

National Cybersecurity Assessments and Technical Services

Appref-ms Abuse for

Code Execution & C2
William J. Burke IV

Information Security Specialist

Advanced Operations

Table of Contents

Background ... 4
Initial Requirements .. 4
Process Summary .. 4

Microsoft Applications Overview.. 5
Application Publishing Overview - Online & Offline Availability ... 5
Application Deployment Process .. 7
Application Installation Process .. 10

Appref-ms abuse for payload delivery .. 12
Pre-Deployment Requirements... 12
Initial Access - Phishing via OLE Delivery... 15
Initial Access - Phishing via Hyperlink Delivery ... 17
Initial Access - Phishing via HTA Delivery .. 17

C2 Management via .appref-ms ... 18
Establishing Persistence .. 18
Foothold management via Forced Application Updates .. 18

Conclusions ... 21

Table of Figures

Figure 1: OLE and Filetypes .. 5
Figure 2: Publish.htm ... 6
Figure 3: PatchManager.appref-ms ... 6
Figure 4: Application Settings .. 7
Figure 5: Code Signing Settings .. 8
Figure 6: Publish Settings ... 8
Figure 7: Update Settings ... 9
Figure 8: Application Deployment Validation .. 10
Figure 9: Deployment Manifest Snippet .. 11
Figure 10: Application Manifest Snippet ... 11
Figure 11: Application Install Prompt .. 11
Figure 12: Application in Start Menu ... 12
Figure 13: File and Folder Deletion .. 13
Figure 14: Application Uninstall Registry Key .. 13
Figure 15: Key Tree Deletion .. 14
Figure 16: .appref-ms data in .application file ... 14
Figure 17: Generating an .appref-ms ... 15
Figure 18: .appref-ms Word OLE... 15
Figure 19: OLE Execution ... 16
Figure 20: ClickOnce Dialog Box.. 16
Figure 21: SmartScreen .. 16
Figure 22: .application Hyperlink ... 17
Figure 23: ClickOnce Delivery HTA ... 17
Figure 24: C2 Example Phase 1 .. 19
Figure 25: C2 Example Phase 2 .. 19
Figure 26: C2 Example Phase 3 .. 20
Figure 27: C2 Example Phase 4 .. 20

Background

Initial Requirements

Due to the increase in detection or protection against currently used payload delivery mechanisms

in the field, new methods needed to be developed to obtain code execution for initial access in red

team operations. The requirements for these new methods were that they must utilize the Cobalt

Strike1 framework, evade Windows Defender2, work on both Windows 10 and Windows 7

environments, and they must not use previously disclosed delivery mechanisms.

In support of this research a test environment was developed consisting of the following:

• Windows 10 victim host - Fully patched with Windows Defender enabled

• Windows 7 victim host - Fully patched with Symantec Antivirus enabled

• Windows 10 development host - Visual Studio 2017 environment

• Kali Linux host - Attack platform utilized for testing as a Cobalt Strike client

• Ubuntu cloud server - Cobalt Strike team server for C2 (Command & Control)

• E-mail capabilities - Gmail was predominantly used, with additional testing in Outlook

• Supporting Software - Microsoft office 365 was installed on each of the Windows hosts

In support of this research the following variables were established:

• A known valid payload was used for delivery via the .appref-ms filetype

• Code signing certificates were used as part of the deployment process

• Hosts maintained internet connectivity to provide an avenue for e-mail delivery and C2

• Each host stood individually - testing was not performed in a domain environment

• Firewall rules were set on the cloud server to only permit communications to and from the

test environment

As prior research was discovered that details ClickOnce abuse via .application Online Only

publishing, this paper focuses on Online & Offline Availability to leverage abuse of the .appref-

ms filetype.

Process Summary

The list of file extensions that Microsoft blocked for use as OLE’s3 (Object Linking & Embedding)

was manually cross referenced against executable file extensions native to Windows 7 and 10.

This assisted with determining which executable extensions were still permitted as OLE’s and
resulted in a number of file extensions for further research. Out of these results, the .appref-ms

1 https://www.cobaltstrike.com/
2 https://www.microsoft.com/en-us/windows/windows-defender/
3 https://support.office.com/en-us/article/packager-activation-in-office-365-desktop-
applications-52808039-4a7c-4550-be3a-869dd338d834

https://www.cobaltstrike.com/
https://www.microsoft.com/en-us/windows/windows-defender/
https://support.office.com/en-us/article/packager-activation-in-office-365-desktop-applications-52808039-4a7c-4550-be3a-869dd338d834
https://support.office.com/en-us/article/packager-activation-in-office-365-desktop-applications-52808039-4a7c-4550-be3a-869dd338d834

file format was discovered to be utilized by Microsoft ClickOnce to deploy and run remote

applications4.

Figure 1: OLE and Filetypes

Research on established malicious use of the .appref-ms file format did not yield any results, and

general information discovered on the file format was considerably light. However, the Microsoft

Visual Studio documentation for ClickOnce provided significant insight into the application

deployment process and file format relationships therein. Applying an attacker’s mindset to this

process, coupled with supplementary information discovered throughout the research phase,

ultimately resulted in the development of multiple methods of payload delivery - to include

utilization of the .appref-ms file as an OLE. Additional methods of abusing the .appref-ms file

were discovered, which led to the application of this filetype as a method of managing long term

C2 (Command and Control) sessions with remote hosts.

Microsoft Applications Overview

Application Publishing Overview - Online & Offline Availability

An application can be published in C# with Visual Studio 2015 or Visual Studio 2017. The

application and any supporting files may either be published locally or to a remote server. If a

remote server is chosen, the files may be uploaded via FTP (File Transfer Protocol) or to a file

share. Once published, a directory tree will be established and populated at the designated location.
The root folder of the directory will contain the setup.exe, publish.htm, and .application files.

4 https://fileinfo.com/extension/appref-ms

https://fileinfo.com/extension/appref-ms

• Setup.exe is a direct download link for an executable that install the application

• The .application file which will run the installation via Microsoft’s ClickOnce

• Publish.htm is a web page that provides a link to both setup.exe and the .application

For each deployment there will also be directories published in the root folder that correspond to

the application version number. The publish.htm landing page will always link to the latest

deployed application version.

Figure 2: Publish.htm

Once an application is published as “Online & Offline Availability”, it can be installed by the end

user. As part of the installation process, an .appref-ms file is generated within the user’s start menu

under a folder that shares the name of the application.

Figure 3: PatchManager.appref-ms

The .appref-ms file can be ran to check for updates and run the application. This is the crux of the

malicious deployment mechanism, as an .appref-ms file can be ran even if the application was not

previously installed. Upon execution it will connect with the deployment server to install and run

the application in the same method as before. It should be noted that the .appref-ms file will only

work with applications published via the Online & Offline Availability deployment method.

Application Deployment Process

There are multiple steps required to publish an application in this method. From Microsoft’s

Visual Studio, an application can be published following the steps below.

Open the C# payload that will be deployed in Visual Studio. Select the “Project > Properties”

menu option to manipulate the required settings for deployment.

Figure 4: Application Settings

From the “Application” settings you can set the name for the application to be deployed. You can

also specify the .net framework to be used for deployment. Regarding the .net framework utilized:

• .net framework 4.5 is required for AES256 Code Signing Certificates

• .net framework version 3.5 and up can use any browser

o prior versions are limited to Internet Explorer

• The .net framework utilized must be installed on the end user’s host

For the remaining settings, the output type should be set to “Windows Application” to limit

unnecessary pop-ups. Additionally, an icon for the application can be set if preferred though this

will result in an additional file being dropped to disk and should be accounted for in any cleanup

procedures taken.

Figure 5: Code Signing Settings

If code signing certificates will be used to sign the application, settings will need to be configured

in the “Signing” section of the properties. Load your code signing certificate and specify that it

should also be used to sign the assembly. As additional layers, you can also specify a timestamp

server to be used in the publishing process and use your code signing certificates to sign the

manifest files that direct ClickOnce throughout the application installation process.

Figure 6: Publish Settings

The next step is to establish the publish settings within the properties. Here you will specify the

directory the application will be deployed to. If it is a remote server, it will need to be deployed

over FTP (File Transfer Protocol). This section is also where you will specify that the application

will be deployed as “Online & Offline Availability”.

Online Only deployment does not perform an installation, and is utilized for one-time deployment

of applications. Online & Offline Availability provides an installation of the application and is

intended for more persistent use. Online Only can also be used maliciously via the .application

link5, but does not provide an avenue for ClickOnce interaction via the .appref-ms filetype.

The publish version can be arbitrarily set to any version number, though upon publishing the

application the .appref-ms file, .application link, and setup.exe files generated will always refer to

the highest version.

Once these settings are configured, by clicking “Updates” from within the publish settings some

additional options are provided.

Figure 7: Update Settings

By selecting “The application should check for updates” the application will always check in with

the deployment server to see if there is a more recent version of the application. By setting “Before

the application starts” it can be specified that the application will force install any established

updates before running the application should they be found. As long as the user approved of the

initial application installation, any updates to the application will not require user approval. In this

section a minimum version number can also be specified for updates, in addition to specifying a

separate location where the update is located if required.

5 https://www.slideshare.net/NetSPI/all-you-need-is-one-a-click-once-love-story-secure360-
2015

https://www.slideshare.net/NetSPI/all-you-need-is-one-a-click-once-love-story-secure360-2015
https://www.slideshare.net/NetSPI/all-you-need-is-one-a-click-once-love-story-secure360-2015

With all of these settings configured, the application is ready to be published. The “Publish

Wizard” or “Publish Now” buttons in the publish settings pane may be used to initiate the

publishing process. Once enacted, Visual Studio will connect to the provided server and deploy

all the associated files for the application and it is ready for delivery to the end user.

Figure 8: Application Deployment Validation

Application Installation Process

From the end user’s perspective, the application can be installed via ClickOnce from two different

avenues. They could open the .application directly, via hyperlink, or through the “launch” link in

the publish.htm page. Or, they could locally run the .appref-ms file. In either case, ClickOnce

directs the installation for the application from there through the dfsvc.exe component.

Running either the .appref-ms file or the .application file will direct ClickOnce to run the

deployment manifest hosted on the deployment server. The deployment manifest will specify the

directory where the latest version of the application manifest is hosted, along with the permissions

in which the application will be executed.

Figure 9: Deployment Manifest Snippet

ClickOnce then opens the application manifest as directed by the deployment manifest. The

application manifest provides the location of the application’s exe.deploy file, which is then

downloaded locally to the end user’s host and the application is installed then executed with the

established permissions pending the end user’s approval.

Figure 10: Application Manifest Snippet

Once ClickOnce performs this process, the end user is prompted to permit the installation itself.

A dialog box appears asking if they will “Install” or “Don’t Install” the application.

Figure 11: Application Install Prompt

The prompt displays the name of the application, deployment server, and the publisher information

as determined by the code signing certificates. Once the user selects install, the following actions

take place:

• Application files are placed in the following directory:

o C:\Users\<username>\AppData\Local\Apps\2.0\<random string>

• A registry key is added under:

o HKCU\Software\Microsoft\Windows\CurrentVersion\Uninstall

• A directory is placed in the start menu with the same name of the application:

o The appref-ms file is located in this directory

o There will also be a “Support URL” in this directory if one is published

• The application is executed

Post deployment, in normal operations the end user may run the .appref-ms file to check for

updates then run the application again. They may also uninstall the application using the native

Windows uninstall tool.

Appref-ms abuse for payload delivery

Pre-Deployment Requirements

Prior to publishing and utilizing the malicious application, steps will need to be taken to limit

actions that could notify the end user to the malicious activity and an appref-ms file will need to

be generated. With this activity, actions that could alert the end user were determined to be the

population within the start menu folder and uninstall utility. Modifications can be made to the C#

code prior to deployment to remove these actions and further hide the execution of the payload.

Regarding the start menu folder deployment, the folder and subsequent .appref-ms file will be

generated to:

C:\Users\<username>\AppData\Roaming\Microsoft\Windows\Start

Menu\Programs\<Application name>\<Application Files>

Figure 12: Application in Start Menu

We can remove this as part of the application deployment by specifying its deletion upon

application execution. From within the C# payload a section can be built where the user’s appdata

directory is specified, and a path to the Start Menu folder is provided therein. The .appref-ms file

can then be directed for deletion, with additional iterations of it being set for deletion as well. This

extra step is specified as there may be additional numbers added to the file on deployment should

the end user install the application numerous times.

Figure 13: File and Folder Deletion

With the application folder void of contents, the folder itself can then be deleted as specified. A

catch is added with a specific error number to add in to the social engineering aspect of phishing,

so if the end user reports back to the operator that the “application failed to run” the error number

can be specified to provide insight into how far the malicious application got in the process or if

there were any true errors with deployment.

The registry key is a slightly more involved process as the key tree name is provided a random

string upon installation. However, the display name within the key tree still matches the

application name.

Figure 14: Application Uninstall Registry Key

To remove this key, code will need to be added that will parse through the display names of each

of the key trees under HKCU\Software\Microsoft\Windows\CurrentVersion\Uninstall. Once the

display name for a key tree is found to be a match, the key tree can then be specified for deletion.

Figure 15: Key Tree Deletion

As previously mentioned, an .appref-ms file will also need to be generated. This could be done by

installing the application locally to a test system, however if the prior steps are followed it will be

removed as part of the installation process. To remedy this, an .appref-ms file may be generated

locally.

An .appref-ms file consists of the following in a single line:

• URL to the application in the format “<URL to .application>#<application name>”

• Culture

• Public key token

• Architecture

This required information can be found in the “Assembly Identification” section of the .application

file once it has been published.

Figure 16: .appref-ms data in .application file

Once the line of text has been provided, to execute properly it will need to be saved as an .appref-

ms file with UTF-16 LE encoding. Once saved, this .appref-ms file will execute just as an .appref-

ms file deployed upon application installation will execute.

Figure 17: Generating an .appref-ms

Initial Access - Phishing via OLE Delivery

As the .appref-ms filetype is not flagged as malicious by Gmail or Outlook, you could attach it

directly to an e-mail to gain initial access upon code execution on the end user’s host. However,

to further give credence to the social engineering aspects of phishing it may be prudent to use the

.appref-ms file as an OLE within a Word document.

As with any other OLE, the .appref-ms file is embedded within a Word document, named

appropriately, and provided an icon of choice. It can then be delivered to the end user, and

execution will take place once the OLE is double clicked. To make the end user more susceptible

to the phishing campaign the method of execution should be taken into account. As the one click

required for execution will be the end user agreeing to install the application once it has been

opened, the OLE naming convention and overall phishing campaign should lead the end user to

perform that action.

Figure 18: .appref-ms Word OLE

Regardless of what the .appref-ms is named as an OLE, once the user executes it they will be

prompted to “open” the file. The prompt will show the full filename, including the filetype. As

such, targets selected for this method of phishing should be non-technical personnel, such as

Human Resources or financial assistants. Once the user clicks “Open”, they will be prompted to

install the application.

Figure 19: OLE Execution

A small dialog box will briefly flash as ClickOnce performs its side of the operations. This dialog

box appears for roughly 1 to 2 seconds before installing and running the malicious application.

Figure 20: ClickOnce Dialog Box

With code signing certificates in place, no further action past clicking “Install” is required by the

end user. If code signing certificates are not used and Microsoft SmartScreen is enabled, then the

user will have an additional prompt they will need to approve before execution. The user will need

to select “More info” followed by “Run Anyways”.

Figure 21: SmartScreen

Initial Access - Phishing via Hyperlink Delivery

As hyperlink delivery relies on the .application file and not .appref-ms, it is available in both

Online Only and Online & Offline Availability. By providing the end user a direct link to the

.application file, they could click the link to perform the required code execution via ClickOnce.

The required steps will be similar to the execution process above. Once the hyperlink is delivered

as part of the phishing campaign and ran, the user will be asked if they want to open the application.

Figure 22: .application Hyperlink

From there the required steps for code execution are the same as when the user clicked “Open” on

the Word document OLE. They will need to click install, the ClickOnce dialog box will briefly

appear, and the payload will be executed.

Initial Access - Phishing via HTA Delivery

Another example of using ClickOnce as a method of code delivery would be by creating an HTA

(HTML Application) link. This would still require the end user to click a link in the same method

referenced in the prior section, though this may provide an additional avenue should the operator

find a direct .application link is blocked or not operating as intended.

Dfshim.dll is the library that ClickOnce uses to manage application downloads and updates.

Through a Visual Basic script, rundll32.exe can be called to invoke dfshim.dll and run the

application.

Figure 23: ClickOnce Delivery HTA

The operator would need to provide the full URL to the .application file in the example code above

and save / host it as an .hta file. From there a link to the .hta file could be sent to the end user for

execution. Upon clicking the link, the user’s browser would open and provide the “Do you want

to open this application” prompt. Once “Run” is selected, the same steps and requirements

established in the prior delivery examples take place for code execution. It should be noted that

this specific script is a proof of concept of HTA delivery, and is more in-line with testing technical

controls than for use in a red team operation. Rundll32 is monitored heavily and this specific script

would be flagged by Windows Defender.

C2 Management via .appref-ms

Establishing Persistence

As the .appref-ms filetype will run the application upon execution, there are different ways that it

could be incorporated into a pre-established method of persistence. Once the application has been

installed, no additional approvals for execution or updates are required. As such the .appref-ms

file could be place in the user’s startup folder so it executes on boot, could be triggered for

execution by a scheduled task, or could be added to the startup through a registry modification.

As an example, the payload could be modified to automatically establish persistence by copying

the .appref-ms file to the user’s startup folder as part of the deployment process before deleting it

from the Start Menu. This example, when coordinated with established means of lateral

movement, could provide a method for establishing sleeper footholds within the remote

environment. However, initial application installation would still need to be approved by the end

user on any hosts moved to. Due to this, there will still be a level of social engineering involved

to get the required initial approval when .appref-ms is used for lateral movement. The application

should be named appropriately to entice the end user to perform the install.

Foothold management via Forced Application Updates

As the .appref-ms only needs approval from the end user on the initial installation, updates to the

application will be executed without any additional interaction. As long as the publishing settings

require the latest version to be ran, any time the .appref-ms file checks in to the deployment server

it will install and run any updates that have been pushed upon execution. When coupled with a

persistence mechanism, this capability can be leveraged to provide remote management of C2

footholds within the network environment for further action.

In normal red team operations, it is common to manage multiple “lanes” of C2. Each lane could

manage multiple domains for traffic and host interaction, utilize separate methods of persistence

or lateral movement, and more. Should defensive personnel become aware of the operator’s

activity, they may block communications to those domains or perform other actions of

remediation. In these circumstances it is prudent to have other established footholds that operate

on separate lanes of C2, so other avenues of regaining access can be leveraged.

Since an .appref-ms file does not require approval or user interaction after the initial installation,

it is possible to use .appref-ms to initially deploy a non-malicious application to a host just for the

purpose of establishing a foothold. Should the host be scanned or monitored, the only point of

detection would be the application checking with the deployment server at its pre-established time.

As the domain is utilizing a separate lane from the primary channels of C2, neither the application

or the domain are being utilized to perform malicious activity at the time. As such, overall

detection should fly under the radar.

To illustrate this, see the graphic below. For this example, the first three hosts have an established

lane of C2 maintaining communications with the red team. The fourth host has an .appref-ms

application that is set to run at 0800hrs each morning.

Figure 24: C2 Example Phase 1

Once the red team’s activity has been discovered, the defenders block the domains used to maintain

communications over that lane of C2.

Figure 25: C2 Example Phase 2

To reestablish communications within the network, a malicious update can be pushed to the

deployment server. When the .appref-ms executes at 0800hrs and checks in with the server, the

application will be updated with the malicious payload.

Figure 26: C2 Example Phase 3

This updated payload will establish communications over a separate lane of C2 from the initial

operations, using domains for communications that have not been flagged by the defenders. This

will provide the red team an opportunity to re-entrench within the environment with relatively

minimal effort and resume operations.

Figure 27: C2 Example Phase 4

Regardless of the number of hosts being utilized as sleeper footholds, it will only take a single

update to deploy a malicious payload across them all as they check in with the deployment server.

This could provide a simple means of regaining access to multiple areas in the environment, but

the more hosts used with this tactic the higher the rate of detection overall. To further obfuscate

this activity, it is recommended that various hosts selected to be footholds utilize different

deployment servers and different persistence mechanisms when possible.

Conclusions

The .appref-ms file format can be used to perform malicious activity in various ways, all while

technically operating as it was intended to be used. It provides some additional avenues for code

execution through phishing, and could even be used to manage C2 sleeper footholds through its

application update capability. This research was undertaken to provide operators with some

additional tools to be used in their operations, and it should be specified that for a red team to be

successful no single technique should be relied upon. Innovation and variation in tactics are critical

to success, and .appref-ms use is no exception. The abuse of the .appref-ms file type results in

code execution, but code to be executed will still need to be provided. When possible, using

different payloads with different campaigns could help further obfuscate this activity.

Although requirements for user interaction are limited, they are crucial to execution and it may

prove difficult to get a user to click “Install”. Catering social engineering campaigns around these

notions and establishing trust with a user before delivering the payload will help with overall

success. To that note, code signing certificates will assist greatly in this measure. Without them,

SmartScreen on Windows 10 hosts will require the user to go through a difficult additional step

before code execution takes place.

	Background
	Initial Requirements
	Process Summary

	Microsoft Applications Overview
	Application Publishing Overview - Online & Offline Availability
	Application Deployment Process
	Application Installation Process

	Appref-ms abuse for payload delivery
	Pre-Deployment Requirements
	Initial Access - Phishing via OLE Delivery
	Initial Access - Phishing via Hyperlink Delivery
	Initial Access - Phishing via HTA Delivery

	C2 Management via .appref-ms
	Establishing Persistence
	Foothold management via Forced Application Updates

	Conclusions

