
Preventing Authentication Bypass
A Tale of Two Researchers

Terry Zhang, Tophant

Ron Chan, Independent Researcher

Ravi Jaiswal, Microsoft

Cast of characters

Ravi Jaiswal, a principal engineering manager for Outlook

Web App

2

Terry Zhang, co-founder of Tophant and specialist in breaking

identity, working independently of…

Ron Chan, an independent security researcher, who

concurrently with Terry was investigating…

Outlook Web App, a mail service created by…

Microsoft, a technology company, represented here by…

Chapter 1

discoverythe first

Some time before Sunday, March 24, 2019

A new UI option? Let’s check it out.

4

Look at that!

• Intercepting the request using Burp Suite, I
discovered a new API endpoint I’d never seen
before.

POST /owa/service.svc?action=GetAccessTokenforResource&UA=0&n=14&EP=1&app=Mail HTTP/1.1
Host: outlook.office.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:65.0) Gecko/20100101 Firefox/65.0

Accept: */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

content-type: application/json; charset=utf-8

action: GetAccessTokenforResource

x-owa-correlationid: 55c43e39-af14-f3ce-88d5-adcea46af253

x-owa-urlpostdata: {"__type":"TokenRequest:#Exchange","Resource":"https://outlook.office.com"}

5

An unsigned
token?

• The endpoint had an action called
GetAccessTokenForResource, and returned an
unsigned JSON Web Token (JWT)

{"TokenResultCode":0,"AccessToken":"eyJhbGciOiJub25lIiwidHlwIjoiSldUI
n0.eyJvaWQiOiIwYmQwMWY0Yi1iNjBiLTRlODYtOWMzNi01YzE3MzExYTlh
NzkiLCJwdWlkIjoiMTAwMzIwMDA0MTgzRjYzQSIsInNtdHAiOiJhdHRhY2tlc
kB0b3BoYW50Lm9ubWljcm9zb2Z0LmNvbSIsInVwbiI6ImF0dGFja2VyQHR
vcGhhbnQub25taWNyb3NvZnQuY29tIiwic2NwIjoiZnVsbF9hY2Nlc3NfYXN
fZXhjaGFuZ2UgRFdF.........................5mMy0zYVFYNlJBIiwidGlkIjoiMDAtM
DAwMDAwMDAwMDAwQDI5NzNjZDU3LTIzN2MtNGRiYy04NTI3LTM2NG
ZkNmY4MTQzNiIsImF1ZCI6Imh0dHBzOi8vb3V0bG9vay5vZmZpY2UuY29tI
n0.","AccessTokenExpiry":"2019-03-24T04:13:55.183Z","ExpiresIn":890}

6

Yes—it’s unsigned.

"oid":"0bd01f4b-b60b-4e86-9c36-5c17311a9a79”

7

This didn’t
look like
much.
But then I tried it out in
the Outlook REST API.

8

Normally, you’d need a user’s authorization
to get a JWT.

9

And the JWT you get is signed and has a
different data structure.

10

Unsigned token
Signed token

But let’s give it a try.

Sure enough, Outlook server-side consumes the unsigned
token and returns the user’s profile.

11

"oid":"0bd01f4b-b60b-4e86-9c36-5c17311a9a79”

Let’s look at key details of the token.

Item Description Value

oid userid within current O365 tenant 0bd01f4b-b60b-4e86-9c36-5c17311a9a79

smtp user’s o365 email address attacker@tophant.onmicrosoft.com

scp Full permission scope granted full_access_as_exchange DWEngine-Internal.Read Locations-Internal.ReadWrite
SubstrateSearch-Internal.ReadWrite TailoredExperiences-Internal.ReadWrite
MailboxSettings.ReadWrite Todo-Internal.ReadWrite Notes.ReadWrite Notes-
Internal.ReadWrite Premium-Internal.ReadWrite Mail.ReadWrite Calendars.ReadWrite”

Actor token Another (signed) JWT token,
contains the tenant ID

eyJhbGciOiJSUzI1NiIsImtpZCI6IjA2MDBGOUY2NzQ2MjA3MzdFNzM0MDRFMjg3QzQ1QTgxO
ENCN0NFQjgiLCJ4NXQiOiJCZ0Q1OW5SaUJ6Zm5OQVRpaDhSYWdZeTN6cmciLCJ0eXAiOiJKV1
QifQ.
_XBXXnCi4hDXRj_nnto8lzpFMcwOGND_J8m3AY3FTKMAGOsZingHBd9gVv0KDAfYamGZ_AN4
PXLkUB0R9S1IkAJPzcqhsdmQZPmj6ijTiLihyl_6SqOeRDQR8UhfLGc1WSf9iC8tlGqzdFiQT9rUi8j
G7hh9VXhjv5UkSOZhYVSgOWHhfDVDA”

tid current o365 tenant ID 2973cd57-237c-4dbc-8527-364fd6f81436

I can specify any OID within the same

tenant and retrieve that user’s profile!

But I can only do this on the same

tenant. The actor token contains the

tenant ID.

12

What about consumer Outlook?

• The consumer Outlook service
is the same as enterprise, just
running on different domains.

• Both services support
GetAccessTokenforResource

• Interesting: all consumer mail
services (Hotmail, Live,
Outlook) have the same
tenant ID.

13

POST
/owa/service.svc?action=GetAccessTokenforResource&UA=0&n=11&EP=1&ap
p=Mail HTTP/1.1
Host: outlook.live.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:65.0)
Gecko/20100101 Firefox/65.0

Accept: */*

Accept-Language: en-US,enAccept-Encoding: gzip, deflate

;q=0.5

Referer: https://outlook.live.com/
x-req-source: Mail

content-type: application/json; charset=utf-8

action: GetAccessTokenforResource

x-owa-urlpostdata:
%7B%22__type%22%3A%22TokenRequest%3A%23Exchange%22%2C%22Re
source%22%3A%22https%3A%2F%2Foutlook.live.com%22%7D

Origin: https://outlook.live.com

Connection: close

Content-Length: 0

Demo time

14

The result

In comparing the

unsigned JWT from two

personal accounts, I

learn that the TID is

always the same.

Although I can’t easily

get the OID for another

personal account…

… I find I can substitute

the email address to

impersonate any user in

consumer cloud.

15

This looks like a good candidate for bounty!

secure@microsoft.com

Chapter 2

discoverythe second

Some time before Thursday, April 4, 2019

I saw a retweet.

17

Let’s try using Burp Suite on Outlook Web
App.

I’d almost given up when I found the API, thanks to the JSON Web Token Attacker plugin

18

Just another JWT sending requests to an
API endpoint.

19

Let’s use that plugin to look more closely.

Nothing

special in the

header…

The payload has

R/W permissions—

nothing special…

Now we’re

getting

somewhere.

20

What can we
do with an

unsigned
JWT?

• Figure out what parameter the API uses to identify
me

• Change that parameter to impersonate others

• Apply the JWT to as many endpoints as possible to
see what we can do.

{"oid":"
","puid":"20031FFFBA1D0425","smtp":" ","upn":"

","ver":"Exchange.Callback.V2","appid":"00000002-0000-0ff1-ce00-
000000000000","deploymentid":"https://outlook.office365.com/","tid":"e3cf3c98-a978-465f-8254-
9d541eeea73c","acr":"1","appidacr":"0","scp":"OWA.AccessAsUser.All EWS.AccessAsUser.All
DWEngine-Internal.Read Locations-Internal.ReadWrite SubstrateSearch-Internal.ReadWrite
TailoredExperiences-Internal.ReadWrite MailboxSettings.ReadWrite Todo-Internal.ReadWrite
Notes.ReadWrite Notes-Internal.ReadWrite Premium-Internal.ReadWrite Mail.ReadWrite
Calendars.ReadWrite Signals.ReadWrite ConnectedAccount-Internal.ReadWrite
Connectors.ReadWrite.Shared User.Read Group.ReadWrite.All Calendars-Internal.ReadWrite
FocusedInbox-Internal.ReadWrite
User.ReadWrite","nbf":1563921787,"exp":1563922687,"iss":"https://outlook.office365.com/","aud":"
https://outlook.office.com"}

21

Next steps: RTFM to get the OID

Consulted the API documentation to
learn how to find people relevant to me…

… then get their OID…
… and then get the messages in their

mailbox.

22

The result

I can get an

unsigned JWT.

I can get another

person’s OID

I can substitute that

OID in the unsigned

JWT and send it to

the mail service.

This allows me to

retrieve their email.

23

This looks like a good candidate for bounty!

secure@microsoft.com

Chapter 3

Beginning March 24, 2019

the response

Sunday, March 24, 2019

• First report received, triaged, and cased for remediation

25

Thursday, April 4, 2019

• Second report received,
triaged and cased.

• The Microsoft Security
Response Center initiates a
Software and Services
Incident Response Plan
(SSIRP) to coordinate
response.

26

Saturday, April 6, 2019
The OWA team mitigates the
vulnerability by shutting off the
API path.

27

The mitigation

OWA
Client

Outlook
REST

endpoint

OWA
service

endpoint

Token library

28

1. GetAccessToken

Cookie auth

3. Call with Token

2. Return Token

Search depended on the API, so the OWA team
temporarily rerouted search to use a new path
until the fix was ready.

Wednesday, April 24,
2019
The OWA team finished rolling
out a fix that prevented clients
from being able to acquire the
editable token.

29

The fix

Token
Service

C
o
n
f
i
g

30

OWA
Client

Outlook
REST

endpoint

OWA
service

endpoint

1. GetAccessToken

Cookie auth

4. Call with Token

3. Return Token

2. Get Token

As part of the fix the flow for Search was
restored.

Wednesday, April 24, 2019

32

Thank you for your partnership!

The outcome

33

Researchers
reported the

issue to
Microsoft

Microsoft
quickly

mitigated the
issue to protect

customers

Comprehensive
fix was rolled
out shortly
afterwards

The researchers
received bounty

rewards

Customers were
protected

Epilogue

avoiding repeats and key learnings

Key learnings
for

developers

• Continue promoting resource-scoped and
one-time tokens

• Drive to end support for legacy token types

• Set security policies for token allocation

Key learnings
for service
providers

• Ready your incident response process

• Review scenario security

• Keep improving flow security

• Partner with security community to find
flaws early

Key learnings
for

researchers

• Change is an opportunity to find new attack
surface

• Keep improving your toolbox

• Make sure to document and screenshot
your work

Resources

38

Download Burp

Suite
https://portswigger.net/

Read the

Outlook Mail API
https://docs.microsoft.com/en-us/graph/outlook-mail-

concept-overview

Develop a

security incident

response plan

https://msrc-blog.microsoft.com/2019/06/25/inside-the-

msrc-customer-centric-incident-response/ (1st in a series)

Follow Terry and

Ron on Twitter
@pnig0s and @ngalongc

https://portswigger.net/
https://docs.microsoft.com/en-us/graph/outlook-mail-concept-overview
https://msrc-blog.microsoft.com/2019/06/25/inside-the-msrc-customer-centric-incident-response/

Thank you!

Terry, Ron, and Ravi

