

SECURITY
WHITEPAPER

iRule injection

Stockholm, Sweden, July 25, 2019
Version 1.0

Christoffer Jerkeby

Senior security consultant

F-Secure Cyber Security Services

F-Secure © 2019 1

TABLE OF CONTENTS

1. Executive summary .. 3

 Vulnerability background .. 3
 Conclusions ... 3
 Recommendations .. 4
 Actions .. 4
 Technical background ... 5

1.5.1. TCL command interpretation ... 5
1.5.2. Command injection and double substitution ... 6
 Findings BIG-IP .. Error! Bookmark not defined.

1.6.1. iRule injection in user input handling ... 7
1.6.2. iRule injection in stored session data ... 8
1.6.3. MCPD commands on localhost .. 9

2. APPENDIX .. 10

 Vulnerability management process .. 10

F-Secure Cyber Security Services

F-Secure © 2019 2

ABOUT THIS DOCUMENT

F-Secure researcher Christoffer Jerkeby discovered an exploitable security flaw that is present in some
implementations of F5 Networks’ popular BIG-IP load balancer. The class of security flaw is often
referred to as a Remote Code or Command Execution (RCE) vulnerability. When exploited, the
vulnerability permits an attacker to execute commands on the technology to affect a compromise. Over
300,000 active, and potentially vulnerable, BIG-IP implementations were found to be exposed on the
web.

The issue has been disclosed to the vendor (F5) and their advisory note can be found here:
https://support.f5.com/csp/article/K15650046.

This whitepaper was written to help organizations understand and avoid iRule injections.

https://support.f5.com/csp/article/K15650046

F-Secure Cyber Security Services

F-Secure © 2019 3

1. EXECUTIVE SUMMARY

 Vulnerability background

BIG-IP is commonly used as a load balancer by businesses and governments that provide online services
to large numbers of people. Load balancers help organizations manage sessions, store cookies, route
web traffic to backend servers, and more. The research team discovered over 300,000 active BIG-IP
implementations on the internet during the course of researching this issue, but due to methodological
limitations, suspects the real number could be much higher.

And while not everyone using BIG-IP will be vulnerable, the obscure nature of the underlying issue
means most organizations need to investigate and verify whether or not they’re affected.

The security issue is present in the product’s iRule feature. iRule is a powerful and flexible feature within
the BIG-IP local traffic management (LTM) system that is used to manage network traffic. iRules are
created using the Tool Command Language (Tcl). Certain coding practices may allow an attacker to
inject arbitrary Tcl commands, which could be executed in the security context of the target Tcl script.

The coding flaw and class of vulnerability is not novel and has been known, along with other command
injection vulnerabilities in other popular languages for some time. It’s presence in such a popular and
most often internet facing device such as this warrants a public disclosure to raise awareness of this
issue and to encourage organizations to proactively assess their exposure to the vulnerability.

 Conclusions

The device running the vulnerable software can become a beachhead from which an adversary could
launch further attacks against the organization’s servers, culminating in a serious breach. The web
traffic that passes through the technology could also be intercepted and manipulated. This could lead
to the exposure of sensitive information, including authentication credentials and application secrets;
as well as allowing the users of an organization’s web services to be targeted and attacked.

Free trial versions of the technology can be obtained from the vendor and cloud instances can be
accessed from the AWS store for a minimal and affordable cost. The vendor has also recently made the
advisory available to the public. Additionally, it is possible to mass scan the internet to identify and
exploit vulnerable instances of the technology, and in some cases, compromises can be automated. If
this happens, we could see the vulnerability leveraged to breach organizations en masse. It is therefore
sensible to expect this issue to attract attention from attackers, as well as bug bounty hunters.

In some cases, exploiting a vulnerable system can be as simple as submitting a command or piece of
code as part of a web request that the technology will execute for the attacker. To make matters worse,
in some exploitation cases the attackers’ actions may not recorded, meaning evidence of malicious
activity would be absent. In other cases, an attacker could delete any logs that do contain evidence of
their post-exploit activities – severely hindering any incident investigations.

F-Secure Cyber Security Services

F-Secure © 2019 4

 Recommendations

There are several free, open-source tools that organizations can use to identify insecure configurations
in their BIG-IP implementations. It is recommended that organizations proactively investigate whether
or not they’re affected.

 Actions

These recommended actions are written in chronological order to support an organization in detecting and
defending against iRule injections.

1. Create an inventory of active iRule scripts and establish a version control repository for each script and
their dependencies.

2. Convert scripts to pure Tcl and run tclscan.tcl to establish easy to detect vulnerabilities (download the
code at https://github.com/kugg/tclscan).

3. Run iruledetector.py in Burpsuite to test out if any user action can lead to iRule injections.
4. Test the logic of iRule scripts by putting functions in unit tests of TestTcl (get the code at:

https://testcl.com).

F-Secure Cyber Security Services

F-Secure © 2019 5

 Technical background

This section details aspects of command injections that are relevant to understand and detect issues in
existing code in order to avoid writing iRule injections in new code.

1.5.1. TCL command interpretation

An argument is evaluated by breaking down words and substituting its meaning depending on the string
enclosure.

command ”$arg1” ”$arg2” # Quoted arguments

command [$arg1] [$arg2] # Bracketed arguments

command {$arg1} {$arg2} # Braced arguments

command $arg1 $arg2 # Unquoted arguments

A document named the dodekalouge (https://wiki.tcl-lang.org/page/Dodekalogue) describes how
arguments to commands are expanded.

Quoted arguments
Arguments inside double quotes (”) will perform: ”Command substitution, variable substitution, and
backslash substitution are performed on the characters between the quotes …”

Bracketed arguments
Arguments inside brackets []: ”If a word contains an open bracket (“[”) then TCL performs command
substitution.” This is equivalent to backticks ` in /bin/sh.

Unquoted arguments

An argument to a function that does not make use of any of the above quotations will perform differently
depending on how the command uses it. If the command has a ?body? argument the argument variable will
be executed. In other words, the body part of command invocation is a list of commands to execute if a
condition is met

command ?arg? ?body?

after 1 $body

while 1 $body

if 1 $body

switch 1 1 $body

In these cases, the value of $body will be command substituted regardless of quote, unless braces are used

Braced arguments

In braced arguments no substitutions are performed on the characters between the braces, except for
backslash-newline substitutions. Nor do semi-colons, newlines, close brackets, or white space receive any
special interpretation.

This means that user input can safely be handled inside of braced arguments without risk of execution.

F-Secure Cyber Security Services

F-Secure © 2019 6

1.5.2. Command injection and double substitution

Double substitution

A Tcl command injection is an attack type originally describing the occurrence of double substitution. A
double substitution occurs when the Tcl interpreter performs command substitution on the arguments of a
command. Then the Tcl interpreter pass the result of the command substitution as an argument to the
command that performs evaluation or substitution of the value..

The Tcl interpreted performs substitution of arguments in two steps:

“First, the Tcl interpreter breaks the command into words and performs substitutions. Then the interpreter
uses the first word as a command name, calls the command, and passes the rest of the words to the
command as arguments.”

Read more here: https://wiki.tcl-lang.org/page/double+substitution

Command injection

A command injection occurs when the second round of a substitution inside of a command interprets its
argument as executable code. This occurs if the input starts with either “[“ or “{[“ or “;”. A bracket will always
be interpreted as executed script by the current command substituting interpreter. The brace and bracket
may be executed if the command running is evaluating the argument. The semicolon may result in further
execution of a line that is already interpreted as a script such as an argument to “expr”, “subst” or
“eval”.

Read more here: https://wiki.tcl-lang.org/page/Injection+Attack

https://wiki.tcl-lang.org/page/double+substitution
https://wiki.tcl-lang.org/page/Injection+Attack

F-Secure Cyber Security Services

F-Secure © 2019 7

 BIG-IP Findings

1.6.1. iRule injection in user input handling

Description

Any user input handled and interpreted by an iRule script could be used in harmful ways if command
substitution is performed against it. Typically, scripts interpret the [HTTP::header] or
[HTTP::uri] commands in order to establish information about the current packet context.

If the information returned from the user input commands like HTTP:: are used as an argument to a
command evaluating function such as eval, subst or expr there is a high risk of iRule injection.

eval [stats [HTTP::header {user-agent}]]

In this example, a command name stats will be executed by eval, but first its functional argument
HTTP::header will be executed. The return value of HTTP::header may contain hostile iRule code
that will be evaluated by eval if the user-agent headers starts with a “[“ or “;”. The arguments will be expanded
first and the command will run second.

A hostile input could look like this [TCP::respond attack]. The eval command will execute the
TCP::respond command prior to executing stats. The attacker would see the word “attack” in the
response, prior to the HTTP header.

Recommendations

Finding iRule injections requires iRule code review. Manual code review means to open the iRule editor to
read and comprehend the meaning of the iRule. The following steps require an understanding of iRule code
or the Tcl programming language.

Detencation of dangerous use of eval, subst or expr

search for commands that use eval, subst or expr. With a list of potentially vulnerable commands
follow the lifespan of user controlled variables. Check if any user controlled variables are used as arguments
to eval, subst or expr.

Detection of dangerous ?body? arguments

Search for occurrences of variable names outside of quotation or inside of bracket or double quotation.
Then match the function name and argument position against the manual page of the command called to
see if the given argument position is used by a ?body? argument. Verify if the body argument is user
controlled.

Coding style

Write short functions with clear documentation on what variables and return values are user controlled.
Document and use exceptions to isolate and detect anomalous behavior. Set up security alarms to trigger
in the logging system if a syntax error is ever produced by production systems.

Automated testing

For automatic code review see the “Recommendations” section for details on how to detect and prevent
iRule injection from user input using “tclscan” and “iruledetect.py”.

F-Secure Cyber Security Services

F-Secure © 2019 8

1.6.2. iRule injection in stored session data

Description

The table command allows storing and reading data in memory. The table information is then replicated
over all connected BIG-IP instances.

The syntax of the table command is:

table set

table lookup

table add

table replace

An attacker that did not gain direct access using user input parsed by an iRule script may be able to store
“table” data with executable iRule scripts in. The data can be derived from a user profile, a part of a session
cookie or a Json Web Token (JWT) for example.

An attacker that has gained command execution privileges to a script that use the table command can
alter the current sessions of any given user and potentially inject responses to and from any user. This is
referred to as a hosted Man In The Middle (MITM).

Recommendations

Treat the data in a table as potentially hostile and perform input validation on its content before use.

F-Secure Cyber Security Services

F-Secure © 2019 9

1.6.3. MCPD commands on localhost

Description

An attacker that has gained command injection privileges can create network connections to localhost on
the BIG-IP instance. A standard BIG-IP setup offer a multitude of services on the localhost interface. The
MCPD protocol on TCP port 6666 offer a binary protocol for administration of the device.

An attacker can send crafted TCP packets to localhost port 6666 to list current users on the system and read
source code among other things. It is likely that the MCPD daemon will serve attackers as a pivoting point
to gain additional permanent access in the BIG-IP instance.

Recommendations

Do not disable the service as it is crucial to the BIG-IP intercommunication.

See prior recommendations on how to avoid iRule injection.

F-Secure Cyber Security Services

F-Secure © 2019 10

2. APPENDIX

 Vulnerability management process

Managing and communicating vulnerability fixes is a mundane process for any mature product development
organization.

The ISO/IEC 291471 and 301112 open standards describe common and approved models for vulnerability
management. ISO-29147 describes the outward-facing interfaces of a product/service organization and
ISO-30111 describes the internal vulnerability management processes for these organizations.

As open standards, these should be implemented with care, bearing in mind the organizational culture and
client interfaces to ensure a sensible and meaningful implementation. The common model does however
describe all central steps for managing vulnerabilities in a responsible manner, and for ensuring easily
verifiable fixes.

If there is no existing process, implementing the common model and defining the process should be done
from the perspective of the development teams.

It is perfectly acceptable that the first implementation of a vulnerability management process in an
organization is a very rough draft. The key issue is that the development organization understands the
process, is committed to it and can demonstrate how vulnerabilities are managed in their area of
responsibility. Unnecessary bureaucracy should be avoided.

A well-planned and well-implemented vulnerability management process is fully integrated into the
everyday project management model used by the development organization. This way the vulnerability
management is aligned with other project and resource management work, like any other change
management activity. This way, no new parallel processes or unnecessary documentation is needed for
managing security related work items.

The key components of the open standard for vulnerability management (ISO-30111) in a product
development environment are presented in the graphic below.

1 ISO/IEC 29147 - Information technology — Security techniques — Vulnerability disclosure
2 ISO/IEC 30111 - Information technology — Security techniques — Vulnerability handling processes

F-Secure Cyber Security Services

F-Secure © 2019 11

Reporting: In this phase, an internal or external source produces vulnerability information to the
organization. Typical sources for vulnerability information include:

• open sources, such as the change logs for third-party software components and publicly disclosed
vulnerability information

• closed sources, such as so-called "zero-day sources" that sell vulnerabilities commercially with
limited availability

• self-generated vulnerability information, such as cyber security audits, internal security testing, and
vulnerability research

• intelligence gathering, such as the reputation and reliability of the publisher or service owner of a
third-party software component

Analysis: In this phase the validity and reliability of the received vulnerability information is verified. In
practice, this means attempting to replicate the vulnerability in the development organization and finding
the root cause for the vulnerability. This also involves surveying what other components in the product may
be susceptible to the same vulnerability. When the organization understands the severity and scope of the
vulnerability, they can evaluate its operational impact, severity, and priority.

The process for handling a vulnerability can end at the analysis phase. One reason for this, for example, can
be that the vulnerability in question is already known and the remedial actions have already been decided.
Alternatively, it might not be possible to replicate and verify the vulnerability. Some cases may also result in
a decision to not fix the vulnerability. The vulnerability could also be managed by giving out instructions how
to reconfigure and harden the security of the system, or how the system could be protected using
complementary security controls.

In all cases it is of the utmost importance that any decision to leave a vulnerability unfixed are conscious
choices - without making any assumptions over the threat model of the party that is using the system.

Remedial actions: This phase involves defining the options regarding the procedure for fixing the
vulnerability. Each option should cover the work estimates, schedule and possible stages for producing a fix.

F-Secure Cyber Security Services

F-Secure © 2019 12

A quick point fix that does not comprehensively address the root cause of the vulnerability may be needed
to provide rapid protection. However, fixing the root cause throughout the system must be planned and
documented for achieving a comprehensive solution in the follow-up phases.

When the remedial procedures are defined, the organization implements an immediate fix for the reported
issue, documents the implementation of the fix, and produces the necessary information on how to verify
the fix.

Publishing fix: In this phase, the fix is made available to clients and relevant stakeholders are notified of the
fixed vulnerability.

Aftermath: This phase involves developing the organization's processes, for example through internal
training or developing technical measures, to avoid similar vulnerabilities in the future. This phase also
focuses on implementing any possible comprehensive fixes needed to remove other occurrences of the
same vulnerability elsewhere in the system.

