
Moving from
Hacking IoT Gadgets
to Breaking into One of
Europe’s Highest
Hotel Suites

by Ray & mh

Who We Are

Ray: Active member of the german hacker association
Chaos Computer Club for over 20 years, security
researcher, lockpicker, and technology enthusiast.
Sleeps in hotels ~150 nights a year.

mh: Has been analyzing, hacking and improving locks
and other security technology all his life. Active
member of SSD e.V., the world’s first locksport
association. M.S. EE, works in SW development.

Disclaimer: The opinions expressed here are those of the authors only; the authors are not affiliated with the lock manufacturers in any way; the lock manufacturers or the
authors’ employers have nothing to do with this presentation. All trademarks are the property of their owners. Some of the concepts and techniques mentioned in here
might be protected by intellectual property rights such as patents. The information was derived from the analysis of a limited number of locks and / or other sources
where mentioned and might be incomplete and / or contain errors. The authors give no warranty and accept no liability whatsoever concerning this presentation.
We did not actually break into any hotel suite, but opened doors using sniffed keys only with legitimate users’ permission.

https://www.ccc.de/
https://www.ssdev.org/

What This Presentation Is About

● “Smart” devices using Bluetooth Low
Energy

● How to analyze / hack / improve them

● Vulnerabilities we found that way, from
cheap padlocks to hotel door systems

Agenda

1. Bluetooth Low Energy (BLE) Ecosystem

2. BLE in a Nutshell

3. How to Analyze BLE Systems

4. Previous Vulnerabilities

5. BLE Hotel Keys

6. Responsible Disclosure

The BLE
Ecosystem

Components of a “Smart” Lock Ecosystem:

Lock Smartphone Internet
 App

BLE Locks

BLE
http /
https

Hardware

BLE Locks - Attack Vectors

Electronics

vibration magnets
thin wires

shock

side
channel

read out

malware distance

fraud
API

weaknesses

Connections: sniffing, man-in-the-middle, impersonation

BLE in a Nutshell

● BLE = Bluetooth Low Energy

● Designed as cheap & low power
alternative to classic Bluetooth (BT)

● Part of BT 4.0 specification

● Quite different from classic BT

BLE - Introduction

● Mainly used for “IoT” devices

● Mostly communication between
devices and a smartphone

● Locks, light bulbs, sex toys, heart
rate sensors, ...

BLE - Use Cases

● “With low energy comes low security”
(WOOT’13 presentation by Mike Ryan)

● Crypto: None, “Just Works”,
6 Digit Pin, Out Of Band (OOB)

● OOB can be secure, but often
impractical

BLE - Security

https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan

● ECC since BT 4.2

● Some implementation weaknesses were
found, but basically OK

● Currently not really used, good pairing
also unlikely in “many user” applications
like hotel doors

BLE - Newer Versions

How to Analyze
BLE

● Just a basic intro to understand the
attacks

● Download the slide deck to follow the
embedded links and find some more
links at the end

More Information

● On your own device, log traffic locally:

○ Android: enable debug mode,
activate HCI snoop log

○ iOS: install Apple Bluetooth
Debug Certificate on your device

Getting the BLE Traffic

https://developer.android.com/studio/debug/dev-options.html
https://stackoverflow.com/questions/28445552/bluetooth-hci-snoop-log-not-generated#30352487
https://developer.apple.com/bug-reporting/profiles-and-logs/
https://developer.apple.com/bug-reporting/profiles-and-logs/

● Now use the app and interact with
the device

● Note timestamps of important
actions (like “open lock”)

● Get HCI log from phone

● Analyze using tools like Wireshark

Getting the BLE Traffic

https://www.wireshark.org/

BLE in Wireshark

● For real attacks, sniff BLE over the air

● 3 advertising channels, need to follow
them to catch a connection setup

● USB BLE sniffers ~$20

Sniffing BLE

● Adafruit Bluefruit LE Sniffer or Ubertooth One
● Support Wireshark live view
● Can monitor only 1 advertising channel

at a time, follow sequence
● OK for proof of concept, for

reliable attacks you need more

Classic Sniffing Tools

https://www.adafruit.com/product/2269
https://greatscottgadgets.com/ubertoothone/

● btlejack by Damien Cauquil
● Firmware for BLE USB devices:

BBC Micro:Bit, BLE400, Adafruit Sniffer
● Supports multiple devices → use 3 and

follow all advertising channels in parallel
● Can do much more than just sniffing

Our Favorite Tool

https://github.com/virtualabs/btlejack
https://microbit.org/
https://www.waveshare.com/ble400.htm
https://www.adafruit.com/product/2269

Ray’s Proof-of-Concept

...could be fitted into a smoke detector...

mh’s Slightly Optimized Setup

How to Analyze
the Backend Link

● Only few apps use plain HTTP

● Fake root CA to intercept TLS/HTTPS

● MITM tools create certificates on the fly

● To analyze app, not to break other
people’s TLS

TLS MITM

● iOS: just declare it as trusted

● Android:
○ works easily up to 6.x,

needs rooted device on >=7
○ or modify app to use user cert store:

add network_security_config to
manifest (then rebuild, sign)

Using MITM CAs

● Modify the app, rebuild, sign

● Use Frida / objection

○ intercept calls in the app,
or in the OS
→ unlimited possibilities :)

If the App Uses Certificate Pinning

https://www.frida.re
https://github.com/sensepost/objection

Using Frida / objection

● Copy frida-server to the Android
device and run it as root
$ adb shell
C8:/ $ su
C8:/ # /data/local/tmp/frida-server &
[1] 4328

Using objection

$ objection --gadget com.masterlock.ble.app explore

Using USB device `OUKITEL C8`
Agent injected and responds ok!
 _ _ _ _
 ___| |_|_|___ ___| |_|_|___ ___
| . | . | | -_| _| _| | . | |
|___|___| |___|___|_| |_|___|_|_|
 |___|(object)inject(ion) v1.6.6

 Runtime Mobile Exploration
 by: @leonjza from @sensepost

[tab] for command suggestions
com.masterlock.ble.app on (C8 7.0) [usb] # android sslpinning disable

If That Doesn’t Work

● Prepare script.js (Frida will use this on the device)
Java.perform(function x() {

 //get a wrapper for our class

 var my_class = Java.use("com.squareup.okhttp.CertificatePinner");

 //replace the original function `check` with our custom function

 my_class.check.overload("java.lang.String","java.util.List").
 implementation = function (hostname, peerCertificates) {

 console.log("check(...) was called, just returning :)");

 return;

 }

});

Start the Instrumented App

● Run a Python script
$ python3 use_frida_to_start_the_app.py

[...]

check(...) was called, just returning :)

● TLS pinning is now deactivated

Takeaway for vendors:
TLS certificate pinning is a measure to protect your users
against rogue CAs, but it doesn’t protect your traffic from
analysis by hackers
→ Don’t rely on it for your protocol’s security

TLS Certificate Pinning

● Unix command line: mitmproxy

● macOS: Charles Proxy

● Many more available, like Burp Suite or
Fiddler

TLS MITM Tools

https://mitmproxy.org
https://www.charlesproxy.com
https://portswigger.net/burp
https://www.telerik.com/fiddler

Example: mitmproxy

Example: mitmproxy

● Do TLS MITM right from the start,
and record the BLE snoop log

● Otherwise you could miss one-time
events, like a firmware update

● Dedicated, rooted device recommended

TLS MITM Advice

Analyzing the
Collected Data

● Small, cheap BLE padlock,
e.g. for a school locker or
travel luggage.

● Company offers a large variety of locks
(also for doors, cabinets, bikes, …)

● App requires backend account

Disclaimer: as of 2018, may have been improved in the meantime.

Example: Nokelock

Unencrypted HTTP traffic:

Analyzing the Collected Data - HTTPS

16 bytes “lockKey”

16 bytes “lockKey”
1B 20 54 49 3A 05 5E 37
48 55 35 49 4B 01 4D 45

→ maybe AES-128?

Decrypt BLE traffic with AES-128 ECB
→ doesn’t look random →

06 01 01 01 5d 1a 79 5c 5c 51 77 13 10 79 04 74 (app → lock)
06 02 07 d4 9c ea ce 01 05 00 00 00 00 00 00 00 (lock → app)
02 01 01 01 d4 9c ea ce 7c 3f 2b 34 4b 11 5b 4d (app → lock)
02 02 01 59 9c ea ce 01 05 00 00 00 00 00 00 00 (lock → app)

05 01 06 30 30 30 30 30 30 d4 9c ea ce 1f 7e 10 (app → lock)
05 02 01 00 9c ea ce 01 05 00 00 00 00 00 00 00 (lock → app)
05 0d 01 00 9c ea ce 01 05 00 00 00 00 00 00 00 (lock → app)

05 01 06 30 30 30 30 30 30 d4 9c ea ce 07 10 0a (app → lock)
05 02 01 00 9c ea ce 01 05 00 00 00 00 00 00 00 (lock → app)
05 0d 01 00 9c ea ce 01 05 00 00 00 00 00 00 00 (lock → app)

Traffic Looked Random → Decrypt It

Look for patterns
(compare several sessions):

06 01 01 01 5d 1a 79 5c 5c 51 77 13 10 79 04 74 (app → lock)
06 02 07 d4 9c ea ce 01 05 00 00 00 00 00 00 00 (lock → app)
02 01 01 01 d4 9c ea ce 7c 3f 2b 34 4b 11 5b 4d (app → lock)
02 02 01 59 9c ea ce 01 05 00 00 00 00 00 00 00 (lock → app)

05 01 06 30 30 30 30 30 30 d4 9c ea ce 1f 7e 10 (app → lock)
05 02 01 00 9c ea ce 01 05 00 00 00 00 00 00 00 (lock → app)
05 0d 01 00 9c ea ce 01 05 00 00 00 00 00 00 00 (lock → app)

05 01 06 30 30 30 30 30 30 d4 9c ea ce 07 10 0a (app → lock)
05 02 01 00 9c ea ce 01 05 00 00 00 00 00 00 00 (lock → app)
05 0d 01 00 9c ea ce 01 05 00 00 00 00 00 00 00 (lock → app)

Analyzing the Protocol

Deduce protocol (from a few sessions):

AUTH_REQUEST (060101), random padding (app → lock)
AUTH_RESPONSE (060207), 4 byte session ID, 0 padding (lock → app)
STATUS_REQUEST (020101), 4 byte session ID, random padding (app → lock)
STATUS_RESPONSE (020201), batt state, 3 byte sess.ID, 0 padding (lock → app)
UNLOCK_REQUEST (050106), passcode, session ID, random padding (app → lock)
UNLOCK_ACK (050201), 3 byte session ID, 0 padding (lock → app)
UNLOCK_CONFIRM (050d01), 3 byte session ID, 0 padding (lock → app)

→ Replay protection: 4 byte session ID created by the lock.

Analyzing the Protocol

Verify the findings, look for weaknesses:

● Write SW that mimics the app,
e.g. Python, bluepy or Adafruit_BluefruitLE

● Explore the protocol, use fuzzing
techniques

Next Steps

https://github.com/IanHarvey/bluepy
https://github.com/adafruit/Adafruit_Python_BluefruitLE

Nokelock Findings

(-)Plaintext password in http transmission

(-)Inviting friends will give them access to the
 non-changeable master secret of the lock

(+)BLE protocol looks simple & secure

(-)btlejack: Hijack the session after one opening,
 keep it alive, then use replay?

https://github.com/virtualabs/btlejack

This protocol was rather easy to
understand.
What if it’s not?

Reversing the App
Note: In some jurisdictions, this might be legally restricted.
Check your local laws before decompiling an app.

Goal: Obtain “readable” source code

● Android

○ Java compiled to bytecode, incl. symbols

■ Bytecode barely readable (tool: smali / baksmali)

■ Decompile back to Java e.g. with JADX (also online)

○ C++ compiled to ARM / x86 binary (.so files)

■ Tools: e.g. NSA’s Ghidra or IDA

Decompiling Android .apk

https://github.com/JesusFreke/smali
https://github.com/skylot/jadx
http://www.javadecompilers.com/apk
https://github.com/NationalSecurityAgency/ghidra
https://www.hex-rays.com/products/ida/

● iOS

○ Obtain decrypted .ipa first → jailbroken
device

○ ARM binaries, e.g. use Hopper or Ghidra

Decompiling iOS .ipa

https://www.hopperapp.com/
https://github.com/NationalSecurityAgency/ghidra

● On both platforms it’s possible to modify and
re-compile

○ add frida-gadget

○ override security checks

Re-compile

Search for bluetooth or crypto,
e.g. “android.bluetooth”, “aes” or “crypt”...

● import android.bluetooth.BluetoothGattCharacteristic;

● com/fuzdesigns/noke/services/NokeBackgroundService.java:

byte[] aeskey = new byte[] {(byte) 0, (byte) 1,
(byte) 2, (byte) 3, (byte) 4, (byte) 5, (byte) 6,
(byte) 7, (byte) 8, (byte) 9, (byte)10, (byte)11,
(byte)12, (byte)13, (byte)14, (byte)15};

Starting Point After Decompile

- import android.bluetooth.BluetoothGattCharacteristic;

- grep −r aes .
...
com/fuzdesigns/noke/services/NokeBackgroundService.java:
byte[] aeskey = new byte[] {(byte) 0, (byte) 1,
(byte) 2, (byte) 3, (byte) 4, (byte) 5, (byte) 6,
(byte) 7, (byte) 8, (byte) 9, (byte)10, (byte)11,
(byte)12, (byte)13, (byte)14, (byte)15};

● Java symbols renamed (C0001a, bArr1, mo2342a,…)
and many more techniques

● Code extremely hard to read

● Lots of research and tools for de-obfuscation

● Simple approach: Use Android Studio for refactoring
if (bArr4 == null) {
 throw new IllegalArgumentException("keyData is null");
}

Obfuscation

https://developer.android.com/studio

Takeaway for vendors:
Obfuscation makes analysis harder, but not impossible. It slows
down peer review from the security community.
It doesn't stop criminals, who will still attack your system and
your customers, and who won't do responsible disclosure.
→ Don’t do it. Instead, design your protocols in a way which is
secure even when known! (Kerckhoff’s 2nd principle)

Obfuscation

https://en.wikipedia.org/wiki/Kerckhoffs%27s_principle

Examples of
Previous VULNs

● Typical cheap BLE padlock

● Shim proof mechanics, but
passcode transmitted in plain text

● Still sold that way (oops, 0-day…)

ANBOUD Padlock

● HEX 0x027db = 010203 decimal

● That’s the code I set on the lock

● Original app can now be used
to open lock with sniffed code

ANBOUD PWNED

● Rose & Ramsey at DefCon 24 (2016)
● 12 of 16 tested locks had simple BLE

vulnerabilities
● Only two of the padlocks remained unbroken
● One of those we opened with a magnet,

like its predecessor, the other one ...

12 14 of 16 locks vulnerable

https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-%20Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks-UPDATED.pdf
https://media.ccc.de/v/29c3-5308-de-en-open_source_schluessel_und_schloesser_h264#t=2475

● One of the first BLE padlocks,
created on Kickstarter in 2014

● Note: Research applies to the original
firmware from 2015-2017
(Our responsible disclosure 2016 led to
a firmware update in 2017)

NOKĒ Padlock (!= Nokelock)

https://www.kickstarter.com/projects/fuzdesigns/noke-the-worlds-first-bluetooth-padlock

● Uses AES-128 cipher

● Uses two different secrets for owner
and other users

● Time restrictions only enforced in app

NO(KĒ) Security

● Secret is transmitted using individual
AES session keys

● But session keys are created in a
“secret handshake” using a hardcoded
AES key

● Security by obscurity

NOKĒ AES VULN

...from binary .so file in APK

NOKĒ Session Key

New session key can now be used to decrypt transfer of the
user’s secret

NOKĒ KEX Broken

 app nonce: b14c68a1
 XOR
 lock nonce: bff91ae4
 = 0eb57245
 + (add byte-by-byte modulo 256)
 0001020304 05060708 090a0b0c0d0e0f (pre shared key)

= 0001020304 13bb794d 090a0b0c0d0e0f (new session key)

● Comfort feature: no user interaction on
app needed to unlock

● Can be relayed - or the secret stolen,
if lock doesn’t authenticate to app

● Example NOKĒ: impersonate a lock,
app sends you the secret

Comfort vs. Security

● Apr ‘16: Disclosed to Vendor

● Aug ‘16 after DefCon Talk by Rose &
Ramsey: Vendor blog post: “Noke passed
hacker testing”

● Dec ‘16: Public disclosure at CCC’s 33C3

● Jan ‘17: Someone else requests CVE

NOKĒ Disclosure Fun Facts

https://media.ccc.de/v/33c3-8019-lockpicking_in_the_iot

BLE Hotel Keys

● Main purpose: self-check-in

● No keycard anymore, mobile phone app is
the key

● Hotels can reduce front desk staff

● Guests don’t have to wait in queue

Why BLE for Hotels?

● Secure pairing not feasible

● Old hardware in locks, not always
online

● Apps often made by 3rd parties,
lock vendor just provides the SDK

Challenges for Vendors

● Booking linked to app account,
or added by user (sometimes using
weak credentials)

● Online check-in

● Mobile key is transferred from backend
to app

Mobile Key

Mobile Key Demo

Video 1

Hotel “H”

● Backend→App: key K, and encrypted key
K* = encKs(K)

● Only the backend and the lock know Ks
● App→Lock: K*
● Lock uses Ks to decrypt K* to K
● Further BLE traffic is AES-encrypted with key K

Encrypted Mobile Key System

● Didn’t find obvious attack vector,
except for extracting Ks from the physical lock[1],
which we haven't tried :)

● No further experiments, because on the second stay,
the mobile key system was deactivated.

[1] cf. Thomas, Blackhat USA 2014: Reverse-Engineering the Supra iBox

Encrypted Mobile Key System

https://www.blackhat.com/docs/us-14/materials/us-14-Thomas-Reverse-Engineering-The-Supra-iBox-Exploitation-Of-A-Hardened%20MSP430-Based-DeviceSupra.pdf

Manufacturer “M”

● Found system early 2019 in an upper
class hotel

● Mobile key used in elevator, rooms and
fitness center

● Analyzed TLS and BLE traffic

Vulnerable System

Key from Backend

Key from Backend

Data seen from Backend (TLS) Data seen in HCI log (BLE)

Lock: 0000

Lock: 000103001ec05d6bb5190707051b2b19e0 = Lock MAC,CRC

App: 00010200001200010101010101bbec98f3 = App Nonce,CRC

Lock: 0001040104d612ffeafad012 = Lock Nonce,CRC

App: 3000000000000044ca8c02fd01fef8fdf9 = Special CRC, Key

App: 31605803e9196317fb5b9e8c6e616b7ba6 (all bytes from

App: 32ca06cfbc48c67697f0c34897948c218c backend)

App: 33cf3f2a462f78d9c8874b6bb021b70034

Lock: 0002190707051b00090ca500000001af08 = Lock confirmation: open

Lock: 0002

Full BLE Trace

Note: The description was slightly modified to protect the innocent not yet patched devices.

● Tools for CRC reversing are available, e.g. CRC RevEng

● We just used a custom Python script and searched for
CRC-16 parameters that matched in at least 2 messages,
assuming the CRC is located at the end of a message
Trying different polynomials and start values...
Trying polynomial 0x2f15...
[...]
Trying polynomial 0xXXXX...
Match found! Polynomial: 0xXXXX Seed: 0x73 Final XOR: 0xffff

CRC Reversing

http://reveng.sourceforge.net/

● Seed for CRC of first msg turned out to be a value
received from the backend (“sc” / constant within hotel)

● Seed for CRC of next msg is CRC of previous msg

● But for the most important part, the credential packet,
the CRC calculation was more complicated:
00 00 00 00 00 00 0c 3b 8c 02 fd 01 fe 9e f2 3b

CRC Reversing

6 bytes
always zero

2 bytes
changing each

session

5 bytes
constant per

hotel

3 bytes
constant per

stay
Note: The description was slightly modified to protect the innocent not yet patched devices.

● So we had 1 block with the CRC obviously not at the end,
some constant blocks, 6 zero bytes,
and 16 changing bits

● And 3 CRC-16 values and 2 session
nonces to play with…

● [... some playing around …]

CRC Reversing

?
? ?
?

Note: The description was slightly modified to protect the innocent not yet patched devices.

This intermediary byte sequence (and seed CRC3)
84 3c 45 f2 88 40 34 f1 8c 02 fd 01 fe 9e f2 3b

yields the final CRC-16 value 0c3b.

→ Now we know how to create the credential packet:
00 00 00 00 00 00 0c 3b 8c 02 fd 01 fe 9e f2 3b

CRC Reversing

nonce1 CRC1 nonce2 CRC2

CRC
inserted here

overwritten
with zeroes

Note: The description was slightly modified to protect the innocent not yet patched devices.

● Created a Python script

○ Input: Device name, credential bytes
(as sniffed from previous opening)

○ Calculates CRCs, handles BLE
communication (using bluepy)

Preparing an Attack

Sniffing a Mobile Key

Video 2

Executing the Script

Breaking into the Room

Video 3

Enjoy the View

PWNED

● Created test target (also Python script)

○ simulates a lock

○ handles BLE communication in the
peripheral role (using pybleno)

● Now we could play with this at home :)

Some more Scripting

https://github.com/Adam-Langley/pybleno

● Found more hotel chains using the product

● BLE names are easy to check on-site,
without actual room booking

● After booking a room, we found an even
simpler variation of the protocol deployed
(the “final / special” CRC part is left out)

How Big Is the Problem?

Weaponizing the
Attack

● BLE sniffing of the key

● Using three btlejack sniffers worked
reliably

● Must identify the lock’s MAC address in
advance

Real Life Exploitation

Where to Sniff?

Video 4+5

Where Else to Sniff?

Video 6

● Our lock simulator script can impersonate
any lock

● Doesn’t need any special hardware

● Attract the victim by heavy advertising,
and...

Attack Using the Simulator

$ BLENO_ADVERTISING_INTERVAL=20 BLENO_DEVICE_NAME="AHPKUJzL" python3
mmk-simulator.py
Hit <ENTER> to disconnect
Now advertising...
Now connected to 63:53:48:25:c0:eb
Stage 1: Send initial zeroes.
Stage 2: Send device challenge.
Stage 3: Parse app response.
Stage 4: Send device response.
Stage 5: Parse key data.
...
Stage 6: Check key data.
3050850000000000008c02fd01fef8fdf9 31605803e9196317fb5b9e8c6e616b7ba6
32ca06cfbc48c67697f0c34897948c218c 33cf3f2a462f78d9c8874b6bb021b70034

Steal the Key

Responsible
Disclosure

● 2019-04-18: First vendor notification

● 2019-04-26: Technical details to vendor

● 2019-05-02: Vendor questions feasibility

● 2019-05-06: Proof of concept code sent

● 2019-05-29: Vendor acknowledges vulnerability

● 2019-06-28: Vendor discusses update plans

Disclosure Timeline

● Locks in “our” first hotel are online, can be
updated remotely

● Others need someone going from door to
door with an update device

● Multiple app vendors have to integrate the
new SDK

Update Plans and Challenges

1. Current BLE link layer can be sniffed
reliably with simple tools

2. Do not try to hide secrets in apps,
build secure protocols

3. BLE is used in serious applications
and worth auditing

Black Hat Sound Bites

Thanks for your attention!

Questions?

Contact: btle-research@posteo.de

BLE exploration tool for your smartphone:
https://apps.apple.com/app/lightblue-explorer/id557428110 /
https://play.google.com/store/apps/details?id=com.punchthrough.lightblueexplorer

Modifying Android app manifest to make app trust user CAs
https://medium.com/@elye.project/android-nougat-charlesing-ssl-network-efa0951e66de

Rebuild/Sign APK
https://gist.github.com/AwsafAlam/f53312cbb912cf3e4267a5971cd75db0

JADX decompiler:
https://github.com/skylot/jadx (Also can simply be done online: https://www.google.com/search?&q=online+jadx)

If you are interested in locks and lock picking:
https://toool.nl/Publications
http://lockpicking.org (German)

Some Useful Links

https://apps.apple.com/app/lightblue-explorer/id557428110
https://play.google.com/store/apps/details?id=com.punchthrough.lightblueexplorer
https://medium.com/@elye.project/android-nougat-charlesing-ssl-network-efa0951e66de
https://gist.github.com/AwsafAlam/f53312cbb912cf3e4267a5971cd75db0
https://github.com/skylot/jadx
https://www.google.com/search?&q=online+jadx
https://toool.nl/Publications
http://lockpicking.org

