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Gatekeeper 
macOS Catalina

First use, quarantined First use, quarantined Non-quarantined

Malicious content scan No known malicious content No known malicious content No known malicious content

Signature check No tampering No tampering −

Local policy check All new software requires 
notarization

All new software requires 
notarization −

First launch prompt User must approve Users must approve 
software in bundles −
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Desktop
Documents
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iCloud Drive 
Third-party cloud storage
Removable volumes
Network volumes

User Data Protections 
Data that requires user consent to access



What about secure boot?



Apple Requirement UEFI

Signature verification of complete boot chain

System Software Authorization (server-side downgrade protection)

Authorization “personalized” for the requesting device (not portable)

User authentication required to downgrade secure boot policy

Secure boot policy protected against physical tamper

System can always be restored to known-good state
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Thunderbolt and PCIe Direct Memory Access (DMA) 
• Accessories can read/write host memory without the involvement of the CPU 
PCIe Option ROMs (OROMs) 
• Device-specific drivers for the early boot environment

Two Critical Challenges
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Intel Virtualization Technology for Directed I/O (VT-d) is a mechanism by which 
the host can place restrictions on DMA from peripherals 
VT-d creates an I/O Memory Management Unit (IOMMU) to manage DMA 
We’ve used VT-d to protect the kernel since OS X Mountain Lion in 2012

VT-d
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VT-d IOMMU hardware

Page table hardware

T2x86 CPU
64 bit protected mode

x86 CPU
64 bit protected mode
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Virtual memory enabled

Page table hardware

macOSUEFI

Fetch instructions RAM not initializedx86 RAM

Verified, read-only 
UEFI firmware

Verified 
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VT-d IOMMU hardware

Page table hardware

T2x86 CPU
64 bit protected mode Verified, read-only 

UEFI firmware

x86 CPU
64 bit protected mode

MMU hardware
Virtual memory enabled

Page table hardware

macOSUEFI

Fetch instructions RAM not initializedx86 RAM
Verified, read-only 

UEFI firmware
Verified 

UEFI firmware

Pre-RAM
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// This array contains the root and interrupt remapping tables. Each table is 
// 4kB, and must be 4kB aligned as well. We can only guarantee the alignment by 
// manually mapping our 2 4kB tables into this 12kB array. By initializing the 
// array to all zeros, every bus is marked as not present, and no interrupts 
// are allowed. 
STATIC UINT8 mTables[TABLE_SIZE * 3] = {0}; 

STATIC 
EFI_STATUS 
EFIAPI 
VTdBlockDMAForUnit(UINTN VTdBar) 
{ 
  EFI_STATUS Status; 
  VTD_ECAP_REG ExtCapabilities; 
  UINT64 RootTable; 
  UINT64 InterruptTable; 

  CHECKED_VTD_CALL(CheckCapabilities(VTdBar)); 

  // ExtCap needed for IOTLB register offset 
  ExtCapabilities.Uint64 = MmioRead64(VTdBar + R_ECAP_REG); 



// This array contains the root and interrupt remapping tables. Each table is 
// 4kB, and must be 4kB aligned as well. We can only guarantee the alignment by 
// manually mapping our 2 4kB tables into this 12kB array. By initializing the 
// array to all zeros, every bus is marked as not present, and no interrupts 
// are allowed. 
STATIC UINT8 mTables[TABLE_SIZE * 3] = {0}; 

STATIC 
EFI_STATUS 
EFIAPI 
VTdBlockDMAForUnit(UINTN VTdBar) 
{ 
  EFI_STATUS Status; 
  VTD_ECAP_REG ExtCapabilities; 
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  CHECKED_VTD_CALL(CheckCapabilities(VTdBar)); 

  // ExtCap needed for IOTLB register offset 
  ExtCapabilities.Uint64 = MmioRead64(VTdBar + R_ECAP_REG); 



  UINT64 InterruptTable; 

  CHECKED_VTD_CALL(CheckCapabilities(VTdBar)); 

  // ExtCap needed for IOTLB register offset 
  ExtCapabilities.Uint64 = MmioRead64(VTdBar + R_ECAP_REG); 

  RootTable = (UINT64)mTables; 

  // Align the root table to a 4kB boundary within the table buffer. 
  RootTable = (RootTable + TABLE_SIZE - 1) & ~(TABLE_SIZE - 1); 

  // Set deny-all root table 
  SetRootTable(VTdBar, RootTable); 

  // Put the interrupt remapping table right after the root table 
  InterruptTable = RootTable + TABLE_SIZE; 

  // Set deny-all interrupt table 
  SetInterruptRemapTable(VTdBar, InterruptTable);

Use mTable  
as RootTable



  RootTable = (UINT64)mTables; 

  // Align the root table to a 4kB boundary within the table buffer. 
  RootTable = (RootTable + TABLE_SIZE - 1) & ~(TABLE_SIZE - 1); 

  // Set deny-all root table 
  SetRootTable(VTdBar, RootTable); 

  // Put the interrupt remapping table right after the root table 
  InterruptTable = RootTable + TABLE_SIZE; 

  // Set deny-all interrupt table 
  SetInterruptRemapTable(VTdBar, InterruptTable);

Use RootTable 
for DMA VT-d



  // Set deny-all root table 
  SetRootTable(VTdBar, RootTable); 

  // Put the interrupt remapping table right after the root table 
  InterruptTable = RootTable + TABLE_SIZE; 

  // Set deny-all interrupt table 
  SetInterruptRemapTable(VTdBar, InterruptTable);

Same for MSI VT-d 
interrupts
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PCIe Option ROMs



Device drivers which PCIe devices supply to UEFI  
UEFI firmware, including OROMs, mostly all run at the same x86 
privilege level: Ring 0 
All code loaded after OROMs, including the booter and kernel, is
vulnerable to overwrite

PCIe Option ROMs
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OROMs can only call a limited subset of expected UEFI interfaces 
• Similar to system call filtering 
OROMs can only install a limited subset of expected UEFI interfaces 
• E.g. read and write to disk blocks, or draw to graphics

OROM Sandbox
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OROM sandbox driver

Non-sandboxed UEFI driversRing 0 
(More privileged)

Ring 3 
(Less privileged)

Hardware 
(More privileged)

PCIe card 2PCIe card 1 PCIe card 3

Core UEFI firmware

x86 CPU

Virtual Memory Space 1 Virtual Memory Space 2 Virtual Memory Space 3

“I’m a SecureBoot 
driver”
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driver (for Card 2)”

“I’m a storage 
driver (for Card 1)”
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OROM can only talk to the assigned device in its sandbox 
• This is the device it was embedded on 
The VT-d policy allows a device to DMA to any memory allocated within its 
OROM’s sandbox 
• Preserve high-throughput DMA but with strong VT-d protection 
• OROM doesn’t even have to be VT-d aware!

OROM Sandbox



OROM Sandbox will drive attackers to privilege escalation and sandbox escapes 
We added a strong set of exploit mitigations to EFI on T2 systems 
• Stack Cookies 
• All EFI memory W^X with read-only page tables 
• SMAP: Ring 0 can’t directly read/write Ring 3 data 
• SMEP: Ring 0 can’t execute Ring 3 code 
• Some Spectre/Meltdown mitigations

EFI Exploit Mitigations



The T2 Security Chip brings key secure boot properties from iOS to the Mac, far 
outclassing UEFI SecureBoot-based systems 
Our DMA protection for PCIe Bus 0 provides state-of-the-art protection against 
DMA attacks targeting firmware 
The Mac OROM Sandbox provides unprecedented defense against malicious 
PCIe Option ROMs compromising the secure boot process

Mac Secure Boot 
Summary



Mac secure boot 
iOS code integrity protection 
Find My



Kernelcache signature verified by iBoot at load time 
Userland __TEXT pages code signed 
• CodeDirectory checked at load time (or static) 
• Pages checked at fault time 
Compromised kernel could change its own __TEXT 
Compromised kernel could disable codesigning altogether, 
or alter userland pages

Software Enforced Code Integrity  
Before iOS 9



Goal 
• Maintain integrity of kernel code and read-only data after secure boot 
Threat model 
• Kernel arbitrary read/write  
• Arbitrary kernel instruction pointer control 
• Arbitrary read/write by DMA agents and system coprocessors 
Out of scope 
• Secure boot bypass

Kernel Integrity Protection



At system initialization, EL3 monitor creates array of kernel page table and text 
hashes in TZ1 
Monitor periodically verifies hashes, panics on mismatch 
Effective against long-lived patches, inherently vulnerable to races

Kernel Integrity Protection v0 
iOS 9



Kernel Integrity Protection v0

CPU Address,TZ1 
(TZ1 can only be set by 

Accesses from EL3) 

EL3, EL1, EL0

Memory 
controller

TZ1 endData 
TZ1 base

DRAM

Monitor code

Page hashes

Kernel code

Kernel data

Kernel code

Kernel data

Kernel code

TZ1 
Access requires 
TZ1 bit



Bootstrap KIP Disable FPU Bootstrap XNU Trap to KIP Hash all regions

Save system 
registers

Disable FPU

Trap to EL3

IRQ

Return to 
EL1/EL0

Route IRQs 
to EL3

Reenable FPU

Return to 
EL1/EL0

Check hashes

Trap to EL3

Trap to XNU

Attempt FP



Must protect critical data in addition to code 
• Page tables 
• Global offset table entries 
• Sandbox configuration 
Integrity verification after boot is vulnerable to race conditions 
Easier to adapt hardware architecture to fit security requirements

Lessons Learned



New hardware design tailored to our goals  
Our threat model had three hardware requirements 
• CPU prevents modification of kernel memory  
• CPU also prevents EL1 execution of non-kernel memory 
• Memory controller prevents DMA writes to protected physical range

Kernel Integrity Protection v1 
iPhone 7



Kernel Integrity Protection v1

CPU

Memory 
controller

ROR end
ROR base

DRAM

Init code

Kernel and 
kext code

Kernel page 
tables

Read Only 
Region 
(ROR)

MMU 

Kernel end
Kernel base

X, RO

XN, RO

XN, RW

PA, 
XN, 
ROVA



We have a strong design for code, but protecting data requires additional 
finesse 
Neither KIP v0 nor KIP v1 prevent modification of TTBR1, which tells CPU where 
to find the kernel’s page tables 
By using a very careful initialization sequence, we make sure no instructions are 
available to modify TTBR1 after CPU finishes initializing

Kernel Integrity Protection v1: Read-Only Data



Required significant rework of kernelcache layout 
Build time checks that no TTBR1 write gadget exists 
Very effective at protecting kernel code integrity  
Only public bypass was off-by-one error in our protection range calculation

Kernel Integrity Protection v1



Applied lessons learned from KIP v1 
Control bits prevent changes to TTBR1, MMU enable, and exception vector 
addresses 
• Guarantees in hardware that MMU configuration cannot be modified 
• Replaces init-only instructions from KIP v1 
Configuration is retained when CPU goes into idle power-off 
• Less complexity in power management transitions

Kernel Integrity Protection v2 
iPhone Xs



Robust enforcement of kernel code and read-only data integrity 
Hardware implementation tailored to software security requirements 
Essential foundation for next-generation security features

Kernel Integrity Protection 
Summary



Builds upon software-only Hardened WebKit JIT Mapping in iOS 10 
CPU register to quickly restrict permissions on RWX memory, per thread 
Removes overhead of a syscall and walking page tables to change permissions

Fast Permission Restrictions (APRR) 
iPhone X



Pre-APRR VM Permissions

Process code Heap Framework code JIT memory

R-X RW- R-X RWX



APRR: JavaScriptCore Execution Threads

Process code Heap Framework code JIT memory

R-X RW- R-X RWX

APRR = ~W

Effective = R-X



APRR: JavaScriptCore JIT Compiler Thread

Process code Heap Framework code JIT memory

R-X RW- R-X RWX

APRR = ~X

Effective = RW-



What about userland?



KIP gives us strong integrity protection for kernel text 
Page table overrides with KIP rely on kernel code being static 
Userland code is dynamically loaded, so we would need dynamic overrides

Protecting Userland Integrity



Ensures userland code can’t be modified after code signature checks complete 
Built upon KIP and APRR 
Manages page tables, code signing validation  
Small TCB 
Guarantees only code inside PPL can alter protected pages 

Page Protection Layer (PPL) 
iPhone Xs



Kernel heap Kernel code Page 
tables

PPL 
heapPPL codeTrampolines

Default
APRR
Effective

RW- R-X R-X R-X R-X RW- RW-
~X ~X ~W ~W

RW- R-X R-X R-- R-- R-- R--



Kernel heap Kernel code Page 
tables

PPL 
heapPPL codeTrampolines

Default
APRR
Effective

RW- R-X R-X R-X R-X RW- RW-

RW- R-X R-X R-X R-X RW- RW-



System-wide dynamic code integrity enforcement 
• Even with a compromised kernel! 
Massive attack surface reduction 
Low overhead 
• No hypervisor traps 
• No nested page tables

Page Protection Layer 
Summary



With code integrity protected, how do 
we protect control flow?



New instructions in ARMv8.3 
Uses spare bits in pointers to store a cryptographic hash 
Designed to be robust in the presence of arbitrary read/write primitives

Pointer Authentication 



Pointer Authentication 
Instructions

pacKK  Xd, Xn

IB key
DA key
DB key

IA key Encrypt Xd

Extra data

Pointer

Key

Signed Pointer



Pointer Authentication 
Sign

0000000
Pointer

100a41238



Pointer Authentication 
Sign

0000000
Padding Address

100a41238



Pointer Authentication 
Sign

7b9352e
Address

100a41238
Signature



Pointer Authentication 
Authenticate

Address

100a412387b9352e
Signature



Pointer Authentication 
Authenticate

Address

0000000100a41238
Padding



7b9352f

Pointer Authentication 
Auth failure

Signature Address

100a41238



2000000

Pointer Authentication 
Auth failure

Address

100a41238
Padding



5 secret 128-bit values 
• IA, IB, DA, DB, and GA keys 
• I keys for instructions, D keys for data 
• GA key for data MAC 
Randomly generated 
• At boot (A keys) 
• At process creation (B keys) 
Can’t be read by attacker

Pointer Authentication 
Keys



Pointer Authentication 
Pointers to code

Function Return Address I B Storage Address

Function Pointers I A 0

Block Invocation Function I A Storage Address

Objective-C Method Cache I B Storage Address + Class + Selector

C++ V-Table Entries I A Storage Address + Hash(mangled method name)

Computed Goto Label I A Hash(function name)

1010 
1110 
1001

+



Pointer Authentication 
Function return address before PAC
_func: 

  stp x29, x30, [sp, #-16]! 
  ... 
  ldp x29, x30, [sp], #16 
  ret



Pointer Authentication 
Function return address after PAC
_func: 
  pacibsp 
  stp x29, x30, [sp, #-16]! 
  ... 
  ldp x29, x30, [sp], #16 
  retab

1010 
1110 
1001

+

IB 
Code 

Process

Storage
Address



Pointer Authentication 
Pointers to data, code via data

Kernel Thread State G A *

User Thread State Registers I A Storage Address

C++ V-Table Pointers D A 0

1010 
1110 
1001

+



Abort on all authentication failures 
in kernel 
Adoption across all Apple kexts 
Hardened jump tables 

Pointer Authentication 
Improvements in iOS 13



ObjC method dispatch hardening 
• Sign and authenticate IMP pointers in 

method cache tables 
Hardened exception handling 
• Hash and verify sensitive register state 
JavaScriptCore JIT and extra data 
hardening

Pointer Authentication 
Improvements in iOS 13



Authenticated members of high value 
data structures 
• Processes, tasks 
• Codesigning 
• Virtual Memory subsystem  
• IPC structures

Pointer Authentication 
Coming soon



Mac secure boot 
iOS code integrity protection 
Find My



Any device in proximity can help, even if stranger to the owner 
Offline device communicates via Bluetooth with participating strangers (finders) 
Finders report their location and a timestamp 
Owner uses a second device to find the lost device

Helping users find lost devices, even when offline



A static device identifier makes the device trackable 
Even with a rotated identifier, finder can’t encrypt location end-to-end 
• Server would have access to the location information

Challenges



• Location reports are not accessible to Apple servers 
– Cannot read, modify, or even add bogus reports  

• Finder identities and location not revealed to Apple servers 
– No finder identifier recorded 
– Reported location is encrypted 

• Information broadcasted by the lost device cannot be used to track it, except by the 
owner

Security and Privacy Goals 
Protect owners, finders, and devices



Find My 
Setup

Generate EC P-224 key pair {d, P = d # G} 
Generate symmetric key SK0 
Store {d, P, SK0} in iCloud Keychain

Encrypted {d, P, SK0} 
in iCloud Keychain



A Find My time period, i, is 15 minutes long 
Derive symmetric key SKi 
• SKi = KDF(SKi-1, “update”) 
Derive anti-tracking secret pair (ui, vi) 
• (ui, vi) = KDF(SKi, “diversify”) 
Unlinkably diversify public key P 
• Pi = ui # P + vi # G 
Broadcast Pi to nearby finders

Find My 
Device broadcasting its location



Finder ECIES-encrypts its location to public key Pi 
Computes lookup indexi = SHA256(Pi) 
Uploads encrypted report with indexi to Apple servers

Find My 
Reporting location of a broadcasting device



Find My 
Owner locating their device 

Retrieve di from iCloud Keychain 
Compute Pi = di # G for lookup period i 
Compute lookup indexi = Hash(Pi) 
ECIES decrypt (posi,0, timei,0) = D(di, rec0)

Query DB for location reports at indexi

DB responds with [rec0, rec1, …]



Novel design to enable users to enlist the help of strangers to locate lost devices 
Highly rigorous privacy properties to protect participating device owners and 
finders 

Find My 
Summary



Mac secure boot 
iOS code integrity protection 
Find My



Mac secure boot 
iOS code integrity protection 
Find My



Apple Security Bounty



Platforms iOS, iCloud

Categories 5

Participation Very small invited 
researcher audience

Maximum payout $200,000

Introduced in 2016



50 High-Value Reports



What’s next?



Apple Security Bounty will be open to 
all researchers





Revised and expanded categories



Maximum Payout

Unauthorized access to iCloud account data on 
Apple servers $100,000

Attack via physical access
Lock screen bypass $100,000

User data extraction $250,000

Attack via user-installed app
Unauthorized access to high-value user data $100,000
Kernel code execution $150,000
CPU side channel attack on high-value user data $250,000

Network attack requiring user interaction
One-click unauthorized access to high-value user data $150,000

One-click kernel code execution $250,000

Network attack with no user interaction
Zero-click radio to kernel with physical proximity $250,000

Zero-click access to high-value user data $500,000



Vulnerabilities in designated pre-
release builds



50%
bonus



What about getting started?



We want to attract exceptional researchers who have been focused on other 
platforms 
New researchers shouldn’t have to find a full chain to bootstrap research 
Existing iOS researchers shouldn’t have to hold back chains for research

Making It Easier to Get Started with iOS Research



iOS Security Research Device Program



Unprecedented, Apple-supported iOS security research platform 
Comes with ssh, a root shell, and advanced debug capabilities 
New research fusing, neither production nor development 

iOS Security Research Device program



Unprecedented, Apple-supported iOS security research platform 
Comes with ssh, a root shell, and advanced debug capabilities 
New research fusing, neither production nor development 
Program applications open to everyone with a track record of high-quality 
systems security research on any platform

iOS Security Research Device program



Unprecedented, Apple-supported iOS security research platform 
Comes with ssh, a root shell, and advanced debug capabilities 
New research fusing, neither production nor development 
Program applications open to everyone with a track record of high-quality 
systems security research on any platform 
Coming next year

iOS Security Research Device program



Participation open to all researchers in the Fall 
Expanded and revised categories 
Highest maximum payouts in the industry 
iOS Security Research Device Program for exceptional researchers new to our 
platform

Apple Security Bounty 
Summary



What about a zero-click iOS full chain 
with kernel code execution and 

persistence?



!!!!!!
$1,000,000 !!!!

!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!



Maximum Payout

Unauthorized access to iCloud account data on 
Apple servers $100,000

Attack via physical access
Lock screen bypass $100,000
User data extraction $250,000

Attack via user-installed app
Unauthorized access to high-value user data $100,000
Kernel code execution $150,000
CPU side channel attack on high-value user data $250,000

Network attack requiring user interaction
One-click unauthorized access to high-value user data $150,000
One-click kernel code execution $250,000

Network attack with no user interaction
Zero-click radio to kernel with physical proximity $250,000
Zero-click access to high-value user data $500,000
Zero-click kernel code execution with persistence $1,000,000



We’re excited to work with you!
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