

Exploring the New World :

Remote Exploitation of SQLite and Curl

Qian Wenxiang leowxqian@gmail.com Senior Security Researcher

Li YuXiang xbalien29@gmail.com Senior Security Researcher

Wu HuiYu droidsec.cn@gmail.com Senior Security Researcher

Tencent Blade Team

https://blade.tencent.com

mailto:leowxqian@gmail.com
mailto:xbalien29@gmail.com
mailto:droidsec.cn@gmail.com
https://blade.tencent.com/

Table of Content

ABSTRACT .. 3

1.INTRODUCTION .. 4

2. THE DETAILS OF VULNERABILITIES ... 4

2.1 THE DETAIL OF MAGELLAN (SQLITE RCE) ... 4

2.1.1 CVE-2018-20346 .. 5

2.1.2 CVE-2018-20505 ... 7

2.1.3 CVE-2018-20506 .. 12

2.2 THE DETAIL OF DIAS (LIBCURL) .. 14

2.2.1 CVE-2018-16890 ... 15

2.2.2 CVE-2019-3822 .. 15

3. REMOTE EXPLOITATION OF MAGELLAN AND DIAS ... 16

3.1 THE THREAT MODELS OF THIRD-PARTY LIBRARIES ... 16

3.2 REMOTE EXPLOITATION OF MAGELLAN .. 18

3.2.1 Exploitation of the Magellan ... 18

3.2.2 Attacking the Google Home via Magellan .. 19

3.3 REMOTE EXPLOITATION OF DIAS ... 31

3.3.1 Exploitation of the Dias (CVE-2019-3822) .. 31

3.3.2 Attack Scenarios for Dias ... 33

3.3.3 Exploit Dias on Apache + PHP .. 36

4. CONCLUSION .. 37

Abstract

Over the past years, our team has identified a number of critical vulnerabilities in SQLite and

Curl, two of the most widely used basic software libraries, through some new ideas. We named

these two sets of vulnerabilities “Magellan” and “Dias”, respectively, which affect many devices

and software. We exploited these vulnerabilities to break some of the most popular Internet of

things devices (Google Home with Chrome), one of the most widely used Web server

(Apache+PHP), and one of the most commonly used developer tool (Git).

In this presentation, we will share how to use some new ideas to discover vulnerabilities in

SQLite and Curl through Fuzz and manual auditing. Through these methods, we found total

three heap buffer overflow and heap data disclosure vulnerabilities in SQLite, which are CVE-

2018-20346,CVE-2018-20505,CVE-2018-20506. We also found two remote memory leak and

stack buffer overflow vulnerabilities in Curl, CVE-2018-16890 and CVE-2019-3822. These

vulnerabilities affect many systems and software, and we’ve urged vendors such as Google,

Apple, Microsoft, Facebook and the open source community last year to fix them.

Also, we will disclose these two sets of vulnerability code for the first time, and highlight

some of our new vulnerability exploitation techniques. In the first part, we will analyze how to

use Magellan vulnerability to perform remote code execution in Chrome and how to attack

Google Home device remotely in combination with some feature of Google Cast protocol. In the

second part, we will tell how to use Dias vulnerabilities to complete the remote attack on

Apache+PHP and Git, and get remote denial of service and remote information disclosure.

1.Introduction

In 2018, we published a method to remote exploiting of the Amazon Echo, and then we

started working on the Google Home. We got the latest version of the Google Home firmware

in a number of ways and found that there was a Chrome browser running inside, so we started

auditing the Chrome browser for vulnerabilities. We found total three heap buffer overflow and

heap data disclosure vulnerabilities (named "Magellan") in the SQLite used by the Chrome

browser, numbered CVE-2018-20346, CVE-2018-20505, CVE-2018-20506.

We also found two remote memory leaks and stack overflow vulnerabilities (named "Dias")

in Curl, numbered CVE-2018-16890 and CVE-2019-3822, respectively. Although our initial goal

was to use them to attack Google Home, in subsequent studies, we also found that because of

the widespread use of SQLite and Curl, many IoT devices, operating systems, browsers, Software

and even web servers can be targeted too.

After Google and SQLite released Magellan's bug fixes, we released a vulnerability alert

page (https://blade.tencent.com/magellan/). This has attracted the attention of many media,

vendors and security researchers. The most complete details about the vulnerability we have

been hoping to be officially open at the Blackhat USA conference.

2. The Details of Vulnerabilities

2.1 The Detail of Magellan (SQLite RCE)

During the auditing of Google Home, we have found several 0day vulnerabilities in component

https://blade.tencent.com/magellan/

sqlite3. The Google Home allows everyone in same LAN to push a webpage to it, we can also

use the remote inspector to debug the web page. Thus, an attacker may push a malicious web

page to Google Home, then try to control the device by executing malicious code.

Nonetheless, the vulnerabilities in sqlite3 will also have impacts on Chrome, Webkit on all

platform (Android, Chrome OS, Windows, Linux, Mac ...) and the products which use Webkit such

as Alipay, or the products using sqlite3 such as Apache, PHP, etc.

2.1.1 CVE-2018-20346

`merge` action in fts3 extension could allow an attacker to leak heap data or cause heap buffer

overflow

1. The table struct is very similar between fts3 and fts4, and fts4 is disabled in Chrome.

2. Both fts3 and fts4 has some tables to store node information

3. sqlite doesn ’ t forbid user from modifying (create, insert, delete) data of those tables

(%_segments, %_segdir, %_stat)

4. The fts4 shares many code branch with fts3, they could be activated by adding some special

built-in tables such as %_stat.

5. The sqlite3 use assert() to do the condition check, but when Google builds Chrome, the assert

turns to void() because it is not a debug build. Thus many critical condition check is missing

in release version of Google Chrome, the same thing also happens in sqlite3.

6. When we fake some critical built-in tables and records, and call ̀ merge` function, the function

will read data from a hacker-controllable memory area, and performs memcpy action, thus

results in some heap related problems.

2.1.1.1 Vulnerable function

Through the code below, we can trigger the vulnerability.

 for(rc = nodeReaderInit(&reader, aNode, nNode); //<-- trigger 1

 rc == SQLITE_OK && reader.aNode;

 rc = nodeReaderNext(&reader) //<--trigger2

) {

 if(pNew->n == 0) {

 int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm); //reader.term.a is got from

the call above

 if(res<0 || (bLeaf == 0 && res == 0)) continue;

 fts3StartNode(pNew, (int)aNode[0], reader.iChild);

 *piBlock = reader.iChild;

 }

 rc = fts3AppendToNode(

 pNew, &prev, reader.term.a, reader.term.n,

 reader.aDoclist, reader.nDoclist

); //<--trigger3

 if(rc != SQLITE_OK) break;

 }

First, we try to read the wrong value nDoclist (controlled by the attacker) through nodeReaderInit

→ nodeReaderNext.

Second, pass the malicious nDoclist value to fts3AppendToNode, we might cause heap buffer

overflow in these two places:

 if(bFirst == 0) {

 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix);

 }

 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix);

 →memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix);

 pNode->n += nSuffix;

 if(aDoclist) {

 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist);

→memcpy(&pNode->a[pNode->n], aDoclist, nDoclist);

 pNode->n += nDoclist;

 }

In our attack, we choose to use the second spot, since it is more stable and easy to use. the

nDoclist and aDoclist is controllable , and the pNode->a and pNode->n is also adjustable by us

so we can shape the heap.

2.1.2 CVE-2018-20505

fts3ScanInteriorNode (`match`) in fts3 extension could allow an attacker to leak heap data or

cause heap buffer overflow

Simple Introduce of Steps to Exploit:

1. Set a node in %_segdir to be not a root node.

2. Modify the blob data of the node

3. Call `match` to trigger the exploit

2.1.2.1 Vulnerable function

static int fts3ScanInteriorNode(

 const char *zTerm, /* The term to be selected */

 int nTerm, /* Size of zTerm */

 const char *zNode, /* The node being scanned */

 int nNode, /* Real size of the node */

 sqlite3_int64 *piFirst, /* Output */

 sqlite3_int64 *piLast /* Output */

)

1、 Note the function fts3GetVariant32, this function will return an integer for at most 0x7fffffff (The input

data is little-endian, the input ff ff ff ff 07 will produce the output 0x7fffffff). The code will extract nPrefix

and nSuffix from blob (zNode), the blob is controllable by the attacker.

 if(!isFirstTerm) {

 zCsr += fts3GetVarint32(zCsr, &nPrefix);

 }

 isFirstTerm = 0;

 zCsr += fts3GetVarint32(zCsr, &nSuffix);

2、 The first check, will check if zCsr+nSuffix-1 is step beyond the zEnd. But in a 32-bit machine (like

Google Home), the heap is usually lays in address which is greater than 0x7fffffff, when plus another

big number such as 0x7fffffff, there must be an integer overflow, the result could be very small, and

this check will be passed.

 if(&zCsr[nSuffix]>zEnd) { //Value>0x7fffffff+nSuffix, pass

 rc = FTS_CORRUPT_VTAB;

 goto finish_scan;

}

zCsr is the pointer which represents the current position in blob, and zEnd is the pointer to the last char of

the blob.

Such as zCsr = 0xe00000000, zEnd = 0xe0002000, nSuffix = 0x20000001, result of zCsr+nSuffix is 0x1, which

is smaller than zEnd and could pass this check.

To sum up, there could be 2 conditions:

a) nSuffix is smaller than the actual amount of data without being processed

b) nSuffix is a huge number, which cause an integer overflow of zCsr+nSuffix, we consider b to be

exploitable in Google Home

The value chosen will have effect on the next validation, we will name the value here “X”.

3、 The second validation

 if(nPrefix+nSuffix>nAlloc) { //if nSuffix=0x7fffffff, nPrefix=1 we could pass the chk

 char *zNew;

 nAlloc = (nPrefix+nSuffix) * 2;

 zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);

 if(!zNew) {

 rc = SQLITE_NOMEM;

 goto finish_scan;

 }

 zBuffer = zNew;

}

The variant nAlloc is the amount of allocated buffer, usually the value grows twice each time.

Please note nAlloc can be greater than actual data and there’s no promise that the data inside the

reallocated memory area is got from the original blob, so we can leak some heap information here.

d) If nSuffix satisfied the condition (a) above, but the nPrefix is greater than actual data being held by

buf, in the next step, there might be an information leak problem. (Because sqlite3_realloc calls realloc of

libc, which will not initialize the memory to zero).

e) If (nPrefix+nSuffix)* 2 is greater than 0x1` 0000 0000 (only lower 32 bit is being kept), after realloc,

the buf will be set to a very small buffer, this could make the buffer being overflowed. Attacker could set

nPrefix to a big value, and nSuffix to a smaller value, this will cause a out-of-bound write.

f) If we choose to exploit with a) or b), with nSuffix (We’ll call it “Y”) set to Y=0x80000000-X (You may

want not to set Y to 80000000-X, you can do it but if you do so, you might have a high possibility to crash

sqlite during memcpy).

For example,

⚫ We have zCsr=0xa0000000, nPrefix=7ffff001 to trigger zCsr+nPrefix-1,

the result is 0x1 1FFFF000 and the higher 0x1 is truncated, so it is actually 0x1ffff000.

⚫ We have nSuffix set to 0xfff, so nPrefix+nSuffix is integer overflowed,

the result is 0x0, 0x0 is smaller than nAlloc, so we will not step into the realloc part.

(if(nPrefix+nSuffix>nAlloc) {realloc…})

⚫ So, at last, there will be an out-of-bound write to 0x1ffff000 with write size 0xfff.

4、 The code to trigger the buffer related vulnerability h）

memcpy(&zBuffer[nPrefix], zCsr, nSuffix);

This will copy data and nPrefix, zCsr, nSuffix are controllable. The maximum value of nPrefix, nSuffix is

0x7fffffff.

5、Information leak i)

 cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer));

 if(piFirst && (cmp<0 || (cmp == 0 && nBuffer>nTerm))) {

 *piFirst = iChild;

 piFirst = 0;

 }

 if(piLast && cmp<0) {

 *piLast = iChild;

 piLast = 0;

 }

We might use select to get the data being matched, to get the leaked data. (We don’t have enough

time to write the PoC now but we consider this is exploitable.).

2.1.3 CVE-2018-20506

fts3SegReaderNext in fts3 extension could allow an attacker to leak heap data or cause heap

buffer overflow

2.1.3.1 Vulnerable function

This code sits in fts3SegReaderNext, this vulnerability is generally the same as 02.

 pNext += fts3GetVarint32(pNext, &nPrefix);

 pNext += fts3GetVarint32(pNext, &nSuffix);

 if(nPrefix<0 || nSuffix<=0

 || &pNext[nSuffix]>&pReader->aNode[pReader->nNode]

) {

 return FTS_CORRUPT_VTAB;

 }

 if(nPrefix+nSuffix>pReader->nTermAlloc) {

 int nNew = (nPrefix+nSuffix)*2;

 char *zNew = sqlite3_realloc(pReader->zTerm, nNew);

 if(!zNew) {

 return SQLITE_NOMEM;

 }

 pReader->zTerm = zNew;

 pReader->nTermAlloc = nNew;

 }

 rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX);

 if(rc != SQLITE_OK) return rc;

 memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix);

2.2 The Detail of Dias (libcurl)

During our auditing on libcurl, we have found that the handler for NTLM type-2 message is not

validating the data correctly and is subject to an integer overflow vulnerability.

The questionable code is in the ntlm.c (function ntlm_decode_type2_target), when a user tries to

connect to a server with NTLM enabled, the server would reply Type-2 message with

target_info_len (0 ~ 0xffff) and target_info_offset (0~0xffffffff) set to arbitrary value.

Both target_info_len and target_info_offset are unsigned long, so the validate here:

if(((target_info_offset + target_info_len) > size) || << Integer Overflow

 (target_info_offset < 48)) << Unsigned number can pass this check

which is not correct. if target_info_len + target_info_offset = (unsigned long) 0x1 00000000, which

means the result is zero (the leading 1 is overflowed), and it must be less than “size”.

To trigger the integer overflow, the value of target_info_offset must between 0xffff0001~0xffffffff,

which means it can pass the check (unsigned long)target_info_offset < 48.

memcpy(ntlm->target_info, &buffer[target_info_offset], target_info_len); << Out-of-bounds Write /

Uninitialized Memory Buffer Leak To Remote Server

2.2.1 CVE-2018-16890

Remote Memory Leak in NTLM Type 2 Message

(32 Bit)Then, the target_info_offset is used as an offset to calculate the address of ̀ src` of memcpy.

Since the 0xffff0000 is a negative number, the memcpy will copy from the memory

before “buffer”, to target_info, with length of target_info_len.

(64 Bit)memcpy will copy from an address after “buffer”

The target_info will be encoded and send during Type-3 message to attacker.

2.2.2 CVE-2019-3822

Stack buffer overflow in NTLM Type 3 Message

The code in Curl_ntlm_core_mk_ntlmv2_resp,

len = NTLM_HMAC_MD5_LEN + NTLMv2_BLOB_LEN;

The NTLMv2_BLOB_LEN was defined as:

#define NTLMv2_BLOB_LEN (44 -16 + ntlm->target_info_len + 4)

Since target_info_len is controllable, we can simply make this value very big.

When the “len” is written back to ntresp_len:

 *ntresp_len = len;

This memcpy will write a huge data into ntlmbuf, which is a stack variable with size 1024, which

means stack buffer overflow:

 if(size < (NTLM_BUFSIZE - ntresplen)) {

 DEBUGASSERT(size == (size_t)ntrespoff);

 memcpy(&ntlmbuf[size], ptr_ntresp, ntresplen);

 size += ntresplen;

 }

I think should do this check eailier:

 if(size + userlen + domlen + hostlen >= NTLM_BUFSIZE) {

 failf(data, "user + domain + host name too big");

 return CURLE_OUT_OF_MEMORY;

}

3. Remote Exploitation of Magellan and Dias

In this section, we will share how to complete remote vulnerability exploitation of Magellan and

Dias. We propose a threat model for remote vulnerability exploitation of the third-part libraries’

vulnerabilities. And choose the Internet of things device (Google Home), development tools (Git),

web server (Apache+PHP) as the target to demonstrate the remote code execution and remote

information disclosure in real-life Internet scene.

3.1 The Threat Models of Third-Party Libraries

In recent years, more and more APT events also show that the security of manufacturers and

developers is also very important. Once attacked, it may leak sensitive data of the company and

threaten the security of the company. In addition, many products have security enhancements

on their own code. However, because the product may introduce a vulnerability in the third-

party library, this makes the previous reinforcement ineffective.

The attack model is shown in the following:

1. For users, because of the lack of security awareness, after they buy some software or

products, they do not update the software regularly, which makes the third-party library

vulnerability exist in the software for a long time, leaving a back door for attackers.

2. For developers, they may use open source components as a module of the product. They

also use common tools for code development or operation (such as Git, Curl, etc.), where

there are security vulnerabilities in these open source components or security risks in the

third-party libraries used by these common tools. Will increase the likelihood that

developers will be attacked;

3. Finally, there is the security scenario of the server, many websites are built by PHP + apache

/ nginx as the underlying technology. These underlying technologies also use a lot of third-

party libraries, once these components pose a security risk, an attacker can use them to

attack the server.

3.2 Remote Exploitation of Magellan

3.2.1 Exploitation of the Magellan

3.2.1.1 Heap Buffer Overflow

Let's start with how to overflow a heap of arbitrary length and content. At the same time, review

the core code, which will also be used in subsequent information leaks.

 if(aDoclist) {

 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist);

→memcpy(&pNode->a[pNode->n], aDoclist, nDoclist);

 pNode->n += nDoclist;

 }

If nDoclist is greater than the remaining space of pNode->a, in this condition, there’ll be a heap

buffer overflow. The data which attacker tries to copy to the heap is totally controllable.

You could just modify the last byte of ‘root’ from 06 to the size which satisfy the algorithm

fts3GetVariant32. (For example 80 02 means 0x100, 80 03 means 0x200).

The data being copied is just close to the size field. That means, if you modify the PoC to

… 06 41 41 41 41 41 41

[SIZE] [DATA] (DATA could be smaller than SIZE)

Then, ‘AAAAAA’ (0x41 0x41 0x41 0x41 0x41 0x41) will be copied to the buffer.

3.2.1.2 Information Leak

If the length of content of aDoclist is shorter than nDoclist, the memcpy will copy data from the

heap data after aDoclist, making it leaks heap data.

Also, after we run the PoC to leak data, there will be a very high rate which Chromium won’t

crash, so we can try to adjust the payload, and leak the memory data again and again.

For each run, we can read 1~7 bytes after the heap. This size is considered to be as safe range,

since the allocated heap is aligned by 8 bytes.

We can use the leaked data to bypass the ASLR.

3.2.2 Attacking the Google Home via Magellan

With the gradual popularity of the Internet of things, more and more smart devices into the

user's home, these smart devices will become the infrastructure of the consumer Internet.

We chose the smart speakers that have been hot in recent years as the security research goal,

and our team completed the remote code execution of Google Home and Amazon Echo by

taking advantage of the vulnerability of the third-party library. Next, we'll show you how to

remotely attack Google Home using Magellan.

3.2.2.1 Extending the Attack Surface of Google Home

Google Home will pull the new firmware at boot or regularly, and pull different firmware of the

Internet of things according to different APPID, such as Google Home, Chrome Cast and so

on. After analyzing the firmware, we know that Google Home uses Chrome OS as the operating

system, and if we can find a vulnerability in chrome, it could be used to attack Google Home. In

the previous section, we have identified a vulnerability in SQLite, so we also need to find an

attack surface to control Google Home to access our malicious Web pages.

CAST Protocol

Google Cast is designed for TV, movies, music, and more. Put your best video content on the

biggest screens in the house, or bring your audio content to Google Cast for Audio devices and

Google Home devices, including the new Google Home Hub.

Google allows developers to develop CAST APP and publish it to Application Store. CAST APP

generally includes Sender and Receiver, Sender devices can be any Android or iOS device, or a

PC running Chrome. Receiver is Google's Internet of things devices such as Google Home.

Through the CAST protocol, Google Home can be triggered to initiate a network request, pull

and load the corresponding CAST APP, specific development process can refer to Google's

official website.

Attack Surface of CAST Protocol.

We focus on the attack surface of CAST APP. Normally, Google Home listens on port 8009 in the

LAN, which is Google's CAST protocol. By sending the CAST, we can request the Google Home

to start our designated CAST APP, Google Home to pull the network address of each Receiver

Application according to the CAST APPID and access the Receiver Application through the

Chrome renderer. As shown in the following figure:

In general, CAST APP can extend and complete a wealth of multimedia interaction. However, if

our given receiver URL is a web page with malicious payload, Google Home will still visit it. This

is a remote attack surface that converts an attack on a Google Home into an attack on a

browser. At this point, we can exploit the Magellan we found.

Details Steps: Extending the Remote Attack Surface

1. Once an attacker is registered as a cast developer, cast applications can be developed and

distributed. When you publish an application, you need to specify CAST RECEIVER

URL. However, Google does not restrict and audit links and CAST app (only requires links to

be https). Then we can specify it as a Web page with a malicious payload. We have

registered one.

2. Remotely trigger Google Home to access any Web page.

a) The attacker tricked the victim into accessing the CAST SENDER URL through a Chrome

browser or mobile device. Through this SENDER URL, the CAST protocol process is

triggered, searching the victim's home Google Home and triggering its access to the

CAST RECEIVER URL;

b) If the attacker and Google Home are on the same LAN, the attacker can also send the

castv2 protocol, such as a LAUNCH APP request, to port 8009. This directly triggers

Google Home access to the CAST RECEIVER URL.

c) To make matters worse, if the router in the victim's home turns on UPNP port

forwarding, the attacker can also complete a remote silent attack on the Internet.

3. An attacker modifies CAST RECEIVER URL's Web page to a malicious page with RCE

payload. Then the victim's, Google Home will be under the control of the attacker after

visiting the page.

3.2.2.2 Exploiting the Magellan on Google Home (CVE-2018-20346)

We've already shown you how to remotely control Google Home to access our malicious links

using the CAST protocol, and we'll show you how to exploit Google Home via Magellan. We

used CVE-2018-20346 to exploit the vulnerability. The vulnerability allows us to perform both

information disclosure and code execution. The following sections will illustrate how to exploit

vulnerabilities.

Available Function Pointer

In order to hijack the PC and then execute the code, we want to find a function pointer on the

heap that can be overridden. Through the source code audit, we found that when we use SQL

statements on SQLite to create fts3 tables (for example, create virtual table x using fts3 (a, b),

SQLite allocates a sqlite3_tokenizer structure on the heap).

• The default sqlite3_tokenizer is simple_tokenizer. The code snippet is as follows:

static int simpleCreate(

 int argc, const char * const *argv,

 sqlite3_tokenizer **ppTokenizer

){

 simple_tokenizer *t;

 t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t));

 *ppTokenizer = &t->base;

}

• The simple_tokenizer structure is allocated on the heap, the first member of which is

sqlite3_tokenizer:

typedef struct simple_tokenizer {

 sqlite3_tokenizer base;

 char delim[128]; /* flag ASCII delimiters */

} simple_tokenizer;

• The sqlite3_tokenizer structure is as follows:

struct sqlite3_tokenizer {

 const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */

 /* Tokenizer implementations will typically add additional fields */

};

• The first member of the structure is the pointer pModule, to the sqlite3_tokenizer_module

structure, which exists on the heap. Sqlite3_tokenizer_module is a structure that contains multiple

callback functions, including xCreate, xDestroy, xOpen, and so on, as follows:

struct sqlite3_tokenizer_module {

 int iVersion;

 int (*xCreate)(

 int argc, /* Size of argv array */

 const char *const*argv, /* Tokenizer argument strings */

 sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */

);

 int (*xDestroy)(sqlite3_tokenizer *pTokenizer);

 int (*xOpen)(

 sqlite3_tokenizer *pTokenizer, /* Tokenizer object */

 const char *pInput, int nBytes, /* Input buffer */

 sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */

);

};

If we can override the simple_tokenizer after the heap overflow, We can modify the pModule to

our fake sqlite3_tokenizer_module structure, then when the program executes to the fts3

callback function, it calls the callback function in our forged structure.

For example, when fts3 performs a insert operation, the callback function xOpen is executed first,

and the first parameter is heap data, which may be controlled by us.

PC Hijacking through SQL TRIGGER

When we override pModule and point it to our fake structure sqlite3_tokenizer_module, we also

need to find logic that triggers callbacks to complete PC hijacking. This requires us to be able to

perform fts3 table operations after the heap overflow.

On analyzing the calling path of the overflowed memcpy function to the overflow heap free, we

found that the program executes a SQL statement, and the SQL_CHOMP_SEGDIR-> UPDATE

segdir, code is as follows:

if(rc==SQLITE_OK){

rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0);

……

 }

sqlite3_free(root.a); <------- Memcpy Memory Corruption

Based on the code, we know that the SQL statement is executed once during program

execution. We can use SQL triggers to complete the operation logic of the fts3 table. With the

help of triggers, we have the opportunity to perform fts3 operations before executing the SQL

statement UPDATE, triggering our forged callback function. If the callback function is under our

control, the hijacking of the PC is complete.

In the end, the pseudo-code is as follows, all done through the SQL statement, and you can

normally hijack PC.

CREATE virtual TABLE hijack USING fts3(a,b);

…

CREATE TRIGGER hijack_trigger BEFORE UPDATE

ON x_segdir

BEGIN

 INSERT INTO hijack values (1, x'1234');

END;

…

insert into x (x) values("merge=1,2");

Memory Layout

On the Google Home, the sqlite in the cast_shell is the use of tcmalloc for memory

management. In general, allocating memory of the same size has a greater probability of being

allocated to contiguous areas, and newly allocated memory has a greater probability of using

recently freed memory. A feasible memory layout idea is as follows:

1) First, by creating multiple fts3 tables, we will create multiple simple_tokenizer structures;

2) Drop the previously created fts3 table at the appropriate time. The simple_tokenizer

structure will be freed.;

3) Reassigning payload of the same size as simple_tokenizer has a high probability that

payload will be allocated to the previously released simple_tokenizer structure.

4) Because of the tcmalloc allocation algorithm, simple_tokenizer is likely to be stored

continuously, so our payload has a greater chance of overwriting the simple_tokenizer

structure of the existing fts3 table.

5) With a SQL trigger that triggers the operation of the fts3 table before the free, there is a

chance that the Tokenizer_module callback function will be triggered to hijack the PC.

The corresponding vulnerability code is as follows. NDoclist and aDoclist are payload, that we

can control. In order for the overflow to overwrite sqlite3_tokenizer, we need to choose the right

time to create the pNode->a buffer: Based on the above attempt, if all goes well, it will fall into

this code:

（gdb）x / 10i $ pc

=> 0xb8a2c1ca：ldr.w r4，[r11，＃12] //Get fts3 xOpen function pointer

0xb8a2c1ce：blx r4

...

At this point, the registers we can control include R0, R1, where R11 has been overwritten with

0xaaaaaaaa for us, and the next few assembly instructions will find function pointers from the

memory that R11 points to. Blx jumps to the appropriate callback function.

Heap Spray and ROP

We insert a large amount of data into the SQLite as a method of heap spraying. After multiple

heap spray attempts and dump memory analysis. We found that inserting a specific size payload

into Google Home's SQLite database would make our payload relatively stable from the last

heap offset. With the help of the previous information disclosure vulnerability, if we can leak to

the base address or close area of the last heap, we will have a high probability of success.

The final step is to construct the ROP gadget, we use cast-shell 's gadget as the ROP

gadget. Because we can control the data on the heap (R0 register points to simple_tokenize),

we finally find ldm R0, {R4, R8, ip, sp, pc} as the first hop Stack Pivot, layout as follows:

In the end, we used the Magellan to remotely attack Google Home, but because of sandbox, our

EXP ran in renderer.

RCE in cast_shell

The above is a screenshot of our remote code execution in cast_shell. The red boxes on the left

show that the registers we can control are R0, R11, and the function address is read from R11, and

finally through the BLX jump. Then, as a result, we have been able to hijack the PC.

We executed the JavaScript code for fetch(url+navigator.appName) in the exp.html code.

Normally, navigator.appName is read-only and is "Netscape", but our shellcode changed the

appName to "AAAAcape".

Exploiting the Magellan on Google Home

There are three types of attack vectors that attack Google Home remotely.

1) The attacker is located in the LAN

a) . The attacker sends the "Launch APPID =1" command through the Cast protocol, and

Google Home pulls Leak.html on the application market according to the APPID and loads

it. At this time, the leaked data can be obtained by the attack;

b) The attacker sends the "Launch APPID = 2" command through the cast protocol. At this time,

Google Home loads Exp.html, so that the remote code executes; the entire process does

not require user interaction;

In the other two scenarios, you don't need to be on the same LAN to start the attack.

2) The attacker induces the victim to access the URL of the sender application through the

chrome browser. At this time, the chrome browser will prompt the user to select the device,

and the user will start the attack process after confirmation;

3) We can also combine the cast hack, we can scan the network on the router that may have

upnp forwarding, try to launch a remote attack;

3.3 Remote Exploitation of Dias

3.3.1 Exploitation of the Dias (CVE-2019-3822)

The CVE-2018-16890 is very easy to understand, you can send a message with length field set to

apparently longer than actual, to trick the curl send more data in heap. Here we would like to

introduce the exploitation of CVE-2019-3822.

3.3.1.1 Arbitrary Memory Read & Memory Leak Remotely

Please note ntlmbuf is located ahead of many other variables. So we may have a chance to

overwrite the variables after.

**Depends on the compiler, for MSVC, we can overwrite “size” & “result”, and for GCC, we can

write variables in the arrow’s direction in the figure above.

After the stack overflow is happened, we can first, overwrite ntresplen to a negative number:

unsigned int ntresplen = 24;

Overflow >> memcpy(&ntlmbuf[size], ptr_ntresp, ntresplen);

SizePlusNegative>> size += ntresplen;

Then, we can overwrite *user, point it to arbitrary address, say, 0x41414141.

After this memcpy, the data from 0x41414141, with controllable size is copied to

ntlmbuf[controllable]:

 if(unicode)

 unicodecpy(&ntlmbuf[size], user, userlen / 2);

 else

Read >> memcpy(&ntlmbuf[size], user, userlen);

And the ntlmbuf is calculated and send out to attacker.

3.3.1.2 Potential Heap Buffer Overflow

Same thing from above, the domoff is controllable by us thus in this call, the buffer and length

might be not corresponding, so there’s potentially a heap buffer overflow (depends on the

implementation of Curl_convert_to_network)

 /* Convert domain, user, and host to ASCII but leave the rest as-is */

 result = Curl_convert_to_network(data, (char *)&ntlmbuf[domoff],

 size - domoff);

3.3.2 Attack Scenarios for Dias

3.3.2.1 NTLM Authentication for CURL/libcurl

In general, curl's binary supports NTLM by default. You can connect to the remote server

through the curl-ntlm-u "username: password" server. Libcurl, on the other hand, is a little more

complicated. It requires developers to open CURLAUTH_NTLM or CURLAUTH_ANY, to support

NTLM authentication.

To trigger NTLM authentication when the switch is turned on, the user name and password must

be specified through the command line or cul_setopt, or directly in the requested URL. For

example, curl-ntlm http:// username: password @ Server/.

3.3.2.2 Details Scene

Although the vulnerability exists in the NTLM authentication negotiation process, it is a common

authentication method on the Windows for the NTLM protocol, so for the intranet with Windows

machine or proxy server, the frequency of NTLM is not very low.

Although it is authentication, it should be noted that to trigger the two vulnerabilities this time,

authentication information from the client is not important, because the server side is controlled

by hackers, and hackers do not care what the client sends. Just send the attack payload in

accordance with the established rules. Therefore, the client can continue to trigger the

vulnerability even if it sends the wrong authentication information.

If the hacker controls a server. The client uses the vulnerable curl + NTLM to connect to the

hacker's server, and the hacker can attack the client program. The specific attack scenario is as

follows, provided that the NTLM authentication request is enabled:

a) Developers use git to pull the repositories, for example to download repositories, the

document specifies a Malicious repositories address;

b) Use curl or rely on libcurl software to access the proxy server if the proxy server is

malicious

c) The tested PHP file is placed on the server, or the attacker uploads a hidden webshell.

This PHP file will not be recognized by the detection software, but it will become the

back door of the server;

As shown in the figure, if the client has already triggered the NTLM request in the three scenarios,

then only the malicious server needs to return a Malformed NTLM Type-2 message, then the

client's memory may be leaked to the attacker through Type3. It can even lead to code execution.

Based on this attack scenario, we can use CVE-2018-16890/CVE-2019-3822, to complete the

remote information disclosure and remote code execution of developers, and obtain the

sensitive data of developers and even the sensitive data of the company.

3.3.3 Exploit Dias on Git or Curl

In this section we will show you how to use Dias to attack git and curl. The specific steps are as

follows:

1) 127.0.0.1 is a server that has been controlled by an attacker. The attacker deployed a

malicious NTLM server on port 8008 to attack the client.

2) When the developer uses git or curl to access the network, for example: execute the

following git command, Git clone http://aaa:bbb@127.0.0.1:8080/1.git, or execute the curl

command, Curl --ntlm http: //aaa:bbb@127.0.0.1:8080, it may be attacked by an attacker.

3) From the screenshots, you can see that git and curl return the data in their memory to the

server in base64 encoding. The attacker can obtain the developer's memory information by

inducing the developer to execute the above two commands.

3.3.4 Exploit Dias on Apache + PHP

In addition to the Heartbleed of the client, there is a scene that may cause the Heartbleed of the

server. If on one of our servers, the attacker uploads a webshell, the webshell does not do

malicious behavior, so it is probably not detected by the security product, so it will always exist

on the server for a long time. The attacker can use this webshell to secretly leak the server's

memory data, and may even be used to execute remote code.

The screenshot below is our php code, which accesses the attacker's malicious ntlm server via

curl. The attacker can secretly leak memory to the remote ntlm server by accessing the PHP.

4. Conclusion

After reporting details of the Magellan vulnerability and exploitation code to Google and

SQLite in November 2018, Google identified the vulnerability as a high-risk vulnerability and

awarded a bonus of $10337 for all vulnerabilities reported.

The Curl author said in the official website security bulletin

(https://daniel.haxx.se/blog/2019/02/06/curl-7-64-0-like-theres-no-tomorrow/) that one of

vulnerabilities we’ve reported (Dias) might be the worst security issue found in curl in a long time.

https://daniel.haxx.se/blog/2019/02/06/curl-7-64-0-like-theres-no-tomorrow/
https://daniel.haxx.se/blog/2019/02/06/curl-7-64-0-like-theres-no-tomorrow/

In the following version, SQLite has introduced a new in-depth defense mechanism to

improve SQLite security, and we'll talk about some of the implementation details.

Finally, we will summarize and provide some security advice on open source software code,

and for security researchers, we believe that there may be a new world to explore in the code

that is the most overlooked.

Reference

https://developers.google.com/cast/docs/developers

https://blog.oakbits.com/google-cast-protocol-overview.html

https://github.com/balloob/pychromecast

