Behind the Scenes of
10S and Mac Security

lvan Krsti¢
Head of Security Engineering and Architecture, Apple

Mac secure boot

I0S code integrity protection
Find My

Mac secure boot

H

Gatekeeper User Privacy
Protection

Gatekeeper
macOS Catalina

M (>_ m -

First use, quarantined First use, quarantined Non-quarantined
Malicious content scan No known malicious content No known malicious content No known malicious content
Signature check No tampering No tampering —
: All new software requires All new software requires
Local policy check L L —
notarization notarization

| Users must approve
First launch prompt User must approve software in bundles

User Data Protections
Data that requires user consent to access

Contacts
Calendars
Reminders

Photos

User Data Protections
Data that requires user consent to access

Contacts
Calendars

Reminders

Photos

User Data Protections
Data that requires user consent to access

Contacts Desktop
Calendars Documents
Reminders Downloads
Photos ICloud Drive

Third-party cloud storage
Removable volumes

Network volumes

What about secure boot?

Apple Requirement UEFI

Signature verification of complete boot chain Q

System Software Authorization (server-side downgrade protection)

Authorization “personalized” for the requesting device (not portable)

User authentication required to downgrade secure boot policy

Secure boot policy protected against physical tamper

System can always be restored to known-good state

Mac Secure Boot

Mac Secure Boot

Mac Secure Boot

Mac Secure Boot

Mac Secure Boot

X86

Two Critical Challenges

Thunderbolt and PCle Direct Memory Access (DMA)

» Accessories can read/write host memory without the involvement of the CPU

PCle Option ROMs (OROMSs)

* Device-specific drivers for the early boot environment

Refresher — OS Page Tables macos.

x86 CPU MMU hardware x86 RAM
64 bit protected mode Virtual memory enabled

Verified UEFI firmware

Data

Read 4 bytes 0x1570000

from address
Ox000003000000000"

Refresher — OS Page Tables macos.

x86 CPU MMU hardware x86 RAM
64 bit protected mode Virtual memory enabled

Verified UEFI firmware

Data

Read 4 bytes 0x1570000

from address
Ox000003000000000"

Refresher — OS Page Tables macos.

x86 CPU MMU hardware x86 RAM
64 bit protected mode Virtual memory enabled

"Read 4 bytes
from address
Ox000003000000000"

’
L 4
L 4
L4
’
’
’
4
’
’
L4
.

Refresher — OS Page Tables

x86 CPU
64 bit protected mode

x86 RAM

"Read 4 bytes
from address
Ox000003000000000"

Refresher — OS Page Tables

x86 CPU
64 bit protected mode

x86 RAM

"Read 4 bytes
from address <
Ox000003000000000"

WUERI macos.

Unrestricted Direct Memory Access

x86 CPU MMU hardware x86 RAM
64 bit protected mode Virtual memory enabled

Fetch instructions

<

WUERI macos.

Unrestricted Direct Memory Access

x86 CPU MMU hardware x86 RAM
64 bit protected mode Virtual memory enabled

Fetch instructions

<

WUERI macos.

Unrestricted Direct Memory Access

x86 CPU MMU hardware x86 RAM
64 bit protected mode Virtual memory enabled

Fetch instructions

<

U ocos

Unrestricted Direct Memory Access

x86 CPU MMU hardware x86 RAM
64 bit protected mode Virtual memory enabled

Fetch instructions

- —
<

Network Interface
Card (NIC)

U ocos

Unrestricted Direct Memory Access

x86 CPU MMU hardware x86 RAM
64 bit protected mode Virtual memory enabled

Fetch instructions

<

Network Interface
Card (NIC)

U ocos

Unrestricted Direct Memory Access

x86 CPU MMU hardware x86 RAM
64 bit protected mode Virtual memory enabled

Fetch instructions

<

Network Interface
Card (NIC)

VT-d

Intel Virtualization Technology for Directed I/O (VT-d) is a mechanism by which
the host can place restrictions on DMA from peripherals

VT-d creates an |/O Memory Management Unit (IOMMU) to manage DMA

We've used VT-d to protect the kernel since OS X Mountain Lion in 2012

Direct Memory Access with VT-d

x86 CPU MMU hardware x86 RAM
64 bit protected mode Virtual memory enabled

Fetch instructions

<

Network Interface
Card (NIC)

Direct Memory Access with VT-d

x86 CPU MMU hardware x86 RAM
64 bit protected mode Virtual memory enabled

Fetch instructions

<

Network Interface
Card (NIC)

Direct Memory Access with VT-d

x86 CPU MMU hardware x86 RAM
64 bit protected mode Virtual memory enabled

Page table hardware
Fetch instructions

<

Network Interface
Card (NIC)

Direct Memory Access with VT-d

x86 CPU MMU hardware x86 RAM
64 bit protected mode Virtual memory enabled

Page table hardware
Fetch instructions

<

Network Interface
Card (NIC)

DMA Protection for Thunderbolt

Xx86

>

DMA Protection for Thunderbolt

Thunderbolt
malicious DMA

Xx86

>

DMA Protection for Thunderbolt

Thunderbolt
malicious DMA

Xx86

>

VT-d
setup

DMA Protection for Thunderbolt

Xx86

>

VT-d
setup

DMA Protection for Thunderbolt

Xx86

>

VT-d
setup

DMA Protection for Thunderbolt

Thunderbolt
malicious DMA

Xx86

T2

VT-d
setup

DMA Protection for Thunderbolt

Thunderbolt
malicious DMA

Xx86

T2 -

VT-d
setup

DMA Protection for Thunderbolt

Xx86

T2

VT-d
setup

DMA Protection for PCle

Xx86

T2

VT-d
setup

DMA Protection for PCle

PCle
malicious DMA

Xx86

T2 -

VT-d
setup

DMA Protection for PCle

PCle
malicious DMA

Xx86

T2

VT-d
setup

DMA Protection for PCle

T2

VT-d
setup

Xx86

DMA Protection for PCle Bus O

Xx86

T2

VT-d
setup

DMA Protection for PCle Bus O

Xx86

>

VT-d
setup

DMA Protection for PCle Bus O

PCle Bus O
malicious DMA

Xx86

T2

VT-d
setup

Fetch instructions

VT-d IOMMU hardware

RAM not initialized

pre-navi JUEEHINEEES

Fetch instructions

VT-d IOMMU hardware

RAM not initialized

x86 CPU MMU hardware T2

64 bit protected mode Virtual memory enabled _

Fetch instructions x86 RAM

VT-d IOMMU hardware

pre-nant JUEEHINEEES

x86 CPU
64 bit protected mode

T2

x86 RAM

-

Fetch instructions

VT-d IOMMU hardware

pre-navi JUERRNRSEOSS

x86 CPU MMU hardware T2

64 bit protected mode Virtual memory enabled _

Fetch instructions

VT-d IOMMU hardware

pre-navi JUERRNRSEOSS

x86 CPU MMU hardware T2

64 bit protected mode Virtual memory enabled _

Fetch instructions

VT-d IOMMU hardware

pre-navi JUERRNRSEOSS

x86 CPU MMU hardware T2

64 bit protected mode Virtual memory enabled _

Fetch instructions

VT-d IOMMU hardware

// This array contains the root and 1nterrupt remapping tables. Each table 1s

// 4kB, and must be 4kB aligned as well. We can only guarantee the alignment by
// manually mapping our 2 4kB tables into this 12kB array. By 1nitializing the
// array to all zeros, every bus 1s marked as not present, and no i1nterrupts

// are allowed.

STATIC UINT8 mTables[TABLE_SIZE x 3] = {0};

STATIC
EFI_STATUS
EFTAPI
VTdBlockDMAForUnit (UINTN VTdBar)
{
EFI_STATUS Status;
VTD_ECAP_REG ExtCapabilities;
UINT64 RootTable;
UINT64 InterruptTable;

CHECKED_VTD_CALL(CheckCapabilities(VTdBar));

// ExtCap needed for IOTLB register offset

// This array contains the root and 1nterrupt remapping tables. Each table 1s

// 4kB, and must be 4kB aligned as well. We can only guarantee the alignment by
// manually mapping our 2 4kB tables into this 12kB array. By 1nitializing the
// array to all zeros, every bus 1s marked as not present, and no i1nterrupts

// are allowed.

STATIC UINT8 mTables[TABLE_SIZE x 3] = {0};

STATIC
EFI_STATUS
EFTAPI
VTdBlockDMAForUnit (UINTN VTdBar)
{
EFI_STATUS Status;
VTD_ECAP_REG ExtCapabilities;
UINT64 RootTable;
UINT64 InterruptTable;

CHECKED_VTD_CALL(CheckCapabilities(VTdBar));

// ExtCap needed for IOTLB register offset

W Y 1 \JTT .I.IIL.\./J.J.U'\JLIUU.I.U’

CHECKED_VTD_CALL(CheckCapabilities(VTdBar));

// ExtCap needed for IOTLB register offset
ExtCapabilities.Uinté64 = MmioRead64(VTdBar + R_ECAP_REG);

> RootTable = (UINT64)mTables;

Use mTable
as RootTable // Align the root table to a 4kB boundary within the table buffer.

RootTable = (RootTable + TABLE_SIZE - 1) & ~(TABLE_SIZE - 1);

// Set deny-all root table
SetRootTable(VTdBar, RootTable);

// Put the i1nterrupt remapping table right after the root table
InterruptTable = RootTable + TABLE _SIZE;

// Set deny-all interrupt table
SetInterruptRemapTable(VTdBar, InterruptTable);

RootTable = (UINT64)mTables;

// Align the root table to a 4kB boundary within the table buffer.
RootTable = (RootTable + TABLE SIZE - 1) & ~(TABLE_SIZE - 1);

// Set deny-all root table
> SetRootTable(VTdBar, RootTable);

Use RootTable
for DMA VT-d // Put the interrupt remapping table right after the root table

RootTable + TABLE SIZE;

InterruptTable

// Set deny-all interrupt table
SetInterruptRemapTable(VTdBar, InterruptTable);

e me . . s TS R e e T e R e RN N

SetRootTable(VTdBar, RootTable);

// Put the interrupt remapping table right after the root table
RootTable + TABLE SIZE;

InterruptTable

// Set deny-all interrupt table
> SetInterruptRemapTable(VTdBar, InterruptTable);

Same for MSI VT-d
interrupts

UEFITool NE alpha 55 (Feb 10 2019) - IM191.fd

Structure Information
‘Name Action Type Subtype = Text . cived: No
» A3C7A8BA-094A-47C6-9F66-F6DESE42A6E7 File PEI module Base: EQEFACh
Pad-file File Pad gegderdgddrE§S;FEgEg§;ﬁCh
» ApplePlatformInfoDatabaseDxe File PEI module O?fgeg' ;:ﬁs'
» C24A946F-8BC6-412B-9ACE-307EQ8E68125 File PEI module Type: 12h
Pad-file File Pad Full size: 4634h (17972)
» DO72670B-DC2C-4768-8102-99B4A9EF5EDC File PEI module Header size: 4h (4)
Pad-file File Pad Body size: 4630h (17968)
> 3FB1A55F-DDEF-42D9-8FAF-891039769F8D File PEI module :;gnizgfi;p2§5ggﬁ
Pad-file F%le Pad Number of sections: 4
» 636826D4-BFA3-4D8B-B3A8-9535384932BE File PEI module Subsystem: @Bh
v A1F39391-B841-4C3E-A458-71E312DD6CB9 File PEI module Stripped size: 178h (376)
PEI dependency section Section PEI dependency Base of code: 240h
Raw section Section Raw Address of entry point: 325h
TE image section Section TE image ig?getbgs?: FFEgEEG?hFFEQEFBGh
Pad-file File Pad Bl
» 53EF228E-BF8B-489B-818A-57034BA88F60 File PEI module © @ Hex view: TE image section
Pad-file File Pad —
» PlatformInitPreMem File PEI module 15A0 81 E5 DF 4B B8 13 ED 59 11 64 23 DC 00 00 00 00 | 3BRK .iY.d#(....
» PlatformInit File PEI mOdule 15B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 T EEEEEEEEEE R EEE
. File Pad 15C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |eveeeeennes
: o , : 15D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |eovvenenssns
» PiSmmCommunicationPel File PEI module 15E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |ovvevuennns
Pad-file File Pad 15F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |coveenennses
S3Res mezpe' F'le PEI mod le 1600 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 " EEEEEEEEEEEREEES
> Pad_fgle = File o . 1610 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
A , 1620 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |eoveenennsns
» SiInitPreMem File PEI module 1630 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |covveuennses
» CpuMpPei File PEI module 1640 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |eoveeeennes
. . . 1650 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 T R R R R N
wAliniy hLle FEL modulle 1660 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
Pad-file File Pad 1670 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |cvneeeeees
» 63D5F28B-0F76-40A5-A54E-D235DDFDD1C2 File PEI module 1680 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |eoveenennes
Pad—file File Pad 1690 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 TR R R R R
b 308FC263-7672-45C8-8096-6D0288E4EEE File PEI module Bl o0 Sorts Boree Carrs oavre Soras Baned Kauad | SHIEENESENES
» ADA7DBB8-2E6F-4FF6-8963-7CD5C0040C52 File PEI module 16C0O 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |eoveenennes
» DBO116EE-5135-4920-AB3C-A289FDAAB583 File PEI module 16D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |ovvevennenns
» F25EC99D-564F—-473B-BFFB-671BE412886E File PEI module 16EQ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |covvesenesns
: 16F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |covveneneses
» 75135AB5-D466-452B-A6D9-028FIFA60762 File PEI module 1700 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | »..cvveeeeenness
Pad-file File Pad 1710 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |covvenennsns
» DxeIplPei File PEI module 1720 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 &covvenennsns
. . . . 1730 00 00 00 00 00 aa 00 00 00 00 00 00 00 00 00 00 T EEEEE R E R E R EEE
pEfiSiostdould, Gile Freeform 1740 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |0.....
» AppleRomInformation File Freeform 1750 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |ooeeeeeennns
Volume free space Free space 1760 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |cvvuunsnnss
» Q4ADEEAD-61FF-4D31-B6BA-64F8BF901F5A Volume FFSv2 1770 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |vosvuusnnnns
> B4ADEEAD—61FF-4D31-B6BA—G4FSBFOOLFSA — FESV2 1780 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |eoveeeennes

1790 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |uveveeeeensn.

17A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |uveveveeensn.

' 17B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |ooeoeen..

17C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |uveveveeensn.

Parser FIT Sect 1750 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
17EQ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |uveveveeensn.
Address Slze Version Checksum Type 17F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 22 22 ssssssssssssssass

TONN NN DD DD DD D OOD DD OO D DD DD DD DD DD

pre-navi JUERRNRSEOSS

x86 CPU
64 bit protected mode

Fetch instructions

VT-d IOMMU hardware

pre-navi JUERRNRSEOSS

x86 CPU
64 bit protected mode

Fetch instructions

VT-d IOMMU hardware

pre-navi JUERRNRSEOSS

x86 CPU
64 bit protected mode

Fetch instructions

VT-d IOMMU hardware

pre-navi JUERRNRSEOSS

x86 CPU MMU hardware
64 bit protected mode Virtual memory enabled

x86 RAM

PCle Bus O device

pre-navi JUERRNRSEOSS

x86 CPU MMU hardware
64 bit protected mode Virtual memory enabled

x86 RAM

PCle Bus O device

Pre-RAM JUEEIISEOSE

x86 CPU MMU hardware
64 bit protected mode Virtual memory enabled

Fetch instructions x86 RAM

PCle Bus O device

DMA Protection for PCle Bus O

PCle Bus O
malicious DMA

Xx86

T2

VT-d
setup

DMA Protection for PCle Bus O

PCle Bus O
malicious DMA

Xx86

T2

VT-d
setup

DMA Protection for PCle Bus O

Xx86

T2

VT-d
setup

PCle Option ROMs

PCle Option ROMs

Device drivers which PCle devices supply to UEF]

UEFI firmware, including OROMSs, mostly all run at the same x86
privilege level: Ring O

All code loaded after OROMSs, including the booter and kernel, is
vulnerable to overwrite

Ring O
(More privileged)

Hardware
(More privileged)

Virtual Memory Space

Other UEFI drivers (storage, network, etc)

Core UEFI firmware

Ring O
(More privileged)

Hardware
(More privileged)

Virtual Memory Space

Other UEFI drivers (storage, network, etc)

Core UEFI firmware

Ring O
(More privileged)

Hardware
(More privileged)

Virtual Memory Space

Other UEFI drivers (storage, network, etc)

Core UEFI firmware

Ring 3
(Less privileged)

Ring O
(More privileged)

Hardware
(More privileged)

Virtual Memory Space

Other UEFI drivers (storage, network, etc)

Core UEFI firmware

Ring 3
(Less privileged)

Ring O
(More privileged)

Hardware
(More privileged)

Virtual Memory Space

Other UEFI drivers (storage, network, etc)

Core UEFI firmware

Ring 3
(Less privileged)

Ring O
(More privileged)

Hardware
(More privileged)

Other UEFI drivers (storage, network, etc)

Core UEFI firmware

Ring 3
(Less privileged)

Ring O
(More privileged)

Hardware
(More privileged)

Virtual Memory Space 1 Virtual Memory Space 2 Virtual Memory Space 3

Non-sandboxed UEFI drivers

Core UEFI firmware

Ring 3
(Less privileged)

Ring O
(More privileged)

Hardware
(More privileged)

Virtual Memory Space 1

Virtual Memory Space 2

Virtual Memory Space 3

Non-sandboxed UEFI drivers

Core UEFI firmware

Virtual Memory Space 1 Virtual Memory Space 2 Virtual Memory Space 3

Ring 3
(Less privileged)

Ring O

. Non-sandboxed UEFI drivers
(More privileged)

‘ Core UEFI firmware

Hardware
(More privileged)

OROM Sandbox

OROMSs can only call a limited subset of expected UEFI interfaces

» Similar to system call filtering

OROMSs can only install a limited subset of expected UEFI interfaces

» E.g. read and write to disk blocks, or draw to graphics

Ring 3
(Less privileged)

Ring O
(More privileged)

Hardware
(More privileged)

Virtual Memory Space 1

Virtual Memory Space 2

Virtual Memory Space 3

Non-sandboxed UEFI drivers

Core UEFI firmware

Ring 3
(Less privileged)

Ring O
(More privileged)

Hardware
(More privileged)

Virtual Memory Space 1

Virtual Memory Space 2

Virtual Memory Space 3

Call "Write NVRAM"
interface

Non-sandboxed UEFI drivers

Core UEFI firmware

Ring 3
(Less privileged)

Ring O
(More privileged)

Hardware
(More privileged)

Virtual Memory Space 1

Virtual Memory Space 2

Virtual Memory Space 3

Non-sandboxed UEFI drivers

Core UEFI firmware

Ring 3
(Less privileged)

Ring O
(More privileged)

Hardware
(More privileged)

Virtual Memory Space 1

“I'm a storage
driver (for Card 1)”

Virtual Memory Space 2

“I'm a network
driver (for Card 2)"

Virtual Memory Space 3

"I'm a SecureBoot
driver”

Non-sandboxed UEFI drivers

Core UEFI firmware

OROM Sandbox

OROM can only talk to the assigned device In its sandbox

* This Is the device it was embedded on

The VT-d policy allows a device to DMA to any memory allocated within its
OROM'’s sandbox

* Preserve high-throughput DMA but with strong VT-d protection
* OROM doesn’t even have to be VT-d aware!

EFI Exploit Mitigations

OROM Sandbox will drive attackers to privilege escalation and sandbox escapes

We added a strong set of exploit mitigations to EFl on T2 systems
» Stack Cookies

» All EFI memory W”X with read-only page tables

« SMAP: Ring O can’t directly read/write Ring 3 data

« SMEP: Ring O can’t execute Ring 3 code

* Some Spectre/Meltdown mitigations

Mac Secure Boot
Summary

The T2 Security Chip brings key secure boot properties from 10S to the Mac, far
outclassing UEFI SecureBoot-based systems

Our DMA protection for PCle Bus O provides state-of-the-art protection against
DMA attacks targeting firmware

The Mac OROM Sandbox provides unprecedented defense against malicious
PCle Option ROMs compromising the secure boot process

I0S code integrity protection

Software Enforced Code Integrity
Before 10S 9

Kernelcache signature verified by iBoot at load time

Userland __TEXT pages code signed
* CodeDirectory checked at load time (or static)

» Pages checked at fault time
Compromised kernel could change its own __ TEXT

Compromised kernel could disable codesigning altogether,
or alter userland pages

Kernel Integrity Protection

Goal

* Maintain integrity of kernel code and read-only data after secure boot

Threat model
» Kernel arbitrary read/write
 Arbitrary kernel instruction pointer control

 Arbitrary read/write by DMA agents and system coprocessors

Out of scope

» Secure boot bypass

Kernel Integrity Protection vO
10S 9

At system Initialization, EL3 monitor creates array of kernel page table and text
hashes in TZ1

Monitor periodically verifies hashes, panics on mismatch

Effective against long-lived patches, inherently vulnerable to races

Kernel Integrity Protection vO

121
Access [

TZ1 bit

——Address, TZ1—

(TZ1 can only be set by
Accesses from EL3)

< Data

Lessons Learned

Must protect critical data in addition to code
* Page tables
» Global offset table entries

» Sandbox configuration
Integrity verification after boot is vulnerable to race conditions

Easier to adapt hardware architecture to fit security requirements

Kernel Integrity Protection v1
IPhone 7

New hardware design tailored to our goals

Our threat model had three hardware requirements
» CPU prevents modification of kernel memory
» CPU also prevents EL1 execution of nhon-kernel memory

 Memory controller prevents DMA writes to protected physical range

Kernel Integrity Protection v1

Read Only
Region
(ROR)

CPU

Kernel Integrity Protection v1: Read-Only Data

We have a strong design for code, but protecting data requires additional
finesse

Neither KIP vO nor KIP v1 prevent modification of TTBR1, which tells CPU where
to find the kernel's page tables

By using a very careful initialization sequence, we make sure no instructions are
available to modify TTBR1 after CPU finishes initializing

Kernel Integrity Protection v1

Required significant rework of kernelcache layout
Build time checks that no TTBR1 write gadget exists
Very effective at protecting kernel code integrity

Only public bypass was off-by-one error in our protection range calculation

Kernel Integrity Protection v2
IPhone Xs

Applied lessons learned from KIP v1

Control bits prevent changes to TTBR1, MMU enable, and exception vector
addresses

» Guarantees in hardware that MMU configuration cannot be modified

* Replaces init-only instructions from KIP v1

Configuration is retained when CPU goes into idle power-off

» Less complexity in power management transitions

Kernel Integrity Protection
Summary

Robust enforcement of kernel code and read-only data integrity
Hardware implementation tailored to software security requirements

Essential foundation for next-generation security features

Fast Permission Restrictions (APRR)
IPhone X

Builds upon software-only Hardened WebKit JIT Mapping in iI0OS 10
CPU register to quickly restrict permissions on RWX memory, per thread

Removes overhead of a syscall and walking page tables to change permissions

Pre-APRR VM Permissions

i —RW-—— : ——RWX —

APRR: JavaScriptCore Execution Threads

T — o | : ——RWX —

APRR: JavaScriptCore JIT Compiler Thread

T — o | : ——RWX —

What about userland?

Protecting Userland Integrity

KIP gives us strong integrity protection for kernel text
Page table overrides with KIP rely on kernel code being static

Userland code is dynamically loaded, so we would need dynamic overrides

Page Protection Layer (PPL)
IPhone Xs

Ensures userland code can’t be modified after code signature checks complete
Built upon KIP and APRR

Manages page tables, code signing validation

Small TCB

Guarantees only code inside PPL can alter protected pages

Default RW- R-X R-X R-X R-X RW- RW-

APRR ~X ~X ~W ~W

Effective RW- R-X R-X R-- R-- R-- R--

Default RW- R-X R-X R-X R-X RW- RW-

APRR

Effective RW- R-X R-X R-X R-X RW- RW-

Page Protection Layer
Summary

System-wide dynamic code integrity enforcement

* Even with a compromised kernel!
Massive attack surface reduction

Low overhead
* No hypervisor traps

* No nested page tables

With code integrity protected, how do
we protect control flow?

Pointer Authentication

New instructions in ARMv8.3
Uses spare bits in pointers to store a cryptographic hash

Designed to be robust in the presence of arbitrary read/write primitives

Pointer Authentication
Instructions

packKK Xd, Xn

Extra data
A key Pointer i Signed Pointer . Xd
—>
DA key

DB key

Pointer Authentication
Sign

0000000100a412338

Pointer

Pointer Authentication
Sign

0000000100a412338

Padding Address

Pointer Authentication
Sign

7b9352e1®@a41238

Signatu Address

Pointer Authentication
Authenticate

7b9352g}@@a4123§

Signature Address

Pointer Authentication
Authenticate

0000000100241 238

Padding Address

Pointer Authentication
Auth failure

7b9352f1@@a41238

Signatu Address

Pointer Authentication
Auth failure

2000000100a41238

Padding Address

Pointer Authentication
Keys

5 secret 128-bit values

* |A, IB, DA, DB, and GA keys

* | keys for instructions, D keys for data
* GA key for data MAC

Randomly generated
* At boot (A keys)

» At process creation (B keys)

Can’'t be read by attacker

Pointer Authentication
Pointers to code

A

(+
Function Return Address I B Storage Address
Function Pointers I A 0
Block Invocation Function I A Storage Address
Objective-C Method Cache I B Storage Address + Class + Selector
C++ V-Table Entries I A Storage Address + Hash(mangled method name)

Computed Goto Label I A Hash(function name)

Pointer Authentication
Function return address before PAC

func:

stp x29, x30, [sp, #-16]!

ldp x29, x30, [sp], #16
ret

1010
1110
1001

Pointer Authentication

Function return address after PAC B e
Process
_func:
pacibsp

stp x29, x30, [sp, #-16]!

ldp x29, x30, [spl, #16
retab

Pointer Authentication
Pointers to data, code via data

A

Kernel Thread State

User Thread State Registers I A Storage Address

C++ V-Table Pointers D) A 0

Pointer Authentication
Improvements in iI0S 13

Abort on all authentication failures
INn kernel

Adoption across all Apple kexts

Hardened jump tables

Pointer Authentication
Improvements in iI0S 13

ODbjC method dispatch hardening

* Sign and authenticate IMP pointers in
method cache tables

Hardened exception handling

» Hash and verify sensitive register state

JavaScriptCore JIT and extra data
hardening

Pointer Authentication
Coming soon

Authenticated members of high value
data structures

* Processes, tasks
» Codesigning
* Virtual Memory subsystem

e |PC structures

Mac secure boot

I0S code integrity protection
Find My

Helping users find lost devices, even when offline

Any device in proximity can help, even if stranger to the owner

Offline device communicates via Bluetooth with participating strangers (finders)

Finders report their location and a timestamp

Owner uses a second device to find the lost device

Challenges

A static device identifier makes the device trackable

Even with a rotated identifier, finder can’t encrypt location end-to-end

e Server would have access to the location information

Security and Privacy Goals
Protect owners, finders, and devices

» Location reports are not accessible to Apple servers
- Cannot read, modify, or even add bogus reports

* Finder identities and location not revealed to Apple servers

- No finder identifier recorded

- Reported location Is encrypted

» Information broadcasted by the lost device cannot be used to track it, except by the
owner

Find My
Setup

Encrypted {d, P, SKo}
In ICloud Keychain

Generate EC P-224 key pair{d, P =d - G}
Generate symmetric key SKo
Store {d, P, SKo} in iCloud Keychain

Find My
Device broadcasting its location

A Find My time period, I, Is 15 minutes long

Derive symmetric key SK;
« SKi = KDF(SKi-1, "update”)

Derive anti-tracking secret pair (u;, Vi)
* (uj, vi) = KDF(SK;, "diversify")

Unlinkably diversify public key P
*Pi=ui-P+Vvi-G

Broadcast P; to nearby finders

Find My
Reporting location of a broadcasting device

Finder ECIES-encrypts its location to public key P;
Computes lookup indexi = SHA256(Pj)

Uploads encrypted report with index; to Apple servers

Find My
Owner locating their device

Query DB for location reports at index; >

6 < DB responds with [reco, recy, ...]

Retrieve d; from iCloud Keychain
Compute P; = d; - G for lookup period i
Compute lookup index; = Hash(P;)

ECIES decrypt (posio, timejo) = D(d;, reco)

Find My
Summary

Novel design to enable users to enlist the help of strangers to locate lost devices

Highly rigorous privacy properties to protect participating device owners and
finders

Mac secure boot

I0S code integrity protection
Find My

Mac secure boot

I0S code integrity protection
Find My

Apple Security Bounty

Introduced in 2016

Platforms 10S, ICloud

Categories 5

Very small invited

Participation .
researcher audience

Maximum payout $200,000

50 High-Value Reports

What's next?

Apple Security Bounty will be open to
all researchers

ICloud
10S
tvOS
IPadOS
watchOS
macOS

Revised and expanded categories

Unauthorized access to iCloud account data on
Apple servers

Attack via physical access

Attack via user-installed app

Network attack requiring user interaction

Network attack with no user interaction

Lock screen bypass

User data extraction

Unauthorized access to high-value user data
Kernel code execution

CPU side channel attack on high-value user data

One-click unauthorized access to high-value user data
One-click kernel code execution
Zero-click radio to kernel with physical proximity

Zero-click access to high-value user data

Maximum Payout

$100,000

$100,000

$250,000

$100,000
$150,000
$250,000

$150,000
$250,000
$250,000

$500,000

Vulnerabilities In desighated pre-
release builds

bbbbb

What about getting started?

Making It Easier to Get Started with iI0S Research

We want to attract exceptional researchers who have been focused on other
platforms

New researchers shouldn’t have to find a full chain to bootstrap research

Existing 10S researchers shouldn’t have to hold back chains for research

10S Security Research Device Program

I0S Security Research Device program

Unprecedented, Apple-supported 10S security research platform
Comes with ssh, a root shell, and advanced debug capabilities

New research fusing, neither production nor development

I0S Security Research Device program

Unprecedented, Apple-supported 10S security research platform
Comes with ssh, a root shell, and advanced debug capabilities
New research fusing, neither production nor development

Program applications open to everyone with a track record of high-quality
systems security research on any platform

I0S Security Research Device program

Unprecedented, Apple-supported 10S security research platform
Comes with ssh, a root shell, and advanced debug capabilities
New research fusing, neither production nor development

Program applications open to everyone with a track record of high-quality
systems security research on any platform

Coming next year

Apple Security Bounty
Summary

Participation open to all researchers in the Fall
Expanded and revised categories
Highest maximum payouts in the industry

10S Security Research Device Program for exceptional researchers new to our
platform

What about a zero-click 10S full chain
with kernel code execution and
persistence?

$1,000,000

Unauthorized access to iCloud account data on
Apple servers

Attack via physical access

Attack via user-installed app

Network attack requiring user interaction

Network attack with no user interaction

Lock screen bypass

User data extraction

Unauthorized access to high-value user data
Kernel code execution

CPU side channel attack on high-value user data

One-click unauthorized access to high-value user data
One-click kernel code execution

Zero-click radio to kernel with physical proximity
Zero-click access to high-value user data

Zero-click kernel code execution with persistence

Maximum Payout

$100,000

$100,000

$250,000
$100,000
$150,000
$250,000

$150,000
$250,000
$250,000
$500,000

$1,000,000

We're excited to work with you!

TM and © 2019 Apple Inc. All rights reserved.

