


Securing Apps in the 
Open-By-Default Cloud
Winston Howes and Michael Wozniak



BlackHat 2019

Michael Wozniak
Infrastructure Security

Who are we?

Winston Howes
Application Security



Welcome to the Cloud



BlackHat 2019

Welcome to the Cloud

GCEGKEApp EngineEC2 EKS



BlackHat 2019

“After deploying the application, you 
need to expose it to the Internet so that 
users can access it.”
- GKE Quickstart

Open By Default



BlackHat 2019

Constraints
● Networking

○ Not possible to have one large internal only network
○ Limited enforcement options provided by AWS/GCP
○ Services like App Engine must be exposed directly to the Internet

● Central Management
○ Lack of central CI/CD Pipeline
○ Wide variety of technologies



BlackHat 2019

Development Lifecycle
● It’s unclear when security should review an app.



BlackHat 2019

Development Lifecycle
● It’s unclear when security should review an app.

You’re on the 
internet 🎉

Hello 🌎

New app created



BlackHat 2019

Development Lifecycle
● It’s unclear when security should review an app.

New app created

You’re encouraged 
to file a security 
review.

Ready to launch

You’re on the 
internet 🎉

Hello 🌎



BlackHat 2019

Development Lifecycle
● It’s unclear when security should review an app.

New app created

You’re encouraged 
to file a security 
review.

Ready to launch

The app has a 
bunch of new 
features.

Going Steady

You’re on the 
internet 🎉

Hello 🌎



BlackHat 2019

Development Lifecycle
● It’s unclear when security should review an app.

New app created

You’re encouraged 
to file a security 
review.

Ready to launch

The app has a 
bunch of new 
features.

Going Steady

Pre-Launch Post-Launch

You’re on the 
internet 🎉

Hello 🌎



BlackHat 2019

Considered Gating Approaches

1. Enabling Billing Post-Review
2. Implement AuthN & AuthZ controls on individual 

services
3. Firewalls
4. Google’s Identity Aware Proxy



BlackHat 2019

Considered Gating Approaches

1. Enabling Billing Post-Review
2. Implement AuthN & AuthZ controls on individual 

services
3. Firewalls
4. Google’s Identity Aware Proxy

Restricts Feature Development



BlackHat 2019

Considered Gating Approaches

1. Enabling Billing Post-Review
2. Implement AuthN & AuthZ controls on individual 

services
3. Firewalls
4. Google’s Identity Aware Proxy

Limited Scalability



BlackHat 2019

Considered Gating Approaches

1. Enabling Billing Post-Review
2. Implement AuthN & AuthZ controls on individual 

services
3. Firewalls
4. Google’s Identity Aware Proxy

Limited Granularity



BlackHat 2019

Considered Gating Approaches

1. Enabling Billing Post-Review
2. Implement AuthN & AuthZ controls on individual 

services
3. Firewalls
4. Google’s Identity Aware Proxy

Not Automatable



BlackHat 2019

Goals

● Flexibility: Minimum opinions about development 
environments and cloud feature use*

● Scalability: No need for developer instrumentation
● Granularity: By default all services are gated with granular 

authN and authZ
● Automatability: Reduce operational costs

*if developers want high QPS or to receive user traffic, there 
will be necessary changes



BlackHat 2019

Laying the Groundwork: Primitives

1. Network Control
2. Service Inventory



BlackHat 2019

Laying the Groundwork: Primitives

Solution: Central service that enables billing 
and gives the security team network 
management access and inventories 
services



BlackHat 2019

Development Lifecycle
● It’s unclear when security should review an app.

New app created

You’re encouraged 
to file a security 
review.

Ready to launch

The app has a 
bunch of new 
features.

Going Steady

Pre-Launch Post-Launch

You’re on the 
internet 🎉

Hello 🌎



BlackHat 2019

Development Lifecycle
● It’s unclear when security should review an app.

New app created

You’re required to 
file a security 
review.

Ready to launch

The app has a 
bunch of new 
features.

Going Steady

UnManaged Managed

You’re on the 
internet 🎉

Hello 🌎



BlackHat 2019

UnManaged Services

1. New Services in Development
2. Internal Tools

Treated identically by Security



BlackHat 2019

UnManaged Services: Primitives

1. Firewall Manager
2. Stateless AuthN/Z Proxy



BlackHat 2019

Firewall Manager

1. Import every service from our central inventory
2. Set base level firewall rules on every service

a. App Engine: Only allow requests from our stateless proxy
b. Other: Only allow requests from our SSH proxy

3. Revert non-Security approved modifications to the firewall rules



BlackHat 2019

Firewall Manager Architecture

Service Inventory Firewall Manager 
(Source of Truth)

New 
Service

Fleet

Synchronize 
Firewall Rules

Update Rules



BlackHat 2019

Stateless AuthN/Z Proxy

● Support multiple forms of AuthN
○ Service-to-service
○ User-to-service

● Easy integration
○ App Engine: zero setup
○ Other: config change to stateless proxy

● Easily offboard users
○ Periodic syncs with ACL source of truth

● Reliable



BlackHat 2019

Stateless AuthN/Z Proxy Architecture

1. Configuration
2. Authentication and Authorization
3. Proxying Requests



BlackHat 2019

Update 
Configuration

Stateless AuthN/Z Proxy Architecture: 
Configuration

GCS Proxy
Poll every 
10 minutes

Rotator

Source 
Control

ACL 
Service

Poll every 
10 minutes

Upload Configuration 
to GCS

Upload ACLs to GCS



BlackHat 2019

Stateless AuthN/Z Proxy Architecture: 
AuthN/Z

Proxy

Browser

IAP Jump Point

User tries to access service 
behind proxy



BlackHat 2019

Stateless AuthN/Z Proxy Architecture: 
AuthN/Z

Proxy

Browser

IAP Jump Point

Proxy can’t authenticate the 
user. Redirects to Jump Point

User reaches Google’s Identity 
Aware Proxy (IAP) and signs in



BlackHat 2019

Stateless AuthN/Z Proxy Architecture: 
AuthN/Z

Proxy

Browser

IAP Jump Point

The Jump Point creates a 
ticket with the user’s Identity 
and redirects the user to the 
Proxy



BlackHat 2019

Stateless AuthN/Z Proxy Architecture: 
AuthN/Z

Proxy

Browser

IAP Jump Point

User forwards the ticket to the proxy, 
which compares the identity against its 
ACLs and proxies the request



BlackHat 2019

Stateless AuthN/Z Proxy Architecture: 
AuthN/Z

Proxy

Browser

IAP Jump Point

User’s request reaches service



BlackHat 2019

Stateless AuthN/Z Proxy Architecture: 
AuthN/Z

Proxy

Browser

IAP Jump Point

IAP + Jump Point can be 
generalized as a SSO provider

SSO



BlackHat 2019

Stateless AuthN/Z Proxy Architecture: 
Proxying

Central Proxy

App Engine
Service

Leaf Proxy

Service A

Service B

VPC Peering

Inbound 
Request



BlackHat 2019

Stateless AuthN/Z Proxy Challenges

1. Higher latency, particularly for App Engine
2. Double Billing - twice the egress



Managed Services



BlackHat 2019

Managed Services: Goals

1. Low Latency
2. Cheap
3. Granular Auth N/Z
4. Visibility



BlackHat 2019

Managed Services: Components

1. API Gateway
2. Service Mesh
3. Configuration Controller
4. Service Sidecar



BlackHat 2019

Managed Services: API Gateway

1. Envoy as a front-proxy
2. Single entry point for external traffic
3. Set of audited AuthN filters
4. Centrally managed

API Gateway

Service A Service B Service C



BlackHat 2019

Managed Services: Service Mesh

1. Centrally managed and visible routing
2. Envoy provides

a. Authentication
b. Encryption
c. Metrics

3. Not routable from Internet except via 
API Gateway Service 1

Auth
Metrics
Application

API Gateway

Config Server

Service 2

Auth

Metrics

Application



BlackHat 2019

Managed Services: Configuration 
Controller

1. Central component to manage routes
2. Routes need to be approved by owners
3. Authentication included automatically based on configuration state



BlackHat 2019

Managed Services: Service Sidecar

1. Envoy as a sidecar
2. Connects to CA to establish identity
3. Fetches config from central configuration service
4. Authenticates all incoming traffic
5. Exposes a port locally for service egress

Service 1

Auth
Metrics
Application



BlackHat 2019

Managed Services: Challenges

1. Onboarding: configuration changes require approval
2. Noisy Neighbors: single account/VPC means that cloud quotas are 

shared by all services
3. Central Point of Failure



What about the 
non-migrated services? 



BlackHat 2019

Introspection



BlackHat 2019

Introspection Library

● Easy to integrate 
○ Single line of code
○ Supports all service frameworks

● Gathers security-critical information
○ Routes
○ Auth Controls (Filters, decorators, annotations, etc.)
○ Packages
○ Service Metadata

● Runs on instance startup
● Triggers high signal alerts



BlackHat 2019

Write data to bucket 
on instance startupPeriodically aggregate bucket data

Trigger any alerts
Billing service pings Introspection service 
about new Service A

Provision Bucket for Service A

Introspection Architecture

Billing 
Enabler

GCS/S3

Introspection 
backend

Alert Platform

Service A



BlackHat 2019

Core Infrastructure

● Firewall Manager: Gate services by default
● Stateless Proxy: Allow authenticated access to services
● API Gateway & Service Mesh: Production environment to run 

services with controls
● Introspection: Understand service state



BlackHat 2019

Revisiting Goals

● Flexibility: Minimum opinions about development 
environments and cloud feature use*

● Scalability: No need for developer instrumentation
● Granularity: By default all services are gated with granular 

authN and authZ
● Automatability: Reduce operational costs

*if developers want high QPS or to receive user traffic, there 
will be necessary changes



Order of Operations



BlackHat 2019

Step 1: Lay the Foundation
● Create a central hook that provides ways to make future changes
● Inventory all new services



BlackHat 2019

Step 2: Start Simple
● Gate services in development to just corporate IPs
● Build Firewall Manager



BlackHat 2019

Step 3: Add Granularity
● Transition from IP-based auth to service identities
● Build Stateless AuthN/Z Proxy
● As things transition to production perform manual review



BlackHat 2019

Step 4: Understand Production
● Learn how your services change over time
● Build out an Introspection library



BlackHat 2019

Step 5: Provide Robust Controls 
in Production

● Build out a central gateway and service mesh
● Migrate existing services



Lessons Learned



Security is Engineering



Gain a central hook into your 
fleet early



Visibility before enforcement



Make your security posture 
something you can reason about 

- no black boxes



Offer other engineering 
teams a carrot






