make the password as long as possible

2. Use the l33t characters that have multiple possible 
substitutions  | 1 7



What’s the worst that could happen?
Recipe for extended zxcvbn runtime:
1. Make the password as long as possible

2. Use the l33t characters that have multiple possible 
substitutions  | 1 7

3. Use every l33t character  4@8({[<369!0$5{%2



4@8({[<3691!|1|70$5{7%24@8({[<3691!|1|70$5{7%24@8({[<36
91!|1|70$5{7%24@8({[<3691!|1|70$5{7%24@8({[<3691!|1|70$
5{7%24@8({[<3691!|1|70$5{7%24@8({[<3691!|1|70$5{7%24@
8({[<3691!|1|70$5{7%24@8({[<3691!|1|70$5{7%24@8({[<3691!
|1|70$5{7%24@8({[<3691!|1|70$5{7%24@8({[<3691!|1|70$5{7
%24@8({[<3691!|1|70$5{7%24@8({[<3691!|1|70$5{7%24@8({[
<3691!|1|70$5{7%24@8({[<3691!|1|70$5{7%24@8({[<3691!|1|7
0$5{7%24@8({[<3691!|1|70$5{7%24@8({[<3691!|1|70$5{7%24
@8({[<3691!|1|70$5{7%24@8({[<3691!|1|70$5{7%24@8({[<369

What’s the worst that could happen?



What’s the worst that could happen?

Password 
length (chars)

Worst-case 
password

DropBox says

100 0.1 s

200 N/A

1000 N/A



What’s the worst that could happen?

Password 
length (chars)

Worst-case 
password

DropBox says

100 5.7 s 0.1 s

200 24.4 s N/A

1000 22.1 min N/A



Impact
● Implementations in many 
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Impact
● Implementations in many 

different programming 
languages

● Used in enterprise software

● Attacks user signup page



zxcvbn Demo



Mitigations
● Input sanitization

○ Evaluate first n bytes of password

● Better algorithms
○ Improve quadratic time dictionary match 

algorithm



Conclusion



Defensive Measures and Mitigations

● Select better algorithms

● Don’t just design for the average case

● Use proper input sanitization



ACsploit

• Generate worst-case inputs to common algorithms
• REDoS identification
• PoCs releasing today, open source:

 https://github.com/twosixlabs/acsploit
• Check it out at Arsenal at 11:30 Business Hall 

(Oceanside), Arsenal Station 3!

https://github.com/twosixlabs/acsploit


Black Hat Sound Bytes
● Pen-testers: Incorporate AC 

vulnerabilities as part of your testing.

● Developers: Develop with worst-case 
inputs in mind.

● Researchers: “See something. Say 
something.” 



Questions?

Blog: https://www.twosixlabs.com/blog/

Contact: 
● david.renardy@twosixlabs.com
● nathan.hauke@twosixlabs.com 

ACsploit Arsenal 11:30 Business Hall (Oceanside), 
Arsenal Station 3!

https://www.twosixlabs.com/blog/
mailto:david.renardy@twosixlabs.com
mailto:nathan.hauke@twosixlabs.com

