
Ivan Krstić
Head of Security Engineering and Architecture, Apple

Behind the Scenes of
iOS and Mac Security

Mac secure boot
iOS code integrity protection
Find My

Mac secure boot
iOS code integrity protection
Find My

User Privacy
Protection

Gatekeeper

Gatekeeper
macOS Catalina

First use, quarantined First use, quarantined Non-quarantined

Malicious content scan No known malicious content No known malicious content No known malicious content

Signature check No tampering No tampering −

Local policy check All new software requires
notarization

All new software requires
notarization −

First launch prompt User must approve Users must approve
software in bundles −

Contacts
Calendars
Reminders
Photos

User Data Protections
Data that requires user consent to access

Contacts
Calendars
Reminders
Photos

User Data Protections
Data that requires user consent to access

Contacts
Calendars
Reminders
Photos

Desktop
Documents
Downloads
iCloud Drive
Third-party cloud storage
Removable volumes
Network volumes

User Data Protections
Data that requires user consent to access

What about secure boot?

Apple Requirement UEFI

Signature verification of complete boot chain

System Software Authorization (server-side downgrade protection)

Authorization “personalized” for the requesting device (not portable)

User authentication required to downgrade secure boot policy

Secure boot policy protected against physical tamper

System can always be restored to known-good state

T2

Mac Secure Boot

T2 x86

Mac Secure Boot

Mac Secure Boot

x86T2

Mac Secure Boot

x86

UEFI
firmwareiBootT2 ROM bridgeOS kernel

T2

Mac Secure Boot

macOS
booter

x86

macOS
kernel

UEFI
firmwareiBootT2 ROM bridgeOS kernel

T2

Thunderbolt and PCIe Direct Memory Access (DMA)
• Accessories can read/write host memory without the involvement of the CPU
PCIe Option ROMs (OROMs)
• Device-specific drivers for the early boot environment

Two Critical Challenges

Refresher — OS Page Tables
x86 CPU MMU hardware x86 RAM

64 bit protected mode Virtual memory enabled

Page table hardware

Data
0x1570000

Verified UEFI firmware

“Read 4 bytes
from address

0x000003000000000”

macOSUEFI

Refresher — OS Page Tables
x86 CPU MMU hardware x86 RAM

64 bit protected mode Virtual memory enabled

Page table hardware

Data
0x1570000

Verified UEFI firmware

Consult page tables
“Read 4 bytes
from address

0x000003000000000”

macOSUEFI

Refresher — OS Page Tables
x86 CPU MMU hardware x86 RAM

64 bit protected mode Virtual memory enabled

Page table hardware

Data
0x1570000

Verified UEFI firmware

Page tables:
virtual address

0x000003000000000
is actually in RAM at

physical address
0x1570000

Consult page tables
“Read 4 bytes
from address

0x000003000000000”

macOSUEFI

MMU hardware
Virtual memory enabled

Page table hardware

macOSUEFIRefresher — OS Page Tables
x86 CPU x86 RAM

64 bit protected mode

Data
0x1570000

Verified UEFI firmware

Page tables:
virtual address

0x000003000000000
is actually in RAM at

physical address
0x1570000

“Read 4 bytes
from address

0x000003000000000”

MMU hardware
Virtual memory enabled

Page table hardware

Fetch from
0x1570000

in RAM instead of
0x000003000000000

macOSUEFIRefresher — OS Page Tables
x86 CPU x86 RAM

64 bit protected mode

Data
0x1570000

Verified UEFI firmware

Page tables:
virtual address

0x000003000000000
is actually in RAM at

physical address
0x1570000

“Read 4 bytes
from address

0x000003000000000”

macOSUEFI

MMU hardware
Virtual memory enabled

Page table hardware

Unrestricted Direct Memory Access
x86 CPU

Network Interface
Card (NIC)

64 bit protected mode
x86 RAM

Kernel heap
Packet buffer

NIC kernel extension

macOS kernelFetch instructions

Network packet

macOSUEFI

MMU hardware
Virtual memory enabled

Page table hardware

Unrestricted Direct Memory Access
x86 CPU

Network Interface
Card (NIC)

64 bit protected mode
x86 RAM

Kernel heap
Packet buffer

NIC kernel extension

macOS kernelFetch instructions

Network packet

macOSUEFI

MMU hardware
Virtual memory enabled

Page table hardware

Unrestricted Direct Memory Access
x86 CPU

Network Interface
Card (NIC)

64 bit protected mode
x86 RAM

Kernel heap
Packet buffer

NIC kernel extension

macOS kernelFetch instructions

Network packet

Unrestricted Direct Memory Access macOSUEFI

MMU hardware
Virtual memory enabled

Page table hardware

x86 CPU

Network Interface
Card (NIC)

64 bit protected mode
x86 RAM

NIC kernel extension

macOS kernelFetch instructions

Kernel heap
Packet buffer! Network packet

Unrestricted Direct Memory Access macOSUEFI

MMU hardware
Virtual memory enabled

Page table hardware

x86 CPU

Network Interface
Card (NIC)

64 bit protected mode
x86 RAM

NIC kernel extension

macOS kernelFetch instructions

Kernel heap
Packet buffer! Network packet

Unrestricted Direct Memory Access macOSUEFI

MMU hardware
Virtual memory enabled

Page table hardware

x86 CPU

Network Interface
Card (NIC)

64 bit protected mode
x86 RAM

NIC kernel extension

macOS kernelFetch instructions

Kernel heap
Packet buffer

! Network packet

Intel Virtualization Technology for Directed I/O (VT-d) is a mechanism by which
the host can place restrictions on DMA from peripherals
VT-d creates an I/O Memory Management Unit (IOMMU) to manage DMA
We’ve used VT-d to protect the kernel since OS X Mountain Lion in 2012

VT-d

macOSUEFI

MMU hardware
Virtual memory enabled

Page table hardware

x86 CPU

Network Interface
Card (NIC)

64 bit protected mode
x86 RAM

Fetch instructions

Direct Memory Access with VT-d

Kernel heap
Packet buffer

NIC kernel extension

macOS kernel

VT-d IOMMU hardware

Page table hardware

! Network packet

macOSUEFI

MMU hardware
Virtual memory enabled

Page table hardware

x86 CPU

Network Interface
Card (NIC)

64 bit protected mode
x86 RAM

Fetch instructions

Direct Memory Access with VT-d

Kernel heap
Packet buffer

NIC kernel extension

macOS kernel

VT-d IOMMU hardware

Page table hardware

Consult page tables! Network packet

macOSUEFI

MMU hardware
Virtual memory enabled

Page table hardware

x86 CPU

Network Interface
Card (NIC)

64 bit protected mode
x86 RAM

Fetch instructions

Direct Memory Access with VT-d

Kernel heap
Packet buffer

NIC kernel extension

macOS kernel

VT-d page tables:
“Packet buffer R/W,

everything else
unmapped”

VT-d IOMMU hardware

Page table hardware

Consult page tables! Network packet

macOSUEFI

MMU hardware
Virtual memory enabled

Page table hardware

x86 CPU

Network Interface
Card (NIC)

64 bit protected mode
x86 RAM

Fetch instructions

Direct Memory Access with VT-d

Kernel heap
Packet buffer

NIC kernel extension

macOS kernel

VT-d page tables:
“Packet buffer R/W,

everything else
unmapped”

VT-d IOMMU hardware

Page table hardware

Consult page tables! Network packet

DMA Protection for Thunderbolt

x86

macOS
kernelUEFI firmwareT2

DMA Protection for Thunderbolt

macOS
kernelUEFI firmwareT2

Thunderbolt
malicious DMA

x86

DMA Protection for Thunderbolt

macOS
kernelUEFI firmwareT2

VT-d
setup

Thunderbolt
malicious DMA

x86

DMA Protection for Thunderbolt

macOS
kernelUEFI firmwareT2

VT-d
setup

Thunderbolt
malicious DMA

x86

DMA Protection for Thunderbolt

macOS
kernelUEFI firmwareT2

VT-d
setup

x86

Thunderbolt
malicious DMA

macOS
kernelUEFI firmwareT2

x86

DMA Protection for Thunderbolt

VT-d
setup

Thunderbolt
malicious DMA

macOS
kernelUEFI firmwareT2

x86

DMA Protection for Thunderbolt

VT-d
setup

Thunderbolt
malicious DMA

macOS
kernelUEFI firmwareT2

x86

DMA Protection for Thunderbolt

VT-d
setup

Thunderbolt
malicious DMA

macOS
kernelUEFI firmwareT2

x86

DMA Protection for PCIe

VT-d
setup

Thunderbolt
malicious DMA

macOS
kernelUEFI firmwareT2

x86

DMA Protection for PCIe

VT-d
setup

Thunderbolt
malicious DMA

PCIe
malicious DMA

macOS
kernelUEFI firmwareT2

x86

DMA Protection for PCIe

VT-d
setup

Thunderbolt
malicious DMA

PCIe
malicious DMA

macOS
kernelUEFI firmwareT2

x86

DMA Protection for PCIe

VT-d
setup

Thunderbolt
malicious DMA

PCIe
malicious DMA

macOS
kernel

T2

x86

VT-d
setup

DMA Protection for PCIe Bus 0

Thunderbolt
malicious DMA

PCIe
malicious DMA

UEFI firmware

macOS
kernel

T2

x86

Thunderbolt
malicious DMA

PCIe
malicious DMA

Pre-RAM firmware Post-RAM firmware

VT-d
setup

DMA Protection for PCIe Bus 0

macOS
kernel

T2

x86

Thunderbolt
malicious DMA

PCIe
malicious DMA

Pre-RAM firmware Post-RAM firmware

VT-d
setup

PCIe Bus 0
malicious DMA

DMA Protection for PCIe Bus 0

MMU hardware
Pass-through

Page table hardware

T2x86 CPU
32 bit protected mode

Cache
Stack

RAM not initialized

Fetch instructions

macOSUEFI

VT-d IOMMU hardware

Page table hardware x86 RAM

Verified, read-only
UEFI firmware

MMU hardware
Pass-through

Page table hardware

T2x86 CPU
32 bit protected mode

Cache
Stack

RAM not initialized

Fetch instructions

macOSUEFI

VT-d IOMMU hardware

Page table hardware

Pre-RAM

x86 RAM

Verified, read-only
UEFI firmware

VT-d IOMMU hardware

Page table hardware

T2x86 CPU
64 bit protected mode

x86 CPU
64 bit protected mode

MMU hardware
Virtual memory enabled

Page table hardware

macOSUEFI

Fetch instructions RAM not initializedx86 RAM

Verified, read-only
UEFI firmware

Verified
UEFI firmware

Pre-RAM

VT-d IOMMU hardware

Page table hardware

T2x86 CPU
64 bit protected mode Verified, read-only

UEFI firmware

x86 CPU
64 bit protected mode

MMU hardware
Virtual memory enabled

Page table hardware

macOSUEFI

Fetch instructions RAM not initializedx86 RAM
Verified, read-only

UEFI firmware
Verified

UEFI firmware

Pre-RAM

PCIe Bus 0 device VT-d IOMMU hardware

Page table hardware

T2x86 CPU
64 bit protected mode

x86 RAM

Verified, read-only
UEFI firmware

x86 CPU
64 bit protected mode

MMU hardware
Virtual memory enabled

Page table hardware

macOSUEFI

Fetch instructions

Pre-RAM

Verified
UEFI firmware

! Malicious data

PCIe Bus 0 device VT-d IOMMU hardware

Page table hardware

T2x86 CPU
64 bit protected mode

x86 RAM

Verified, read-only
UEFI firmware

x86 CPU
64 bit protected mode

MMU hardware
Virtual memory enabled

Page table hardware

macOSUEFI

Fetch instructions

Pre-RAM

Verified
UEFI firmware

! Malicious data

PCIe Bus 0 device VT-d IOMMU hardware

Page table hardware

T2x86 CPU
64 bit protected mode

x86 RAM

Verified, read-only
UEFI firmware

x86 CPU
64 bit protected mode

MMU hardware
Virtual memory enabled

Page table hardware

macOSUEFI

Fetch instructions

Pre-RAM

Verified
UEFI firmware! Malicious data

// This array contains the root and interrupt remapping tables. Each table is
// 4kB, and must be 4kB aligned as well. We can only guarantee the alignment by
// manually mapping our 2 4kB tables into this 12kB array. By initializing the
// array to all zeros, every bus is marked as not present, and no interrupts
// are allowed.
STATIC UINT8 mTables[TABLE_SIZE * 3] = {0};

STATIC
EFI_STATUS
EFIAPI
VTdBlockDMAForUnit(UINTN VTdBar)
{
 EFI_STATUS Status;
 VTD_ECAP_REG ExtCapabilities;
 UINT64 RootTable;
 UINT64 InterruptTable;

 CHECKED_VTD_CALL(CheckCapabilities(VTdBar));

 // ExtCap needed for IOTLB register offset
 ExtCapabilities.Uint64 = MmioRead64(VTdBar + R_ECAP_REG);

// This array contains the root and interrupt remapping tables. Each table is
// 4kB, and must be 4kB aligned as well. We can only guarantee the alignment by
// manually mapping our 2 4kB tables into this 12kB array. By initializing the
// array to all zeros, every bus is marked as not present, and no interrupts
// are allowed.
STATIC UINT8 mTables[TABLE_SIZE * 3] = {0};

STATIC
EFI_STATUS
EFIAPI
VTdBlockDMAForUnit(UINTN VTdBar)
{
 EFI_STATUS Status;
 VTD_ECAP_REG ExtCapabilities;
 UINT64 RootTable;
 UINT64 InterruptTable;

 CHECKED_VTD_CALL(CheckCapabilities(VTdBar));

 // ExtCap needed for IOTLB register offset
 ExtCapabilities.Uint64 = MmioRead64(VTdBar + R_ECAP_REG);

 UINT64 InterruptTable;

 CHECKED_VTD_CALL(CheckCapabilities(VTdBar));

 // ExtCap needed for IOTLB register offset
 ExtCapabilities.Uint64 = MmioRead64(VTdBar + R_ECAP_REG);

 RootTable = (UINT64)mTables;

 // Align the root table to a 4kB boundary within the table buffer.
 RootTable = (RootTable + TABLE_SIZE - 1) & ~(TABLE_SIZE - 1);

 // Set deny-all root table
 SetRootTable(VTdBar, RootTable);

 // Put the interrupt remapping table right after the root table
 InterruptTable = RootTable + TABLE_SIZE;

 // Set deny-all interrupt table
 SetInterruptRemapTable(VTdBar, InterruptTable);

Use mTable
as RootTable

 RootTable = (UINT64)mTables;

 // Align the root table to a 4kB boundary within the table buffer.
 RootTable = (RootTable + TABLE_SIZE - 1) & ~(TABLE_SIZE - 1);

 // Set deny-all root table
 SetRootTable(VTdBar, RootTable);

 // Put the interrupt remapping table right after the root table
 InterruptTable = RootTable + TABLE_SIZE;

 // Set deny-all interrupt table
 SetInterruptRemapTable(VTdBar, InterruptTable);

Use RootTable
for DMA VT-d

 // Set deny-all root table
 SetRootTable(VTdBar, RootTable);

 // Put the interrupt remapping table right after the root table
 InterruptTable = RootTable + TABLE_SIZE;

 // Set deny-all interrupt table
 SetInterruptRemapTable(VTdBar, InterruptTable);

Same for MSI VT-d
interrupts

VT-d IOMMU hardware

Page table hardware

T2x86 CPU
64 bit protected mode

x86 RAM

x86 CPU
64 bit protected mode

MMU hardware
Virtual memory enabled

Page table hardware

macOSUEFI

Fetch instructions

Verified, read-only
UEFI firmware

Pre-RAM

Verified, read-only
UEFI firmware

Verified
UEFI firmware

VT-d IOMMU hardware

Page table hardware

T2x86 CPU
64 bit protected mode

x86 RAM

Bus0 VT-d page tables
“deny all”

x86 CPU
64 bit protected mode

MMU hardware
Virtual memory enabled

Page table hardware

macOSUEFI

Fetch instructions

Verified, read-only
UEFI firmware

Pre-RAM

Verified, read-only
UEFI firmware

Verified
UEFI firmware

VT-d IOMMU hardware

Page table hardware

T2x86 CPU
64 bit protected mode

x86 RAM

Bus0 VT-d page tables
“deny all”

x86 CPU
64 bit protected mode

MMU hardware
Virtual memory enabled

Page table hardware

macOSUEFI

Fetch instructions

Verified, read-only
UEFI firmware

Pre-RAM

Verified, read-only
UEFI firmware

Verified
UEFI firmware

VT-d IOMMU hardware

Page table hardware

T2x86 CPU
64 bit protected mode

x86 RAM

Bus0 VT-d page tables
“deny all”

x86 CPU
64 bit protected mode

MMU hardware
Virtual memory enabled

Page table hardware

macOSUEFI

Fetch instructions

PCIe Bus 0 device

Pre-RAM

! Malicious data

Verified
UEFI firmware

Verified, read-only
UEFI firmware

VT-d IOMMU hardware

Page table hardware

T2x86 CPU
64 bit protected mode

x86 RAM

Bus0 VT-d page tables
“deny all”

x86 CPU
64 bit protected mode

MMU hardware
Virtual memory enabled

Page table hardware

macOSUEFI

Fetch instructions

PCIe Bus 0 device

Consult page tables

Pre-RAM

! Malicious data

Verified
UEFI firmware

Verified, read-only
UEFI firmware

VT-d IOMMU hardware

Page table hardware

T2x86 CPU
64 bit protected mode

x86 RAM

Bus0 VT-d page tables
“deny all”

x86 CPU
64 bit protected mode

MMU hardware
Virtual memory enabled

Page table hardware

macOSUEFI

Fetch instructions

PCIe Bus 0 device

Consult page tables

Pre-RAM

! Malicious data

Verified
UEFI firmware

Verified, read-only
UEFI firmware

macOS
kernel

T2

x86

Thunderbolt
malicious DMA

PCIe
malicious DMA

Pre-RAM firmware Post-RAM firmware

VT-d
setup

PCIe Bus 0
malicious DMA

DMA Protection for PCIe Bus 0

macOS
kernel

T2

x86

Thunderbolt
malicious DMA

PCIe
malicious DMA

Pre-RAM firmware Post-RAM firmware

VT-d
setup

PCIe Bus 0
malicious DMA

DMA Protection for PCIe Bus 0

macOS
kernel

T2

x86

Thunderbolt
malicious DMA

PCIe
malicious DMA

Pre-RAM firmware Post-RAM firmware

VT-d
setup

PCIe Bus 0
malicious DMA

DMA Protection for PCIe Bus 0

PCIe Option ROMs

Device drivers which PCIe devices supply to UEFI
UEFI firmware, including OROMs, mostly all run at the same x86
privilege level: Ring 0
All code loaded after OROMs, including the booter and kernel, is
vulnerable to overwrite

PCIe Option ROMs

Other UEFI drivers (storage, network, etc)

Core UEFI firmware

PCIe card 2PCIe card 1 PCIe card 3

x86 CPU

Virtual Memory Space

Ring 0
(More privileged)

Hardware
(More privileged)

OROM 1

OROM 2

OROM 3

PCIe card 2PCIe card 1 PCIe card 3

x86 CPU

Virtual Memory Space

Ring 0
(More privileged)

Hardware
(More privileged)

Other UEFI drivers (storage, network, etc)

Core UEFI firmware

OROM 1

OROM 2

OROM 3

PCIe card 2PCIe card 1 PCIe card 3

x86 CPU

Virtual Memory Space

Ring 0
(More privileged)

Hardware
(More privileged)

Other UEFI drivers (storage, network, etc)

Core UEFI firmware

OROM 1

OROM 2

OROM 3

PCIe card 2PCIe card 1 PCIe card 3

x86 CPU

Ring 0
(More privileged)

Hardware
(More privileged)

Virtual Memory Space

Other UEFI drivers (storage, network, etc)

Core UEFI firmware

OROM 1

OROM 2

OROM 3Ring 3
(Less privileged)

PCIe card 2PCIe card 1 PCIe card 3

x86 CPU

Ring 0
(More privileged)

Hardware
(More privileged)

Virtual Memory Space

Other UEFI drivers (storage, network, etc)

Core UEFI firmware

OROM 1

OROM 2

OROM 3Ring 3
(Less privileged)

Other UEFI drivers (storage, network, etc)

x86 CPU

Core UEFI firmware

OROM 2 OROM 3OROM 1

PCIe card 2PCIe card 1 PCIe card 3

Ring 0
(More privileged)

Ring 3
(Less privileged)

Hardware
(More privileged)

Other UEFI drivers (storage, network, etc)Non-sandboxed UEFI drivers

x86 CPU

Core UEFI firmware

Virtual Memory Space 1 Virtual Memory Space 2 Virtual Memory Space 3

OROM 2 OROM 3OROM 1

PCIe card 2PCIe card 1 PCIe card 3

Ring 0
(More privileged)

Ring 3
(Less privileged)

Hardware
(More privileged)

Other UEFI drivers (storage, network, etc)Non-sandboxed UEFI drivers

OROM sandbox driver

x86 CPU

Core UEFI firmware

Virtual Memory Space 1 Virtual Memory Space 2 Virtual Memory Space 3

OROM 2 OROM 3OROM 1

PCIe card 2PCIe card 1 PCIe card 3

Ring 0
(More privileged)

Ring 3
(Less privileged)

Hardware
(More privileged)

Other UEFI drivers (storage, network, etc)Non-sandboxed UEFI drivers

OROM sandbox driver

x86 CPU

Core UEFI firmware

Virtual Memory Space 1 Virtual Memory Space 2 Virtual Memory Space 3

OROM 2 OROM 3OROM 1

PCIe card 2PCIe card 1 PCIe card 3

Ring 0
(More privileged)

Ring 3
(Less privileged)

Hardware
(More privileged)

OROMs can only call a limited subset of expected UEFI interfaces
• Similar to system call filtering
OROMs can only install a limited subset of expected UEFI interfaces
• E.g. read and write to disk blocks, or draw to graphics

OROM Sandbox

OROM sandbox driver

Non-sandboxed UEFI drivers

x86 CPU

Virtual Memory Space 1 Virtual Memory Space 2 Virtual Memory Space 3

OROM 2OROM 1 OROM 3

PCIe card 2PCIe card 1 PCIe card 3

Core UEFI firmware

Ring 0
(More privileged)

Ring 3
(Less privileged)

Hardware
(More privileged)

OROM sandbox driver

Non-sandboxed UEFI drivers

x86 CPU

Virtual Memory Space 1 Virtual Memory Space 2 Virtual Memory Space 3

OROM 2OROM 1
Call “Write NVRAM”
interface

OROM 3

PCIe card 2PCIe card 1 PCIe card 3

Core UEFI firmware

Ring 0
(More privileged)

Ring 3
(Less privileged)

Hardware
(More privileged)

OROM sandbox driver

Non-sandboxed UEFI driversRing 0
(More privileged)

Ring 3
(Less privileged)

Hardware
(More privileged)

PCIe card 2PCIe card 1 PCIe card 3

Core UEFI firmware

x86 CPU

Virtual Memory Space 1 Virtual Memory Space 2 Virtual Memory Space 3

OROM 2OROM 1 OROM 3

OROM sandbox driver

Non-sandboxed UEFI driversRing 0
(More privileged)

Ring 3
(Less privileged)

Hardware
(More privileged)

PCIe card 2PCIe card 1 PCIe card 3

Core UEFI firmware

x86 CPU

Virtual Memory Space 1 Virtual Memory Space 2 Virtual Memory Space 3

“I’m a SecureBoot
driver”

“I’m a network
driver (for Card 2)”

“I’m a storage
driver (for Card 1)”

OROM 2OROM 1 OROM 3

OROM can only talk to the assigned device in its sandbox
• This is the device it was embedded on
The VT-d policy allows a device to DMA to any memory allocated within its
OROM’s sandbox
• Preserve high-throughput DMA but with strong VT-d protection
• OROM doesn’t even have to be VT-d aware!

OROM Sandbox

OROM Sandbox will drive attackers to privilege escalation and sandbox escapes
We added a strong set of exploit mitigations to EFI on T2 systems
• Stack Cookies
• All EFI memory W^X with read-only page tables
• SMAP: Ring 0 can’t directly read/write Ring 3 data
• SMEP: Ring 0 can’t execute Ring 3 code
• Some Spectre/Meltdown mitigations

EFI Exploit Mitigations

The T2 Security Chip brings key secure boot properties from iOS to the Mac, far
outclassing UEFI SecureBoot-based systems
Our DMA protection for PCIe Bus 0 provides state-of-the-art protection against
DMA attacks targeting firmware
The Mac OROM Sandbox provides unprecedented defense against malicious
PCIe Option ROMs compromising the secure boot process

Mac Secure Boot
Summary

Mac secure boot
iOS code integrity protection
Find My

Kernelcache signature verified by iBoot at load time
Userland __TEXT pages code signed
• CodeDirectory checked at load time (or static)
• Pages checked at fault time
Compromised kernel could change its own __TEXT
Compromised kernel could disable codesigning altogether,
or alter userland pages

Software Enforced Code Integrity
Before iOS 9

Goal
• Maintain integrity of kernel code and read-only data after secure boot
Threat model
• Kernel arbitrary read/write
• Arbitrary kernel instruction pointer control
• Arbitrary read/write by DMA agents and system coprocessors
Out of scope
• Secure boot bypass

Kernel Integrity Protection

At system initialization, EL3 monitor creates array of kernel page table and text
hashes in TZ1
Monitor periodically verifies hashes, panics on mismatch
Effective against long-lived patches, inherently vulnerable to races

Kernel Integrity Protection v0
iOS 9

Kernel Integrity Protection v0

CPU Address,TZ1
(TZ1 can only be set by

Accesses from EL3)

EL3, EL1, EL0

Memory
controller

TZ1 endData
TZ1 base

DRAM

Monitor code

Page hashes

Kernel code

Kernel data

Kernel code

Kernel data

Kernel code

TZ1
Access requires
TZ1 bit

Bootstrap KIP Disable FPU Bootstrap XNU Trap to KIP Hash all regions

Save system
registers

Disable FPU

Trap to EL3

IRQ

Return to
EL1/EL0

Route IRQs
to EL3

Reenable FPU

Return to
EL1/EL0

Check hashes

Trap to EL3

Trap to XNU

Attempt FP

Must protect critical data in addition to code
• Page tables
• Global offset table entries
• Sandbox configuration
Integrity verification after boot is vulnerable to race conditions
Easier to adapt hardware architecture to fit security requirements

Lessons Learned

New hardware design tailored to our goals
Our threat model had three hardware requirements
• CPU prevents modification of kernel memory
• CPU also prevents EL1 execution of non-kernel memory
• Memory controller prevents DMA writes to protected physical range

Kernel Integrity Protection v1
iPhone 7

Kernel Integrity Protection v1

CPU

Memory
controller

ROR end
ROR base

DRAM

Init code

Kernel and
kext code

Kernel page
tables

Read Only
Region
(ROR)

MMU

Kernel end
Kernel base

X, RO

XN, RO

XN, RW

PA,
XN,
ROVA

We have a strong design for code, but protecting data requires additional
finesse
Neither KIP v0 nor KIP v1 prevent modification of TTBR1, which tells CPU where
to find the kernel’s page tables
By using a very careful initialization sequence, we make sure no instructions are
available to modify TTBR1 after CPU finishes initializing

Kernel Integrity Protection v1: Read-Only Data

Required significant rework of kernelcache layout
Build time checks that no TTBR1 write gadget exists
Very effective at protecting kernel code integrity
Only public bypass was off-by-one error in our protection range calculation

Kernel Integrity Protection v1

Applied lessons learned from KIP v1
Control bits prevent changes to TTBR1, MMU enable, and exception vector
addresses
• Guarantees in hardware that MMU configuration cannot be modified
• Replaces init-only instructions from KIP v1
Configuration is retained when CPU goes into idle power-off
• Less complexity in power management transitions

Kernel Integrity Protection v2
iPhone Xs

Robust enforcement of kernel code and read-only data integrity
Hardware implementation tailored to software security requirements
Essential foundation for next-generation security features

Kernel Integrity Protection
Summary

Builds upon software-only Hardened WebKit JIT Mapping in iOS 10
CPU register to quickly restrict permissions on RWX memory, per thread
Removes overhead of a syscall and walking page tables to change permissions

Fast Permission Restrictions (APRR)
iPhone X

Pre-APRR VM Permissions

Process code Heap Framework code JIT memory

R-X RW- R-X RWX

APRR: JavaScriptCore Execution Threads

Process code Heap Framework code JIT memory

R-X RW- R-X RWX

APRR = ~W

Effective = R-X

APRR: JavaScriptCore JIT Compiler Thread

Process code Heap Framework code JIT memory

R-X RW- R-X RWX

APRR = ~X

Effective = RW-

What about userland?

KIP gives us strong integrity protection for kernel text
Page table overrides with KIP rely on kernel code being static
Userland code is dynamically loaded, so we would need dynamic overrides

Protecting Userland Integrity

Ensures userland code can’t be modified after code signature checks complete
Built upon KIP and APRR
Manages page tables, code signing validation
Small TCB
Guarantees only code inside PPL can alter protected pages

Page Protection Layer (PPL)
iPhone Xs

Kernel heap Kernel code Page
tables

PPL
heapPPL codeTrampolines

Default
APRR
Effective

RW- R-X R-X R-X R-X RW- RW-
~X ~X ~W ~W

RW- R-X R-X R-- R-- R-- R--

Kernel heap Kernel code Page
tables

PPL
heapPPL codeTrampolines

Default
APRR
Effective

RW- R-X R-X R-X R-X RW- RW-

RW- R-X R-X R-X R-X RW- RW-

System-wide dynamic code integrity enforcement
• Even with a compromised kernel!
Massive attack surface reduction
Low overhead
• No hypervisor traps
• No nested page tables

Page Protection Layer
Summary

With code integrity protected, how do
we protect control flow?

New instructions in ARMv8.3
Uses spare bits in pointers to store a cryptographic hash
Designed to be robust in the presence of arbitrary read/write primitives

Pointer Authentication

Pointer Authentication
Instructions

pacKK Xd, Xn

IB key
DA key
DB key

IA key Encrypt Xd

Extra data

Pointer

Key

Signed Pointer

Pointer Authentication
Sign

0000000
Pointer

100a41238

Pointer Authentication
Sign

0000000
Padding Address

100a41238

Pointer Authentication
Sign

7b9352e
Address

100a41238
Signature

Pointer Authentication
Authenticate

Address

100a412387b9352e
Signature

Pointer Authentication
Authenticate

Address

0000000100a41238
Padding

7b9352f

Pointer Authentication
Auth failure

Signature Address

100a41238

2000000

Pointer Authentication
Auth failure

Address

100a41238
Padding

5 secret 128-bit values
• IA, IB, DA, DB, and GA keys
• I keys for instructions, D keys for data
• GA key for data MAC
Randomly generated
• At boot (A keys)
• At process creation (B keys)
Can’t be read by attacker

Pointer Authentication
Keys

Pointer Authentication
Pointers to code

Function Return Address I B Storage Address

Function Pointers I A 0

Block Invocation Function I A Storage Address

Objective-C Method Cache I B Storage Address + Class + Selector

C++ V-Table Entries I A Storage Address + Hash(mangled method name)

Computed Goto Label I A Hash(function name)

1010
1110
1001

+

Pointer Authentication
Function return address before PAC
_func:

 stp x29, x30, [sp, #-16]!
 ...
 ldp x29, x30, [sp], #16
 ret

Pointer Authentication
Function return address after PAC
_func:
 pacibsp
 stp x29, x30, [sp, #-16]!
 ...
 ldp x29, x30, [sp], #16
 retab

1010
1110
1001

+

IB
Code

Process

Storage
Address

Pointer Authentication
Pointers to data, code via data

Kernel Thread State G A *

User Thread State Registers I A Storage Address

C++ V-Table Pointers D A 0

1010
1110
1001

+

Abort on all authentication failures
in kernel
Adoption across all Apple kexts
Hardened jump tables

Pointer Authentication
Improvements in iOS 13

ObjC method dispatch hardening
• Sign and authenticate IMP pointers in

method cache tables
Hardened exception handling
• Hash and verify sensitive register state
JavaScriptCore JIT and extra data
hardening

Pointer Authentication
Improvements in iOS 13

Authenticated members of high value
data structures
• Processes, tasks
• Codesigning
• Virtual Memory subsystem
• IPC structures

Pointer Authentication
Coming soon

Mac secure boot
iOS code integrity protection
Find My

Any device in proximity can help, even if stranger to the owner
Offline device communicates via Bluetooth with participating strangers (finders)
Finders report their location and a timestamp
Owner uses a second device to find the lost device

Helping users find lost devices, even when offline

A static device identifier makes the device trackable
Even with a rotated identifier, finder can’t encrypt location end-to-end
• Server would have access to the location information

Challenges

• Location reports are not accessible to Apple servers
– Cannot read, modify, or even add bogus reports

• Finder identities and location not revealed to Apple servers
– No finder identifier recorded
– Reported location is encrypted

• Information broadcasted by the lost device cannot be used to track it, except by the
owner

Security and Privacy Goals
Protect owners, finders, and devices

Find My
Setup

Generate EC P-224 key pair {d, P = d # G}
Generate symmetric key SK0
Store {d, P, SK0} in iCloud Keychain

Encrypted {d, P, SK0}
in iCloud Keychain

A Find My time period, i, is 15 minutes long
Derive symmetric key SKi
• SKi = KDF(SKi-1, “update”)
Derive anti-tracking secret pair (ui, vi)
• (ui, vi) = KDF(SKi, “diversify”)
Unlinkably diversify public key P
• Pi = ui # P + vi # G
Broadcast Pi to nearby finders

Find My
Device broadcasting its location

Finder ECIES-encrypts its location to public key Pi
Computes lookup indexi = SHA256(Pi)
Uploads encrypted report with indexi to Apple servers

Find My
Reporting location of a broadcasting device

Find My
Owner locating their device

Retrieve di from iCloud Keychain
Compute Pi = di # G for lookup period i
Compute lookup indexi = Hash(Pi)
ECIES decrypt (posi,0, timei,0) = D(di, rec0)

Query DB for location reports at indexi

DB responds with [rec0, rec1, …]

Novel design to enable users to enlist the help of strangers to locate lost devices
Highly rigorous privacy properties to protect participating device owners and
finders

Find My
Summary

Mac secure boot
iOS code integrity protection
Find My

Mac secure boot
iOS code integrity protection
Find My

Apple Security Bounty

Platforms iOS, iCloud

Categories 5

Participation Very small invited
researcher audience

Maximum payout $200,000

Introduced in 2016

50 High-Value Reports

What’s next?

Apple Security Bounty will be open to
all researchers

Revised and expanded categories

Maximum Payout

Unauthorized access to iCloud account data on
Apple servers $100,000

Attack via physical access
Lock screen bypass $100,000

User data extraction $250,000

Attack via user-installed app
Unauthorized access to high-value user data $100,000
Kernel code execution $150,000
CPU side channel attack on high-value user data $250,000

Network attack requiring user interaction
One-click unauthorized access to high-value user data $150,000

One-click kernel code execution $250,000

Network attack with no user interaction
Zero-click radio to kernel with physical proximity $250,000

Zero-click access to high-value user data $500,000

Vulnerabilities in designated pre-
release builds

50%
bonus

What about getting started?

We want to attract exceptional researchers who have been focused on other
platforms
New researchers shouldn’t have to find a full chain to bootstrap research
Existing iOS researchers shouldn’t have to hold back chains for research

Making It Easier to Get Started with iOS Research

iOS Security Research Device Program

Unprecedented, Apple-supported iOS security research platform
Comes with ssh, a root shell, and advanced debug capabilities
New research fusing, neither production nor development

iOS Security Research Device program

Unprecedented, Apple-supported iOS security research platform
Comes with ssh, a root shell, and advanced debug capabilities
New research fusing, neither production nor development
Program applications open to everyone with a track record of high-quality
systems security research on any platform

iOS Security Research Device program

Unprecedented, Apple-supported iOS security research platform
Comes with ssh, a root shell, and advanced debug capabilities
New research fusing, neither production nor development
Program applications open to everyone with a track record of high-quality
systems security research on any platform
Coming next year

iOS Security Research Device program

Participation open to all researchers in the Fall
Expanded and revised categories
Highest maximum payouts in the industry
iOS Security Research Device Program for exceptional researchers new to our
platform

Apple Security Bounty
Summary

What about a zero-click iOS full chain
with kernel code execution and

persistence?

!!!!!!
$1,000,000 !!!!

!!
!!!

Maximum Payout

Unauthorized access to iCloud account data on
Apple servers $100,000

Attack via physical access
Lock screen bypass $100,000
User data extraction $250,000

Attack via user-installed app
Unauthorized access to high-value user data $100,000
Kernel code execution $150,000
CPU side channel attack on high-value user data $250,000

Network attack requiring user interaction
One-click unauthorized access to high-value user data $150,000
One-click kernel code execution $250,000

Network attack with no user interaction
Zero-click radio to kernel with physical proximity $250,000
Zero-click access to high-value user data $500,000
Zero-click kernel code execution with persistence $1,000,000

We’re excited to work with you!

TM and © 2019 Apple Inc. All rights reserved.

