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Welcome to the Cloud

GCEGKEApp EngineEC2 EKS
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“After deploying the application, you 
need to expose it to the Internet so that 
users can access it.”
- GKE Quickstart

Open By Default
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Constraints
● Networking

○ Not possible to have one large internal only network
○ Limited enforcement options provided by AWS/GCP
○ Services like App Engine must be exposed directly to the Internet

● Central Management
○ Lack of central CI/CD Pipeline
○ Wide variety of technologies
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● It’s unclear when security should review an app.
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2. Implement AuthN & AuthZ controls on individual 

services
3. Firewalls
4. Google’s Identity Aware Proxy
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Considered Gating Approaches

1. Enabling Billing Post-Review
2. Implement AuthN & AuthZ controls on individual 

services
3. Firewalls
4. Google’s Identity Aware Proxy

Not Automatable



BlackHat 2019

Goals

● Flexibility: Minimum opinions about development 
environments and cloud feature use*

● Scalability: No need for developer instrumentation
● Granularity: By default all services are gated with granular 

authN and authZ
● Automatability: Reduce operational costs

*if developers want high QPS or to receive user traffic, there 
will be necessary changes
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Laying the Groundwork: Primitives

1. Network Control
2. Service Inventory
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Laying the Groundwork: Primitives

Solution: Central service that enables billing 
and gives the security team network 
management access and inventories 
services
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Development Lifecycle
● It’s unclear when security should review an app.

New app created

You’re required to 
file a security 
review.

Ready to launch

The app has a 
bunch of new 
features.

Going Steady

UnManaged Managed

You’re on the 
internet 🎉

Hello 🌎
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UnManaged Services

1. New Services in Development
2. Internal Tools

Treated identically by Security
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UnManaged Services: Primitives

1. Firewall Manager
2. Stateless AuthN/Z Proxy



BlackHat 2019

Firewall Manager

1. Import every service from our central inventory
2. Set base level firewall rules on every service

a. App Engine: Only allow requests from our stateless proxy
b. Other: Only allow requests from our SSH proxy

3. Revert non-Security approved modifications to the firewall rules
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Firewall Manager Architecture

Service Inventory Firewall Manager 
(Source of Truth)

New 
Service

Fleet

Synchronize 
Firewall Rules

Update Rules
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Stateless AuthN/Z Proxy

● Support multiple forms of AuthN
○ Service-to-service
○ User-to-service

● Easy integration
○ App Engine: zero setup
○ Other: config change to stateless proxy

● Easily offboard users
○ Periodic syncs with ACL source of truth

● Reliable
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Stateless AuthN/Z Proxy Architecture

1. Configuration
2. Authentication and Authorization
3. Proxying Requests
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Update 
Configuration

Stateless AuthN/Z Proxy Architecture: 
Configuration

GCS Proxy
Poll every 
10 minutes

Rotator

Source 
Control

ACL 
Service

Poll every 
10 minutes

Upload Configuration 
to GCS

Upload ACLs to GCS
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Stateless AuthN/Z Proxy Architecture: 
AuthN/Z

Proxy

Browser

IAP Jump Point

User tries to access service 
behind proxy
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Stateless AuthN/Z Proxy Architecture: 
AuthN/Z

Proxy

Browser

IAP Jump Point

Proxy can’t authenticate the 
user. Redirects to Jump Point

User reaches Google’s Identity 
Aware Proxy (IAP) and signs in
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Stateless AuthN/Z Proxy Architecture: 
AuthN/Z

Proxy

Browser

IAP Jump Point

The Jump Point creates a 
ticket with the user’s Identity 
and redirects the user to the 
Proxy
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Stateless AuthN/Z Proxy Architecture: 
AuthN/Z

Proxy

Browser

IAP Jump Point

User forwards the ticket to the proxy, 
which compares the identity against its 
ACLs and proxies the request
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Stateless AuthN/Z Proxy Architecture: 
AuthN/Z

Proxy

Browser

IAP Jump Point

User’s request reaches service
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Stateless AuthN/Z Proxy Architecture: 
AuthN/Z

Proxy

Browser

IAP Jump Point

IAP + Jump Point can be 
generalized as a SSO provider

SSO
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Stateless AuthN/Z Proxy Architecture: 
Proxying

Central Proxy

App Engine
Service

Leaf Proxy

Service A

Service B

VPC Peering

Inbound 
Request
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Stateless AuthN/Z Proxy Challenges

1. Higher latency, particularly for App Engine
2. Double Billing - twice the egress



Managed Services
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Managed Services: Goals

1. Low Latency
2. Cheap
3. Granular Auth N/Z
4. Visibility
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Managed Services: Components

1. API Gateway
2. Service Mesh
3. Configuration Controller
4. Service Sidecar
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Managed Services: API Gateway

1. Envoy as a front-proxy
2. Single entry point for external traffic
3. Set of audited AuthN filters
4. Centrally managed

API Gateway

Service A Service B Service C
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Managed Services: Service Mesh

1. Centrally managed and visible routing
2. Envoy provides

a. Authentication
b. Encryption
c. Metrics

3. Not routable from Internet except via 
API Gateway Service 1

Auth
Metrics
Application

API Gateway

Config Server

Service 2

Auth

Metrics

Application
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Managed Services: Configuration 
Controller

1. Central component to manage routes
2. Routes need to be approved by owners
3. Authentication included automatically based on configuration state
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Managed Services: Service Sidecar

1. Envoy as a sidecar
2. Connects to CA to establish identity
3. Fetches config from central configuration service
4. Authenticates all incoming traffic
5. Exposes a port locally for service egress

Service 1

Auth
Metrics
Application
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Managed Services: Challenges

1. Onboarding: configuration changes require approval
2. Noisy Neighbors: single account/VPC means that cloud quotas are 

shared by all services
3. Central Point of Failure



What about the 
non-migrated services? 
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Introspection
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Introspection Library

● Easy to integrate 
○ Single line of code
○ Supports all service frameworks

● Gathers security-critical information
○ Routes
○ Auth Controls (Filters, decorators, annotations, etc.)
○ Packages
○ Service Metadata

● Runs on instance startup
● Triggers high signal alerts
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Write data to bucket 
on instance startupPeriodically aggregate bucket data

Trigger any alerts
Billing service pings Introspection service 
about new Service A

Provision Bucket for Service A

Introspection Architecture

Billing 
Enabler

GCS/S3

Introspection 
backend

Alert Platform

Service A
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Core Infrastructure

● Firewall Manager: Gate services by default
● Stateless Proxy: Allow authenticated access to services
● API Gateway & Service Mesh: Production environment to run 

services with controls
● Introspection: Understand service state
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Revisiting Goals

● Flexibility: Minimum opinions about development 
environments and cloud feature use*

● Scalability: No need for developer instrumentation
● Granularity: By default all services are gated with granular 

authN and authZ
● Automatability: Reduce operational costs

*if developers want high QPS or to receive user traffic, there 
will be necessary changes



Order of Operations



BlackHat 2019

Step 1: Lay the Foundation
● Create a central hook that provides ways to make future changes
● Inventory all new services
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Step 2: Start Simple
● Gate services in development to just corporate IPs
● Build Firewall Manager
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Step 3: Add Granularity
● Transition from IP-based auth to service identities
● Build Stateless AuthN/Z Proxy
● As things transition to production perform manual review
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Step 4: Understand Production
● Learn how your services change over time
● Build out an Introspection library
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Step 5: Provide Robust Controls 
in Production

● Build out a central gateway and service mesh
● Migrate existing services



Lessons Learned



Security is Engineering



Gain a central hook into your 
fleet early



Visibility before enforcement



Make your security posture 
something you can reason about 

- no black boxes



Offer other engineering 
teams a carrot






